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Problem 1. For each of the following properties, either give an example of a continuously twice-
differentiable function f(x, y) : R2 → R satisfying the property or prove that no such function
exists.

(a) fxxfyy − (fxy)
2 = 0 at (x, y) = (0, 0) and f has a local maximum at (0, 0). Alternatively,

something like f(x, y) = −x2 or f(x, y) = −y2 works, where the function is independent of one
of the variables.

(b) fxy = 0 at (0, 0) and f has a saddle point at (0, 0).

(c) f has no maximum when rescricted to the unit circle x2 + y2 = 1.

(d) f has infinitely many critical points when restricted to the unit circle x2 + y2 = 1.

(a) f(x, y) = −x4y4 satisfies this.

(b) f(x, y) = x2 − y2 satisfies this.

(c) This is impossible by the Extreme Value Theorem: the circle is closed and bounded, so any
continuous function on it attains a minimum and a maximum.

(d) f(x, y) = 0 is a perfectly fine example.

Problem 2. The curve parametrized by r(t) = 〈t,
√

3
2 t

2, t3〉,−∞ < t < ∞ is a variant of the
twisted cubic.

(a) Find the length of the portion of the twisted cubic that lies inside the sphere x2+y2+z2 = 7/2.

(b) When r(t) intersects this sphere, what angle does the tangent vector r′(t) make with the normal
vector to the sphere?

(a) r(t) intersects this sphere at t = ±1, since (±1)2 + 3
2(±1)

4 + (±1)6 = 7
2 . If you couldn’t guess

this, then you could try to solve for t by plugging the coordinate functions into the equation for
the sphere; you’d get a cubic equation disguised as a sextic equation that factors nicely. Note
also that |t| > 1 implies r(t) lies outside the sphere and |t| < 1 implies that r(t) lies inside the
sphere, since ‖r(t)‖ is increasing when |t| is increasing. We have r′(t) = 〈1,

√
6t, 3t2〉. Therefore,



the desired length we need to compute is

L =

∫ 1

−1

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

=

∫ 1

−1

√
1 + 6t2 + 9t4dt

=

∫ 1

−1

√
(1 + 3t2)2dt

=

∫ 1

−1
|1 + 3t2|dt

=

∫ 1

−1
(1 + 3t2)dt.

(Note that 1 + 3t2 is always positive.) This ends up evaluating to L = 4.

(b) Again, r(t) intersects the sphere at t = ±1; let’s take the intersection at t = 1 (the other
one will give a similar answer). Here, r′(t) = 〈1,

√
6, 3. The normal vector is parallel to

r(1) = 〈1,
√
3/2, 1〉, which we can see from computing ∇(x2 + y2 + z2 − 7/2) or by just using

the fact that a normal vector to a sphere points radially. The angle between these two is

arccos

(
〈1,
√

3/2, 1〉 · 〈1,
√
6, 3〉

‖〈1,
√
3/2, 1〉‖‖〈1,

√
6, 3〉‖

)
= arccos

(
7

4
√
7/2

)
= arccos

(√
14

4

)

If you chose the normal vector to the sphere to point in the opposite direction or if you chose
the t = −1 point instead, you might have gotten π minus the answer above, which is also
acceptable.

Problem 3. Find a function f(x, y, z) : R3 → R such that

∇f = 〈3x2yz − 3y, x3z − 3x, x3y + 2z〉.

f(x, y, z) = x3yz− 3xy+2z2 is a solution. If you couldn’t see this right away or guess this, you
could do this sytematically by writing

f(x, y, z) =

∫
(3x2yz − 3y)dx = x3yz − 3xy + g(y, z),

where g(y, z) is some function of y, z that is independent of the variable x. We need fy = x3z− 3x,
so this must equal ∂

∂y (x
3yz−3xy+g(y, z)) = x3z−3x+ ∂

∂yg(y, z), so g(y, z) = h(z) must be constant
with respect to y. Doing something similar with the third coordinate tells you that h(z) = z2 + C
for some constant C, so we conclude that f(x, y, z) = x3yz− 3yx+2z2+C is the general solution.
Problem 4. Prove that the following system of equations has at least two solutions (x, y, λ):

yeyx = 4x3λ

xexy = 6y5λ

x4 + y6 = 2

(You do not need to find these solutions.)



This system of equations is the system of equations associated to the Lagrange multipliers
method of finding the extrema of the function f(x, y) = exy subject to the constraint x4 + y6 = 2.
Since the curve x4 + y6 = 2 is closed and bounded (neither coordinate can get large because x4

and y6 are always positive), f takes on both a minimum and a maximum on the constraint. These
extrema always give two different solutions to the above system, since the Lagrange multipliers
theorem tells us that extrema can only occur where the system has a solution.

Problem 5. Determine the point(s) on the ellipsoid x2

16 + y2

9 + (z − 1)2 = 1 that is/are furthest
from the origin.

We want to maximize the function
√
x2 + y2 + z2 subject to the constraint g(x, y, z) = x2

16 +
y2

9 + (z − 1)2 − 1 = 0. It’s equivalent to maximize the easier function f(x, y, z) = x2 + y2 + z2 on
this contraint. We have ∇f = (2x, 2y, 2z) and ∇g = (x/8, 2y/9, 2(z − 1)), so we need to solve

2x = λx/8

2y = 2λy/9

2z = 2λ(z − 1)

x2

16
+
y2

9
+ (z − 1)2 = 1

The first equation tells us that either x = 0 or λ = 16. We split into these two cases:

• x = 0: The second equation tells us that either y = 0 too or λ = 9. If x = y = 0, then we
must have z = 0 or 2 in order to satisfy the constratint, so the points (0, 0, 0) and (0, 0, 2) are
candidates; the distance from the first point to the origin is 0, and the distance of the second
is 2. If x = 0, λ = 9, then the third equation tells us that z = 9/8; the corresponding y values
are ±9

√
7

8 , so (0,±9
√
7

8 , 9/8) are candidates. Their lengths are both 9/
√
8, which is a little

more than 3. (You should be able to estimate this even without a calculator.)

• λ = 16: the second equation tells us y = 0. The last equation tells us z = 16/15, which solves
to x = ±4

√
224/15. Therefore, our final candidates are the two points (±4

√
224/15, 0, 16/15).

The distance from both of these points to the origin is 16/
√
15, which is a little more than 4.

This exhausts all possibilities, so we conclude that the furthest points are (±4
√
224/15, 0, 16/15) at

distance 16/
√
15 from the origin.


