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The references for these two talks are Takeshi Saito’s IHES notes and Diamond-Shurman
Chapter 9.

1 First lecture: Preliminaries and construction (12/2/24)

1.1 Motivation

A fundamental idea in the Langlands program is to give something resembling a bijection
between Galois representations and automorphic representations. The simplest case of this
is essentially class field theory. Today we will focus on the next simplest case:

Definition 1.1. Let f =
∑

n anq
n ∈ Sk(Γ1(N), ε) be a normalized Hecke eigen-cusp form.

Let Q(f) denote the field generated by the Hecke eigenvalues of f (equivalently, the field
generated by the Fourier coefficients an), which is always a number field, and let Q(f)→ Eλ
be an embedding of Q(f) into a finite extension of Q`. We say that a 2-dimensional `-adic
Galois representation ρ : GQ → GL(V ) is associated to f if, for all p - N`, V is unramified
at p and tr(Frobp) = ap.

Theorem 1.2. Let N ≥ 4 be an integer and let ε be a Dirichlet character mod N . Let
f ∈ S2(N, ε) be a normalized eigenform, and let λ | ` be a place of Q(f). Then there exists
an `-adic representation Vf,λ over Q(f)λ associated to f .

Some other facts:

• Vf,λ is unique up to isomorphism and irreducible

• We actually have the stronger condition det(1− ρ(Frobp)t) = 1− apt+ ε(p)pk−1t2.

We will skip over most basic facts related to modular forms, elliptic curves, and Galois
representations and get right into the geometric construction.

This talk follows Saito’s lecture notes from the 2006 IHES summer school.
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1.2 Hecke algebra preliminaries

Let Y1(N) be the modular curve of level Γ1(N). Recall that (for N ≥ 4) this represents the
functor sending a scheme S to pairs (E,P ) consisting of an elliptic curve over S and a point
P ∈ E(S)[N ] of exact order N . Its compactification is X1(N).

The group Γ1(N) is normal in Γ0(N) with the quotient given by the surjective homomor-
phism Γ0(N)→ (Z/NZ)× sending a matrix to its lower-right entry d mod N . Consequently,
(Z/NZ)× acts on X1(N) by lifting to Mobius transformations, and the action corresponding
to d ∈ (Z/NZ)× is denoted by 〈d〉 and referred to as a “diamond operator.” This is actually
the Hecke operator corresponding to the double coset Γ1(N)γΓ1(N) for any γ ∈ Γ0(N) with
lower-right entry d mod N , which is actually just the single coset Γ1(N)γ due to normality
of Γ1(N) in Γ0(N). On points, we have 〈d〉(E,P ) = (E, dP ), noting that dP is a point of
exact order N on E if P is, since d is coprime to N .

Let Sk(Γ1(N)) denote the space of cusp forms of weight k and level Γ1(N). The group of
diamond operators acts on this finite-dimensional space, and since this group is isomorphic to
(Z/NZ)×, we conclude that Sk(Γ1(N)) decomposes as a direct sum of common eigenspaces for
the diamond operators, indexed by Dirichlet characters mod N . Given a Dirichlet character
ε, we let Sk(N, ε) denote the corresponding eigenspace.

The direct sum decomposition Sk(Γ1(N)) =
⊕

ε Sk(N, ε) is preserved by the action of the
other Hecke operators T`, since we can show that these commute with the diamond operators
on the space of modular forms, so we may further decompose into Hecke eigenforms.

Additionally, we have the Atkin-Lehner involution, often denoted wN or just w, which
sends (E,P ) to (E/〈P 〉, Q′), where Q′ ∈ (E/〈P 〉)[N ] is the unique point that lifts to the
point Q in E[N ] such that eN(P,Q) = ζN under the Weil pairing.

The Hecke algebra is Tk(Γ1(N)) = Q[Tn, 〈d〉] ⊆ End(Sk(Γ1(N))). We can usefully inter-
pret the Hecke algebra as dual to the space of cusp forms:

Proposition 1.3. The map Sk(Γ1(N))C → HomQ−v.s.(Tk(Γ1(N),C) sending a cusp form to
the maps T 7→ a1(Tf) is an isomorphism of C-vector spaces. Therefore, Tk(Γ1(N) is a finite
Q-vector space, since Sk(Γ1(N))C is finite-dimensional.

In fact, this is an isomorphism of Hecke modules, since the Hecke action of T on Tk(Γ1(N),C)
is just defined by pre-composing with multiplication by T , so that 〈T ′ · T, f〉 = a1(TT ′f) =
〈T, T ′f〉.

