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The reference for today’s talk is Hida’s Elementary Theory of Fisenstein Series and L-
functions, §6.1-2.

Let ' = T'1(IV) for N > 4, so that T' is torsion-free. Let I'y, = {((1] Cll)} denote the

stabilizer of oo for the action of T" on H. Then the set of cusps S of Y := I'\P! are in
bijection with I'\ PSLy(Z)/I's. Any congruence subgroup of SLy(Z) has finite index, so in
particular S is finite.

For any cusp s € S, there exists v € SLy(Z) such that - 0o = s. For example, if s = p/q
as a rational fraction in lowest terms, take x,y such that qy — pr = 1 and take

()

We define the “distance from s” function ds(z) = S(y7*(2))~!. Since any two choices of
v differ by an element of +I',, d is independent of the choice of 7. Using this distance
function, we can define a “punctured e-ball” U, around s, and we can take e sufficiently
small so that the Us, for various s € S do not overlap.

Let Yy = Y \ U,cq Us,e, which is compact. We may also compactify Y as X directly by
adding in the cusp with an appropriate chart structure on the U U {s}.

Let R be a ring and M an R[[']-module. Let I'y C T" denote the stabilizer of a cusp s for
the action of I' on H, and fix a generator us € I'y ~ Z of this stabilizer.

Definition 0.1. The cuspidal/parabolic/Eichler cohomology groups H5(T', M), HA(T', M) is

Hy(T,M) = Z,T,M)/BYT, M)
HE(D, M) = Z*(T, M)/ B3(T', M)

where

Cp(T, M) = (V{c: T — M|c(u,) € (uy — 1)M}
ses

Zp(D,M) = CpN ZYT, M)

B3(T, M) = 9Cp.



That is, Cp(T', M) is the set of those cochains that become coboundaries when restricted to
each I';.

We have

HL(D, M) := ker (Hl(r, M) — [[H' (L., M)) .

That is, Z} is given by those cocycles that become coboundaries when restricted to each T'y.
Intuition:

e H(T', M) agrees with H'(Y, M), where M is the local system defined by T'\(H x M).

e HL(T', M) can be identified with the image of H{(Y, M) — H'(Y,M) of compactly
supported cohomology.

X is some compact Riemann surface. Cut along the 2¢g fundamental loops of X to get
a polygon with 4¢g sides; WLOG we may assume that all of the U, do not meet the loops.
Fix one vertex ¢y of this polygon and make another cut from ¢y to each cusp s, and remove
a small open circle around s. The cuts we have made pull back to get a fundamental domain
for I' on H except for a small neighborhood of the cusps. We triangulate this so that the
boundaries of the preimages of the U, are each a 1-chain of this triangulation. We can
do two things with this: first, by descending to the quotient, we get a simplicial complex
structure on Y. We denote the set of i-simplices in this complex by S;. Second, we can
tessellate Hy by I'-translates of this triangulation to get a simplicial complex K for H,. We
let K; denote the R[I']-module generated by the i-simplices in K—mnote that " preserves K,
so we have a well-defined I'-action on K. Two simplices lie in the same I'-orbit if and only if
they are identified in the quotient. Let H*(K, M) denote the cohomology of the cocomplex
CZ(K, M) = HOIHR[F](K“ M)

Fact: The groups H(K, M) agree with the group cohomology H'(T', M). Likewise the
parabolic versions agree, where we take

HA(K, M) = Zb(K, M)/B\(K, M), H3(K, M) = Z(K, M)/ B3 (K, M)
with
CH(K, M) = ({c: Ki = Mle(vs) € (ug — 1)M}
Zp(K,M) = c;i(K, M)NZY (K, M)
B3(K, M) = 0ChH(K, M)
where 7, is a fundamental loop around the cusp s.

Proposition 0.2. (Dimension formula) Suppose M is a finite dimensional vector space over
a field R, and let g be the genus of X. Then

dim(Hp(I, M)) = (29 — 2) dim(M) + dim(H°(T', M)) + dim(HA (I, M)) + > dim((u, — 1)M).
seS

where ug denotes a generator of I'y >~ 7.



