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The reference for today’s talk is Hida’s Elementary Theory of Eisenstein Series and L-
functions, §6.1-2.

Let Γ = Γ1(N) for N ≥ 4, so that Γ is torsion-free. Let Γ∞ =

{(
1 a
0 1

)}
denote the

stabilizer of ∞ for the action of Γ on H. Then the set of cusps S of Y := Γ\P1 are in
bijection with Γ\PSL2(Z)/Γ∞. Any congruence subgroup of SL2(Z) has finite index, so in
particular S is finite.

For any cusp s ∈ S, there exists γ ∈ SL2(Z) such that γ ·∞ = s. For example, if s = p/q
as a rational fraction in lowest terms, take x, y such that qy − px = 1 and take

γ =

(
q x
p y

)
.

We define the “distance from s” function ds(z) = =(γ−1(z))−1. Since any two choices of
γ differ by an element of ±Γ∞, d is independent of the choice of γ. Using this distance
function, we can define a “punctured ε-ball” Us,ε around s, and we can take ε sufficiently
small so that the Us,ε for various s ∈ S do not overlap.

Let Y0 = Y \
⋃
s∈S Us,ε, which is compact. We may also compactify Y as X directly by

adding in the cusp with an appropriate chart structure on the Us,ε ∪ {s}.
Let R be a ring and M an R[Γ]-module. Let Γs ⊆ Γ denote the stabilizer of a cusp s for

the action of Γ on H, and fix a generator us ∈ Γs ' Z of this stabilizer.

Definition 0.1. The cuspidal/parabolic/Eichler cohomology groups H1
P (Γ,M), H2

P (Γ,M) is

H1
P (Γ,M) = Z1

P (Γ,M)/B1(Γ,M)

H2
P (Γ,M) = Z2(Γ,M)/B2

P (Γ,M)

where

C1
P (Γ,M) =

⋂
s∈S

{c : Γ→M
∣∣c(us) ∈ (us − 1)M}

Z1
P (Γ,M) = C1

P ∩ Z1(Γ,M)

B2
P (Γ,M) = ∂C1

P .
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That is, C1
P (Γ,M) is the set of those cochains that become coboundaries when restricted to

each Γs.

We have

H1
P (Γ,M) := ker

(
H1(Γ,M)→

∏
s∈S

H1(Γs,M)

)
.

That is, Z1
P is given by those cocycles that become coboundaries when restricted to each Γs.

Intuition:

• H i(Γ,M) agrees with H i(Y,M), where M is the local system defined by Γ\(H×M).

• H i
P (Γ,M) can be identified with the image of H i

c(Y,M) → H i(Y,M) of compactly
supported cohomology.

X is some compact Riemann surface. Cut along the 2g fundamental loops of X to get
a polygon with 4g sides; WLOG we may assume that all of the Us,ε do not meet the loops.
Fix one vertex q0 of this polygon and make another cut from q0 to each cusp s, and remove
a small open circle around s. The cuts we have made pull back to get a fundamental domain
for Γ on H except for a small neighborhood of the cusps. We triangulate this so that the
boundaries of the preimages of the Us,ε are each a 1-chain of this triangulation. We can
do two things with this: first, by descending to the quotient, we get a simplicial complex
structure on Y0. We denote the set of i-simplices in this complex by Si. Second, we can
tessellate H0 by Γ-translates of this triangulation to get a simplicial complex K for H0. We
let Ki denote the R[Γ]-module generated by the i-simplices in K—note that Γ preserves K,
so we have a well-defined Γ-action on K. Two simplices lie in the same Γ-orbit if and only if
they are identified in the quotient. Let H i(K,M) denote the cohomology of the cocomplex
Ci(K,M) = HomR[Γ](Ki,M).

Fact: The groups H i(K,M) agree with the group cohomology H i(Γ,M). Likewise the
parabolic versions agree, where we take

H1
P (K,M) = Z1

P (K,M)/B1(K,M), H2
P (K,M) = Z2(K,M)/B2

P (K,M)

with

C1
P (K,M) =

⋂
s∈S

{c : Ki →M
∣∣c(γs) ∈ (us − 1)M}

Z1
P (K,M) = C1

P (K,M) ∩ Z1(K,M)

B2
P (K,M) = ∂C1

P (K,M)

where γs is a fundamental loop around the cusp s.