Proof. It suffices to show that the corresponding pairing 〈T, f〉 7→ a1(Tf) is nondegenerate.
If we have a cusp form f such that a1(T`f) = 0 for all `, then by explicit formulas for
the Hecke operators we conclude that the q-expansion of f is 0, hence f = 0. If T is a
Hecke operator such that a1(Tf) = 0 for all f , then the form Tf is in the kernel since
a1(T ′Tf) = a1(TT ′f), so by what we already showed we must have Tf = 0 for all f , i.e. T
is the zero operator. �

Corollary 1.4. The above isomorphism restricts to a bijection between the two finite sets:

• Normalized eigenforms f ∈ Sk(Γ1(N))C
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• Q-algebra homomorphisms Tk(Γ1(N))→ C (not just linear functionals)

Proof. If f is a normalized cusp eigenform, then the corresponding linear functional sends
a Hecke operator T to its eigenvalue λT for f , which defines an algebra homomorphism
Tk(Γ1(N))→ C since eigenvalues of compositions multiply.

Conversely, suppose the linear functional ϕ : Tk(Γ1(N)→ C corresponding to a cusp form
f is an algebra homomorphism. Then we must have 1 = ϕ(1) = a1(f), so f is normalized.
We must also have a`(Tf) = a1(T`Tf) = ϕ(T )a`(f) for every prime ` and T ∈ Tk(Γ1(N)),
which is enough to imply that f is a Hecke eigenform with T acting by eigenvalue ϕ(T ).

Finiteness of Tk(Γ1(N)) as an vector space over Q implies that these sets are finite. This
also shows that Q(f) ⊂ C is a number field, since Q(f) is the image of the homomorphism
ϕf : Tk(Γ1(N))→ C. �

1.3 Wrong way maps on (co)homology, and Hecke correspondences

Given f : X → Y , there is a natural pushforward map H1(X,Z) → H1(Y,Z)–just take the
image of a cycle under f . Likewise, cohomology naturally pulls back. However, in some
cases we can also define “wrong way” maps on (co)homology, going in the opposite of the
natural direction. In particular, we can do this for a branched covering map of Riemann
surfaces, or a finite flat map of curves.

For homology, if f : X → Y is a degree d covering map, then given a cycle ∆ ⊂ Y , we
can consider the d preimages f−1(p) of a given basepoint p ∈ ∆ and lift the path ∆ to a
union of d paths based at these d points. One checks that this construction sends cycles to
cycles and boundaries to boundaries. This defines a map f ∗ : H1(Y,Z)→ H1(X,Z) Likewise,
one defines a pushforward f∗ : H1(X,Z) → H1(Y,Z) by dualizing. These maps are usually
referred to as “trace” or “transfer” maps. The same idea works for pushing forward sheaf
cohomology: the trace is essentially given by a fiber-wise sum.

The transfer maps satisfy a compatibility with cap product: f ∗([∆]∩ [σ]) = f ∗[∆]∩f ∗[σ].
One can use this compatibility to extend the definition to a more general setting via Poincare
duality, especially since we can show f ∗[Y ] = [X]: we can define f ∗([Y ]∩ [σ]) = [X]∩ f ∗[σ].

The Hecke operators act on homology and cohomology via finite flat correspondences
between modular curves. More specifically, the diamond operators have an obvious action
on (co)homology, since 〈d〉 is an automorphism of X1(N). However, the Hecke operators Tn
don’t come from genuine automorphisms on X1(N). Instead, their action on cohomology is
induced by a correspondence as follows.

Suppose (n,N) = 1, and let X(N, n) denote the modular curve of level Γ1(N) ∩ Γ0(n).
It represents the functor sending a scheme S/Z[1/nN ] to triples (E,P,C) consisting of an
elliptic curve over S, a point P of exact order N , and a finite flat subgroup C ⊂ E of order
n. There are two natural maps X(N, n) → X1(N): we can send the point (E,P,C) to
(E/C, P ) (quotienting by the subgroup C) or we can send this point to (E,P ) (forgetting
the subgroup C):

3



X(N, n)

X1(N) X1(N)

t (quotient)

s (forget)

We can then define the action of the Hecke operator Tn on cohomology by s∗ ◦ t∗, and on
homology by t∗ ◦ s∗ (do the “right way” map first, then the transfer map). We abusively
denote these actions by T ∗n and Tn,∗, respectively. In our case, we will be considering the
action of Tn on the cohomology group H0(X1(N),Ω1) = S2(Γ1(N)) and on the homology
group H1(X1(N),Z) and its base changes. Under this definition, we have the compatibility∫

T∗γ

ω =

∫
γ

T ∗ω.

for loops γ ∈ H1(X1(N),Z) and forms ω ∈ H0(X1(N),Ω1) and for all Hecke operators T .
Consequently:

Proposition 1.5. There is a canonical isomorphism

H1(X1(N),Z)⊗Z R→ Hom(S2(Γ1(N)),C)

of T2(Γ1(N))R-modules.