Proof. Let d = dim M and d' = dim @, g M /(s — 1)M. Since H(I', M) = H'(K, M) and
HL(T, M) = HL(K, M), we will compute everything via the simiplicial complex K. For
brevity of notation, we will just write H*, H5, C*, C%, etc.

e Letting &y be the fundmental domain for Y, we get a triangulation with

29 — 2 = #(52) — #(51 — {15 : s € §}) + #(50)
= #Sy — #51 +#5 + #So

by Euler’s formula, where we have to “add back in” the holes around the cusps to be
able to consider the compact space X.

e We have #3S; = rankpr(£;), and hence
e We have an exact sequence

O—>C’113—>Cl—>@M/(’ys—1)M—>0

hence
dimp(Ch) = #(S)) dimp(M) — 3 (dimp(M) — dimp((7, — 1)M))
= #S1d—#Sd—d SGS
e We have

dim H° = dim Z° = #(Sy)d — dim B'
dim Hp = dim Z}, — dim B*
dim H? = #(S5)d — dim B}
The third formula follows because
dim Cp = dim C' — d’
and dim B = dim C}, — dim Z5. Then we have
dim H® — dim H}, + dim H} =#Syd — dim B' — dim Z}, + dim B*
+ #Sod — (#S, — #S)d — d + dim Z},
—#Sod — (#81 — #8)d — d
=29 —2)d—d.

which is the formula we wanted.



Set M = Sym"C?, with ' acting via the standard representation of SLy. We can realize
M = C[X,Y] with v € T acting by sending the vector (X,Y) to (X,Y)(y1)T.

Definition 0.3. We say a cusp s is regular if its stabilizer I'y C I' is I'-conjugate to a

subgroup of {u" = <(1) }f) }. Otherwise, 'y is conjugate to a subgroup of {— ((1) ff)} and

we say that s is an irregular cusp.

Note that I'y is never conjugate to +I'y, because —I ¢ I'; the only two possibilities are
either plus or minus, not both. Example: oo is always regular since we are assuming —/ ¢ I'.

Proposition 0.4. If I' is torsion-free, then

(29 —2)(n+ 1) + n#(S) + 0#Sir :n >0

dim¢ H;(F7Symn((cz)) = {29 ‘n =0

where S;.. denotes the set of irreqular cusps and 6 = 0 or 1 matching the parity of n.

Remark. Let S, (T") denote the space of cusp forms of I' of weight n. Then dim Hp(T', Sym"™C?)
agrees with dim S,,.1(I') via a direct comparison of the formulas. This alludes to the Eichler-
Shimura isomorphism, and indicates why we might care about parabolic cohomology.

Proof. This will follow from the previous formula if we can show that

1:n=0

dim HO(T', M) = dim H%(T', M) =
(I, M) A >{M>0

n :n odd and s irregular

dim(y, = )M = {n + 1 :else
The first fact follows from the fact that Sym™C? is irreducible as a I-module, so that it has
no I'-fixed elements if n > 0, implying the formula for H°. The formula for H% follows from
the formula H3 = Mr = 0 (module of I'-coinvariants), which we omit.

For the second formula, conjugacy gives an isomorphism M/ (us—1)M ~ M /(+u"—1)M,
with the sign based on whether s is regular or irregular. Then the map M — C: P(X,Y) —
P(1,0) is surjective with kernel (u — 1)M. To see this, we note that matrices of the form

(+) (1) }f are precisely those that do not change the coefficient of the X™ term of P(X,Y),
where we allow the minus sign only if n is even. Otherwise, if n is odd, then one can show

that the operator — ((1) }f + 1 acts invertibly on M, so that (us —1)M = M. We therefore
get dim(ugs — 1)M = n in the first case and dim(us — 1)M = n+ 1 in the second case, which
give the correct contributions toward the formula. [