Proposition 0.2. (Dimension formula) Suppose M is a finite dimensional vector space over
a field R, and let g be the genus of X. Then

dim(H1
P (Γ,M)) = (2g − 2) dim(M) + dim(H0(Γ,M)) + dim(H2

P (Γ,M)) +
∑
s∈S

dim((us − 1)M).

where us denotes a generator of Γs ' Z.
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Proof. Let d = dimM and d′ = dim
⊕

s∈SM/(γs − 1)M . Since H i(Γ,M) = H i(K,M) and
H i
P (Γ,M) = H i

P (K,M), we will compute everything via the simiplicial complex K. For
brevity of notation, we will just write H i, H i

P , C
i, Ci

P , etc.

• Letting Φ0 be the fundmental domain for Y0, we get a triangulation with

2g − 2 = #(S2)−#(S1 − {γs : s ∈ S}) + #(S0)

= #S2 −#S1 + #S + #S0

by Euler’s formula, where we have to “add back in” the holes around the cusps to be
able to consider the compact space X.

• We have #Si = rankR[Γ](Ki), and hence

dimCi = dim(HomR[Γ](Ki,M)) = #(Si) dimR(M).

• We have an exact sequence

0→ C1
P → C1 →

⊕
s∈S

M/(γs − 1)M → 0

hence

dimR(C1
P ) = #(S1) dimR(M)−

∑
s∈S

(dimR(M)− dimR((γs − 1)M))

= #S1d−#Sd− d′

• We have

dimH0 = dimZ0 = #(S0)d− dimB1

dimH1
P = dimZ1

P − dimB1

dimH2
P = #(S2)d− dimB2

P

= #(S2)d−#(S1)d+ #Sd− d′ + dimZ1
P

The third formula follows because

dimC1
P = dimC1 − d′

and dimB2
P = dimC1

P − dimZ1
P . Then we have

dimH0 − dimH1
P + dimH2

P =#S0d− dimB1 − dimZ1
P + dimB1

+ #S2d− (#S1 −#S)d− d′ + dimZ1
P

=#S0d− (#S1 −#S)d− d′

=(2g − 2)d− d′.

which is the formula we wanted.
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Set M = SymnC2, with Γ acting via the standard representation of SL2. We can realize
M = C[X, Y ] with γ ∈ Γ acting by sending the vector (X, Y ) to (X, Y )(γ−1)T .

Definition 0.3. We say a cusp s is regular if its stabilizer Γs ⊆ Γ is Γ-conjugate to a

subgroup of {uh =

(
1 h
0 1

)
}. Otherwise, Γs is conjugate to a subgroup of {−

(
1 h
0 1

)
} and

we say that s is an irregular cusp.

Note that Γs is never conjugate to ±Γ∞ because −I 6∈ Γ; the only two possibilities are
either plus or minus, not both. Example: ∞ is always regular since we are assuming −I 6∈ Γ.

Proposition 0.4. If Γ is torsion-free, then

dimCH
1
P (Γ, Symn(C2)) =

{
(2g − 2)(n+ 1) + n#(S) + δ#Sirr : n > 0

2g : n = 0

where Sirr denotes the set of irregular cusps and δ = 0 or 1 matching the parity of n.

Remark. Let Sn(Γ) denote the space of cusp forms of Γ of weight n. Then dimH1
P (Γ, SymnC2)

agrees with dimSn+1(Γ) via a direct comparison of the formulas. This alludes to the Eichler-
Shimura isomorphism, and indicates why we might care about parabolic cohomology.

Proof. This will follow from the previous formula if we can show that

dimH0(Γ,M) = dimH2
P (Γ,M) =

{
1 : n = 0

0 : n > 0

dim(γs − 1)M =

{
n : n odd and s irregular

n+ 1 : else

The first fact follows from the fact that SymnC2 is irreducible as a Γ-module, so that it has
no Γ-fixed elements if n > 0, implying the formula for H0. The formula for H2

P follows from
the formula H2

P = MΓ = 0 (module of Γ-coinvariants), which we omit.
For the second formula, conjugacy gives an isomorphism M/(us−1)M 'M/(±uh−1)M ,

with the sign based on whether s is regular or irregular. Then the map M → C : P (X, Y ) 7→
P (1, 0) is surjective with kernel (u − 1)M . To see this, we note that matrices of the form

(±)

(
1 h
0 1

)
are precisely those that do not change the coefficient of the Xn term of P (X, Y ),

where we allow the minus sign only if n is even. Otherwise, if n is odd, then one can show

that the operator −
(

1 h
0 1

)
+ 1 acts invertibly on M , so that (us− 1)M = M . We therefore

get dim(us− 1)M = n in the first case and dim(us− 1)M = n+ 1 in the second case, which
give the correct contributions toward the formula. �
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