Proof. Cusp forms of weight 2 may be identified with global sections of Ω1
X1(N) on the modular

curve. Under this identification, the pairing in the proposition is simply given by integration
of a differential form along a loop: (γ, ω) =

∫
γ
ω. �

1.4 Jacobians of modular curves

Let π : X → S be a smooth proper curve of genus g (i.e. with geometrically connected fibers
of genus g), which for simplicity we assume admits a section s : S → X. Define the functor

Pic0
X/S(T ) =

ker(deg : Pic(X ×S T )→ Z(T ))

Im(f ∗ : Pic(T )→ Pic(X ×S T ))

Some facts:

• The functor Pic0
X/S is representable by an abelian scheme J = JacX/S over S of relative

dimension g.

• If f : X → Y is a finite flat morphism of proper smooth curves, then there are induced
maps f ∗ : JacY/S → JacX/S (given by pullback of line bundles) and a pushforward map
f∗ : JacX/S → JacY/S, which is harder to define.

• The `-adic Tate module of a g-dimensional abelian variety in characteristic not ` is a
free Z`-module of rank 2g. It bears a Galois action.
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• We may identify JacX/C[N ] ' H1(X,Z) ⊗ Z/NZ, and consequently V` JacX/C '
H1(X,Q) ⊗Q Q`. These identifications are compatible with the pullback and push-
forwards mentioned above. In particular, the Hecke action Tn,∗ on H1(X,Q) induces
a Hecke action on the Tate module. Moreover, the Weil pairing may be canonically
identified with the cap product on H1(X,Q)×H1(X,Q).

• X1(N) has a model over Z[1/N ]. Consequently, we can define the Jacobian over Z[1/N ].
This Jacobian is smooth over Z[1/N ], so in particular it has good reduction at all primes
not dividing N . Therefore the `-adic representation of GQ of degree 2g supplied by
the Tate module V` JacXQ/Q is unramified away from primes dividing `N (criterion of
Neron-Ogg-Shafarevich).

• On an abelian variety over Fp, the eigenvalues of the Frobenius action on the Tate
module all have complex absolute value

√
q under every complex embedding, i.e. they

are Weil p-numbers.

Theorem 1.6. V` JacX1(N)Q is a free T2(Γ1(N))Q`
-module of rank 2.

Proof. We have identified Hom(T2(Γ1(N))Q,Q) ' S2(Γ1(N),C), and we have identified
Hom(S2(Γ1(N),C),C) with H1(X1(N),Z)⊗ZR, with both of these isomorphisms respecting
the Hecke action. This gives an isomorphism T2(Γ1(N))C ' H1(X1(N),R) of Hecke modules,
which we can descend to an isomorphism T2(Γ1(N))⊕2

Q ' H1(X1(N),Q) (with the factor of
2 coming from descending from C to Q vs. descending from R to Q). Hence we also get a
Hecke isomorphism T2(Γ1(N))⊕2

Q`
' H1(X1(N),Q)⊗Q Q` ' V` JacX1(N)Q . �

Now, let f be a normalized cusp-eigenform, which corresponds to a homomorphism
T2(Γ1(N))Q → Q(f), hence a homomorphism T2(Γ1(N))Q`

→ Q(f)λ for any place λ | `
of Q(f). Hence, we can define the tensor product

Vf,λ := V`(J1(N))⊗T2(Γ1(N))Q`
Q(f)λ

is 2-dimensional over Q(f)λ. This is a 2-dimensional Galois representation of GQ over Q(f)`
(with the Galois group acting only on the Tate module part of the tensor product). This
is the Galois representation we are looking for, and it remains to show that this is the
Galois representation associated to f . It suffices to work over J1(N)Fp instead, since the
reduction map induces an isomorphism of `-adic Tate modules and induces the restriction to
the decomposition group Dp = GQp . As is typical with these types of arguments, the action
of the Frobenius morphism matches the action of the Galois-theoretic Frobenius on the Tate
module, so we will be able to abuse this identification to extract information about the trace
of Frobenius.

