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Problem 1. Find the volume of the solid torus with boundary ρ = sinϕ. Torus means “donut-
shaped”; for the given torus, how big is the “donut hole”?

Using spherical coordinates, the bounds for this torus are

0 ≤θ ≤ 2π

0 ≤ϕ ≤ π
0 ≤ρ ≤ sinϕ

Therefore the volume integral is

V =

∫ 2π

0

∫ π

0

∫ sinϕ

0
1 · ρ2 sinϕ dρ dϕdθ

=

∫ 2π

0

∫ π

0

1

3
sin3 ϕ · sinϕ dϕdθ

=
1

3

∫ 2π

0

∫ π

0
sin4 ϕ dϕdθ

=
1

3

∫ 2π

0

∫ π

0

(
1− cos(2ϕ)

2

)2

dϕ dθ

=
1

12

∫ 2π

0

∫ π

0
(1− 2 cos(2ϕ) + cos2(2ϕ)) dϕ dθ

=
1

12

∫ 2π

0

∫ π

0

(
1− 2 cos(2ϕ) +

1 + cos(4ϕ)

2

)
dϕ dθ

=
1

12

∫ 2π

0

3π

2
dθ

=
π2

4
.

This “donut” isn’t really a donut: its center is supposed to be at the z-axis, but it also touches
the z-axis (when ϕ = ρ = 0). So there isn’t actually a hole in the middle of this donut. It just
pinches down to a point at the origin (see image).



Problem 2. Let C be the ellipse x2/4 + y2 = 1, oriented counterclockwise. Explain why Green’s
Theorem cannot be directly used to evaluate the line integral∮

C
(y log4(x

2 + 4y2) + 3x2y2 cos(x3)) dx+ (2y sin(x3)) dy.

Find a way around this issue and evaluate the integral anyways. A hint is in this footnote.1

Green’s Theorem cannot be applied immediately because this function is not defined on the
interior of the ellipse: log(x2 + 4y2) is undefined at the origin. Instead, split up the integral as∮

C
y log4(x

2 + 4y2) dx+

∮
C
3x2y2 cos(x3) dx+ 2y sin(x3) dy.

The vector field 〈3x2y2 cos(x3), 2y sin(x3) is conservative with potential function y2 sin(x3). There-
fore, the second integral is 0. For the first integral, note that x2 + 4y2 = 4 on the ellipse, so the
integrand simplifies to ∮

C
y log4(4) dx =

∮
C
y dx.

We can finish integral in a few ways.

• Direct parametrization: We can parametrize the ellipse as x = 2 cos t, y = sin t, 0 ≤ t ≤ 2π,
and the integral becomes∫ 2π

0
sin t · (−2 sin t) dt = −2

∫ 2π

0

1− cos(2t)

2
dt

= −2π.

• Green’s Theorem: Let R be the (2-dimensional) interior of the ellipse. Then Green’s Theorem
tells us that ∮

C
y dx+ 0 dy =

∫∫
R
−1 dA.

1Break the line integral into two parts, one of which is a line integral of a conservative vector field and the other
of which is easy to do directly.



So this integral is just the negative of the area of this ellipse. You could compute this area
now—I’d reccomend stretching a circle using a change of variables—or you might have known
the formula A = abπ already, where a and b are the major and minor radii, respectively. The
area of this ellipse is 2π, so we again conclude that line integral is −2π.

Thus the integral evaluates to −2π.

Problem 3. Let S be some region in the uv-plane with area 10; I’m not going to describe exactly
what shape S is. Consider the change of variables

x = 8u+ 9v

y = 11u+ 12v

Applying this change of variables transforms the region S to a new region T in the xy-plane.

(a) Prove that this change of variables is one-to-one (aka bijective) by giving an inverse change of
variables.

(b) What is the area of T?

(a) what you have been given is the variables x, y each expressed in terms of u, v; what you’re being
asked to do is to express each of the variables u, v in terms of x, y. You can do this by thinking
of the above change of variables as a linear system of equations and using the techniques you
know from solving those. E.g. we can use substitution: the first equation gives x−8u

9 = v, so
the second equation tells us

y = 11u+ 12
x− 8u

9
=

4

3
x− 1

3
u

which gives u = −4x + 3y. We sub this into the first equation to get x = 8(−4x + 3y) + 9v,
which yields v = 11

3 x−
8
3y. Therefore, the inverse change of variables is

u = 4x− 3y

v =
11

3
x− 8

3
y.

(b) The Jacobian of the transformation is

J(u, v) =

∣∣∣∣ 8 9
11 12

∣∣∣∣ = 96− 99 = −3.

Therefore the change of variables formula tells us

AT =

∫∫
T
1 dx dy =

∫∫
S
|J(u, v)| du dv =

∫∫
S
3 du dv = 3AS .

That is, the area of T is 3 times the area of S, so the area of T is 30.

Problem 4. Let D be the disk of radius a centered at the origin. What’s the average distance of
a point on D from the origin?



The average distance from the origin can be computed as∫∫
D r dA

AD
,

where AD is the area of D, which is a2π. We can do the double integral using polar coordinates: it
is ∫ 2π

0

∫ a

0
r2 dr dθ =

2π

3
a3.

Dividing by the area, we conclude that the average distance from the center is 2
3a.

Problem 5. Convert the following triple integral to Cartesian coordinates. You do not need to
evaluate it. ∫ π/2

0

∫ 1

0

∫ r

r2
r2 cos θ dz dr dθ.

The surface r = z is the cone
√
x2 + y2 = z, and the surface r2 = z is the elliptic paraboloid

x2 + y2 = z. This gives bounds for z in terms of x and y. The bounds on r and θ correspond
to integrating over the quarter circle of radius 1 in the first quadrant, so we can write bounds
0 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2. When converting from cylindrical to Cartesian, we lose a factor of r

in the integrand, and the leftovers are r cos θ = x. Therefore, the rectangular integral is∫ 1

0

∫ √1−x2
0

∫ √x2+y2
x2+y2

x dz dy dx.

Problem 6. Suppose a surface in 3D space is given by a level set g(z, r, θ) = 0 in cylindrical
coordinates. Derive the following formula for the normal vector to this surface:

~n =
〈
gr cos θ −

1

r
gθ sin θ, gr sin θ +

1

r
gθ cos θ, gz

〉
We can treat each cylindrical coordinate z, r, θ as a function of rectangular coordinates x, y, z:

z = z

r =
√
x2 + y2

θ = arctan(y/x).

We know that the normal vector of this surface is given by ~n = 〈gx, gy, gz〉, so we need to use the
chain rule to express each othese in terms of the cylindrical coordinates.

gx = gz ·
∂z

∂x
+ gr ·

∂r

∂x
+ gθ ·

∂θ

∂x
= 0 + gr ·

x√
x2 + y2

+ gθ ·
−y

x2 + y2

gy = gz ·
∂z

∂y
+ gr ·

∂r

∂y
+ gθ ·

∂θ

∂y
= 0 + gr ·

y√
x2 + y2

+ gθ ·
x

x2 + y2

gz = gz ·
∂z

∂z
+ gr ·

∂r

∂z
+ gθ ·

∂θ

∂z
= gz · 1.



If we rewrite these results back in terms of cylindrical coordinates, we conclude that

gx = gr cos θ −
1

r
gθ sin θ

gy = gr sin θ +
1

r
gθ cos θ

gz = gz

which is the formula we were looking for.


