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Let f : X → Y be a morphism of schemes, let F be an OX -module, and let E be locally free sheaf of
finite rank on Y . The projection formula gives a natural isomorphism

Rif∗(F ⊗OX
f∗E ) ' (Rif∗F )⊗OY

E ,

where Rif∗ is the higher pushforward. For i = 0, this means

f∗(F ⊗OX
f∗E ) ' (f∗F )⊗OY

E .

The formula is rather abstract-looking. For a long time, I had a hard time gaining the intuition behind
it, and I did not understand its importance. Then, while working on Hartshorne Exercise III.5.6, Feiyang
Lin (my qualifying exam study partner) pointed out that our work could only be made rigorous by applying
the projection formula. I realized that I had been frequently using the formula implicitly in a very common
setting.

Let f : X ↪→ Y be a closed embedding of projective varieties over a field, and let OY (1) be a very ample
sheaf on Y . This sheaf pulls back to a very ample sheaf OX(1) := f∗OY (1). The closed subscheme exact
sequence is

0→ IX → OY → f∗OX → 0,

where IX is the ideal sheaf associated to X. We usually abuse notation by writing OX instead of f∗OX in
this exact sequence, which might add to some of the confusion.

Very often we like to twist this exact sequence by OY (n) = OY (1)⊗n. We write this as

0→ IX(n)→ OY (n)→ (f∗OX)(n)→ 0

But we would like to understand this last term as the pushforward of a sheaf on X, rather than a pushforward
followed by a tensor product. The projection formula lets us do precisely this: we have

(f∗OX)⊗ OY (n) ' f∗(OX ⊗ f∗OY (n)) = f∗(OX(n)),

where by definition OX(n) = f∗OY (n). Since cohomology commutes with pushforward by a closed embed-
ding, we can understand a lot about this exact sequence if we understand OX(n).

For example, let X be a smooth non-hyperelliptic curve of genus 4 over k, and let f : X ↪→ P3
k be its

canonical embedding, so that OX(1) = ωX . Then using the projection formula, twisting the closed subscheme
exact sequence yields

0→ IX(n)→ OP3
k
(n)→ f∗ω

n
X → 0

for any integer n. But we know a lot about the cohomology groups Hi(X,ωn
X) ' Hi(P3

k, f∗ω
n
X) from the

Riemann-Roch formula. For example, if n = 2, then dimkH
0(X,ω2

X) = 4g − 4 + 1 − g = 9. Taking global
sections of the exact sequence, we can use this to conclude that IX(2) contains a nonzero quadric Q, which
must be unique up to scalars and irreducible since f(X) is not contained in any hyperplane and X cannot
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be contained in the complete intersection of two quadrics, as X has degree 6 under the embedding f whereas
such an intersection has degree 4. Likewise, dimkH

0(X,ω3
X) = 15 lets us deduce that IX(3) contains five

independent cubics, hence at least one cubic P not contained in the quadric Q. It then follows that X is the
complete intersection of P and Q: X is certainly contained in this intersection, and this intersection has no
embedded components due to the unmixedness theorem, so it must equal X.

Another important example is the smooth quadric surface Q = V (xw − yx) ' P1
k × P1

k, via the Segre
embedding f : Q ↪→ P3

k. We have PicQ ' Z2, so we represent divisors as pairs of integers (a, b); the class
(a, 0) is represented by any a copies of the first P1

k inside Q. We can compute f∗OP3
k
(n) = OQ(n, n). Let

n ≥ 0 be an integer. We have a closed subscheme exact sequence

0→ OQ(−n, 0)→ OQ → ι∗O(P1)
∐
n → 0.

where (P1)
∐
n is n disjoint copies of P1 lying inside P1 (assume k is an infinite field). The pullback of (a, b)

to a copy of P1 inside Q of the form P1 × {∗} is OP1(b), so the projection formula tells us that the above
exact sequence twists to

0→ OQ(−n+ a, b)→ OQ(a, b)→ OP1
k
(b)⊕n → 0.

Now this tells us a lot about the cohomology of OQ(a, b), namely the results of Hartshorne Exercise III.5.6.
To start, note that we have an exact sequence

0→ H0(Q,OQ(−n, 0))→ H0(Q,OQ)→ H0(OP1
k
)⊕n → H1(Q,OQ(−n, 0))→ H1(Q,OQ) = 0,

noting that H1(Q,OQ) = 0 because it is a hypersurface in P3
k (Hartshorne Exercise III.5.5). For n ≥ 1,

the map H0(Q,OQ) → H0(OP1
k
)⊕n may be identified with the diagonal map k ↪→ kn, so we conclude that

dimH0(Q,OQ(−n, 0)) = 0 and dimH1(Q,OQ(−n, 0)) = n−1 whenever n ≥ 1. Now letting n be an arbitrary
integer, we have another exact sequence

0→ H0(Q,OQ(n− 1, n))→ H0(Q,OQ(n, n))→ H0(OP1
k
(n))→ H1(Q,OQ(n− 1, n))

→ H1(Q,OQ(n, n)) = 0

where again H1(Q,OQ(−n,−n)) = 0 by III.5.5(c), since OQ(n, n) = f∗OP3
k
(n). The map H0(Q,OQ(n, n))→

H0(OP1
k
(n)) is always surjective—the former is spanned by monomials in {x0, x1, y0, y1} of bidegree (n, n),

and the latter consists of monomials in {x0, x1} of degree n, and pullback of global sections is given by setting
y0 and y1 to (not both simultaneously zero) constants. We conclude that H1(Q,OQ(a, b)) = 0 whenever
|a− b| ≤ 1. Finally, for a, b > 0, we have an exact sequence

0→ H0(Q,OQ(−a,−b))→ H0(Q,OQ)→ H0(OY )→ H1(Q,OQ(−a,−b))→ H1(Q,OQ) = 0,

where Y is the subscheme of Q given by the union of a disjoint copies of the first P1 and b disjoint copies of
the second P1; this is a connected reduced projective scheme when both a, b > 0, so its global sections are
just k, and we conclude that H1(Q,OQ(−a,−b)) = 0.

These cohomological facts tell us a lot about curves of type (a, b) on Q. For example, vanishing of
H1(Q,OQ(a, b)) for a, b > 0 implies that any curve of type (a, b) is connected via the long exact sequence
in cohomology; note that we deduced this fact from the case of a specific curve of type (a, b), and then the
cohomological machinery implies that it works for any representative.

Another fact is that a regular curve C of type (a, b) is projectively normal (as a subscheme of P3
k) if and

only if |a − b| ≤ 1. By Hartshorne Exercise II.5.14(d), this is equivalent to H0(P3
k,O(n)) → H0(C,OC(n))

being surjective. The map H0(P3
k,O(n))→ H0(Q,O(n, n)) is always surjective since H1(P3

k,O(−2 + n)) =
0—note that IQ ' OP3

k
(−2). The map H0(Q,O(n, n)) → H0(C,OC(n)) is surjective if |a − b| ≤ 1 by

vanishing of H1(Q,OQ(n − a, n − b)). Otherwise, if a > b + 1, nonvanishing of H1(−a + b, 0) implies that
H0(Q,O(b, b))→ H0(C,OC(b))—hence also H0(P3

k,O(b))→ H0(C,OC(b))—is not surjective.
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