To summarize, we’ve constructed a 2-dimensional Galois representation by considering
the Tate module of the modular curve, which carries a Galois action and a Hecke action, and
we used the Hecke action and the “system of Hecke eigenvalues” associated to f to squish
this into a 2-dimensional representation over Q(f)λ. This representation is unramified at
p - N`. It only remains to show that the trace of Frobenius is correct, which we will do next
time.
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2 Second day: Eichler-Shimura relation (12/9/24)

Recall that we have constructed a 2-dimensional Galois representation, unramified away from
`N , defined by

ρ = Vf,λ := V`JX1(N)Q ⊗T2(X1(N))` Q(f)λ

where f is a weight 2 normalized eigenform and the tensor product is defined by the Hecke
action on the left and the homomorphism T2(X1(N)) → Q(f) sending a Hecke operator to
its eigenvalue for f . The main result we want is:

Theorem 2.1. Let p - `N . On V`JX1(N), the action of Frobp satisfies the polynomial x2 −
Tpx+ 〈p〉p = 0.

This suffices to prove what we want, since in V` this means that Frobenius satisfies the
polynomial x2 − apx + ε(p)p = 0, noting that ap and ε(p) are the images of Tp and 〈p〉 in
Q(f), respectively.

To prove this, we use:

Theorem 2.2. (Eichler-Shimura relation.) For p - N , the following diagram commutes:

Pic0(X1(N)Z[1/N ]) Pic0(X1(N))

Pic0(X1(N)Fp) Pic0(X1(N)Fp)

Tp

σp,∗+ ˜〈p〉∗σ∗
p

where the vertical maps are the reduction maps and where σp denotes the Frobenius morphism.

Let’s review the maps involved here. From the perspective of viewing a Jacobian as
H0(Ω1)∨/H1(Z), a Hecke operator T acts on J(X1(N)) by sending an element ϕ ∈ S2(Γ1(N))∨ '
H0(X,Ω1)∨ to [ϕ◦T ]. More algebraically, Tp it can be describe as a composition of pullback
and pushforwards of the Jacobian:

Tp = (π1 ◦ α)∗ ◦ π∗2

induced by the correspondence we wrote down before. Recall how we defined “pullback” of
singular homology under a finite map: take all of the preimages of a given cycle and add
them up. The diamond operator, being a genuine automorphism on X1(N), acts simply by
pushforward. All of this can be phrased algebraically: pushforward of divisors is just taking
the image, and pullback can either be interpreted as pullback of line bundles or as taking
preimages of divisors with multiplicity. We can describe the action of Tp more easily using
the moduli space interpretation of the modular curve. Let [E,Q] denote the divisor class
associated to a point on X1(N)Q. Then the Tp action on the Jacobian is given by

Tp[E,Q] =
∑
C

[E/C,Q mod C]
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where the sum ranges over all order p subgroups of E, of which there are p + 1 (recall we
assume p - N , otherwise we need to require that Q 6∈ C). We may similarly describe the
action of the diamond operators as

〈d〉[E,Q] = [E, dQ].

The pushforward and pullback maps on Jacobians induced by a finite morphism of curves
C → C ′ are compatible with reduction modulo p provided that C and C ′ have good reduction
modulo p. Hence we can safely deduce that 〈d〉∗ reduces to 〈d〉∗ modulo p. However, we
defined the action of Tp on J(X1(N)) via a correspondence, involving the modular curve
X(Γ1(N) ∩ Γ0(p)). This curve does not have good reduction modulo p, so we really cannot
make sense of the induced action of Tp on the mod p Jacobian using the previous description.
Instead, we need to describe the reduction of Tp in terms of Frobenius, which is exactly what
the Eichler-Shimura relation does.

If E has ordinary1 reduction, then one of its order p subgroups stands out: the kernel of
the reduction map E[p]→ EFp [p], which we denote C0 and call the canonical subgroup.

Lemma 2.3. Let (E,P ) be an elliptic curve with level N structure over Qp with ordinary
reduction over p. Denoting the reductions with a tilde, we have isomorphisms

(Ẽ/C0, Q̃ mod C̃0) ' (ẼFrobp , Q̃Frobp)

or
(ẼFrob−1

p , pQ̃Frob−1
p )

if C 6= C0.

Proof. We start with the C = C0 case. Let φ : E → E/C =: E ′. Since C0 descends to
local subgroup µp on Ẽ, ker ϕ̃ is local, so we conclude that Ẽ → Ẽ ′ is totally inseparable.
Hence, it factors through the Frobenius map Ẽ → Ẽ(Frobp), so for degree reasons we obtain
an isomorphism Ẽ(Frobp) → Ẽ ′, and we can identify the image of Q̃ with Q̃Frobp in Ẽ(Frobp).

In the case that C 6= C0, we can instead conclude that ϕ̃ : Ẽ → Ẽ ′ is separable, so its
dual isogeny ψ̃ : Ẽ ′ → Ẽ is totally inseparable of degree p, hence factors through Frobenius.
Thus, as before, we have a factorization of ψ through Frobenius

Ẽ ′ → Ẽ ′
Frobp ' Ẽ

Letting Q̃′ ∈ Ẽ ′ be the image of Q̃ ∈ E, since we must have ψ(Q̃′) = pQ̃, we conclude that

Q̃′
Frobp

is identified with pQ̃ in the above isomorphism. Hence, we conclude that Ẽ ′ ' ẼFrob−1
p

with Q̃′ being identified with pQ̃Frob−1
p . �

1One can also sometimes define the canonical subgroup for curves with supersingular reduction if the
curve is “not too supersingular” in the sense of the theory of overconvergent modular forms.
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This is very close to showing what we want in the Eichler-Shimura relation: it tells us
that the reduction of the Hecke action is

˜Tp[E,Q] =
∑
C

[Ẽ/C, Q̃ mod C] = [ẼFrobp , Q̃Frobp ] + p〈p〉∗[ẼFrob−1
p , Q̃Frob−1

p ].

We would like to restate this in terms of pushforward and pullback of the Frobenius morphism
σ instead of the Galois action Frobp. Clearly [ẼFrobp , Q̃Frobp ] = σ∗[Ẽ, Q̃]. We claim that

p[ẼFrob−1
p , Q̃Frob−1

p ] = σ∗[Ẽ, Q̃]. To see this, note that there is exactly one curve Ẽ(p)−1
for

which the relative Frobenius map Ẽ(p)−1 → Ẽ. (This is because p-th roots in characteristic
p are unique.) Hence, the point (Ẽ, Q̃) on the modular curve mod p has one point in
its preimage under Frobenius, which is the point (ẼFrob−1

p , Q̃Frob−1
p ) with multiplicity p, as

desired. This proves the Eichler-Shimura relation for ordinary points, and one can extend
the lemma to supersingular points as well (where the two formulas in the lemma actually
coincide, so that we get the same result for all order p subgroups). The rest is then a matter
of making sure that everything actually works when we compactify from the moduli space
of elliptic curves with level structure to X1(N), which we are ignoring in this talk (but is
mostly just a matter of identifying birational maps).

To finish the proof of Theorem 2.1, we again identify the action of Frobp on points with σ∗
and the action of pFrob−1

p with σ∗. Hence, after tensoring with Q(f)λ, the Eichler-Shimura
relation tells us that we have

Frobp +pε(p) Frob−1 = ap

whence the Frobenius action satisfies the polynomial x2 + apx+ ε(p)p.
To be more careful really show that this is the characteristic polynomial of Frobenius,

we write

(1− Frobp t)(1− ε(p)pFrob−1
p t) = 1− aP t+ ε(p)pt2

and taking the determinant of both sides gives

det(1− Frobp t) det(1− ε(p)pFrob−1
p t) = (1− aP t+ ε(p)pt2)2

where the determinant on the right hand side follows since all of the coefficients are just
scalar. One finally concludes that we have the correct characteristic polynomial of Frobenius
by showing that det(1−Frobp t) = det(1− ε(p)pFrob−1

p t), which involves an argument with
the Atkin-Lehner operator wN .

2.1 Weight ≥ 2 case

To construct Galois representations associated to modular forms of weight > 2, we turn to
étale cohomology. Let f : EY1(N) → Y1(N) be the universal elliptic curve and let j : Y1(N)→
X1(N) be the open immersion.
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Theorem 2.4. ( Fancy version of the Eichler-Shimura isomorphism, I think?) For any
k ≥ 2, we have a canonical isomorphism

H1
et(X1(N)C, j∗(Symk−2R1f∗Q))⊗Q R→ Sk(Γ1(N))C

of Tk(Γ1(N))R-modules. This descends to realize

H1
et(X1(N)C, j∗(Symk−2R1f∗Q`))

as a rank 2 free Tk(Γ1(N))Q`
-module.

Then, as before, we can define

Vf,λ := H1(X1(N)C, j∗(Symk−2R1f∗Q`))⊗Tk(Γ1(N))Q`
Q(f)λ

for any weight k eigenform f . It turns out that this is the dual of what we want, i.e. in the
representation above, Frob−1

p (the so-called geometric Frobenius) satisfies

x2 + apx+ ε(p)pk−1 = 0

. Proving this is thematically the same as the weight 2 case, where we prove an Eichler-
Shimura relation that descends the action of Tp on etale cohomology to its action mod p by
examining quotients by order p subgroups of an elliptic curve with level N structure.
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