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Problem 1.

(a) If g(x, y, z) is a smooth function of two variables and g(P ) = 0, why is ∇g(P ) normal to the
surface defined by g(x, y, z) = 0? What happens if ∇g(P ) is the zero vector? If you’re having
trouble visualizing this, try the example of the cone g(x, y, z) = x2 + y2 − z2 at P = (0, 0, 0).

(b) Assume ∇g(P ) 6= 0. If P is a local maximum of another function f(x, y, z) when constrained
to the surface g(x, y, z) = 0, why must ∇f(P ) be normal to the surface (and therefore parallel
to ∇g(P ))?

(a) If ~u is tangent to the surface at P , then travelling in the ~u direction does not change g(x, y, z)
since the surface is a set where g is constant. That is, D~ug(P ) = 0. By the formula for
directional derivatives, we have

D~ug(P ) = ∇g(P ) · ~u = 0,

so ∇g(P ) is perpendicular to ~u. This is true for any vector ~u tangent to the surface, so we
conclude that ∇g(P ) is normal to the surface at P .

If ∇g(P ) is the zero vector, then D~ug(P ) = 0 for any vector ~u, not just in the tangent directions.
The surface g(x, y, z) = 0 often looks like it has a sharp point, aka a singular point, at P when
this happens.

(b) If P is a local maximum of f(x, y, z) on g(x, y, z) = 0, then there cannot be any direction
~u tangent to the surface at P for which D~uf is negative, since otherwise travelling in the
direction of ~u would decrease f while remaining on the surface. Decomposing ∇f(P ), we can
write ∇f(P ) = λ∇g(P ) + ~u, where λ = comp∇g(P )∇f(P ). The “leftover” vector ~u must be
perpendicular to ∇g(P ), so the directional derivative in the ~u direction is

D~uf(P ) = ∇f(P ) · ~u = (λ∇g(P ) + ~u) · ~u = ‖~u‖2.

If ~u is nonzero, then this directional derivative is positive. Since ~u lies on the tangent plane to
P , traveling in the ~u direction stays on the surface g(x, y, z) = 0, so we conclude that traveling
in the ~u direction increases f while staying on the surface. Therefore, if P is truly a maximum,
we must have ~u = 0, or equivalently ∇f(P ) = λg(P ). This proves the statement of Lagrange
multipliers.

Problem 2. Consider the function f(x, y) = xy on the constraint 2x+ y = 3.

(a) Use Lagrange multipliers to find candidates for local extrema.

(b) Alternatively, by substituting y = 3 − 2x, treat f(x, y) = f(x, 3 − 2x) as a single variable
function in x when subjected to the constraint. Find its critical points. You should get the
same points as part (a).

(c) Does f have a global minimum subject to the constraint? What about a global maximum?



(a) The constraint function is g(x, y) = 2x + y − 3 = 0. We have ∇f = (y, x) and ∇g = (2, 1).
Lagrange multipliers gives the system of equations

y = 2λ

x = λ

Subbing this back into the constraint gives

2λ+ 2λ− 3 = 0

which implies λ = 3/4, and thus x = 3/4, y = 3/2. This is the only Lagrange point, and
therefore the only candidate for a maximum or minimum of f under the constraint.

(b) We have f(x, 3 − 2x) = x(3 − 2x) = −2x2 + 3x. The single-variable derivative is −4x + 3, so
setting this to zero the only critical point is x = 3/4. We can backsubstitute to get y = 3/2.

(c) From part (b), it should be clear that the point (3/4, 3/2) gives a global maximum from what you
know about single variable calculus. (I don’t think this is obvious from the Lagrange multipliers
version.) However, there is no global minimum: the line 2x + y − 3 = 0 is unbounded, and
f(x, y) becomes arbitrarily negative as you go off in either direction to ∞.

Problem 3. (Multiple constraints.) Lagrange multipliers can be generalized to the scenario when
the objective function is subject to more than one constraint. If f(x, y, z) attains an extreme value
at a point P when constrained to both g(x, y, z) = 0 and h(x, y, z) = 0, then there exists constants
λ, µ ∈ R such that

∇f(P ) = λ∇g(P ) + µ∇h(P ).

In the language of linear algebra, this is saying that ∇f(P ) is a linear combination of the other two
gradients.

The plane 4x− 3y + 8z = 5 intersects the cone z2 = x2 + y2 in an ellipse. Find the highest and
lowest points on this ellipse, i.e. the points with minimum and maximum z-values.

The objective function is f(x, y, z) = z, and our constraints are g(x, y, z) = 4x − 3y + 8z − 5
and h(x, y, z) = x2 + y2 − z2. We have

∇f = (0, 0, 1)

∇g = (4,−3, 8)
∇h = (2x, 2y,−2z),

so Lagrane multipliers gives us the system

0 = 4λ+ 2µx

0 = −3λ+ 2µy

1 = 8λ− 2µz,

along with the constraints. The first two equations imply µ(6x + 8y) = 0, so either µ = 0 or
3x+ 4y = 0. However, if µ = 0, then λ = 0 and the last equation is false, so we conclude that any
solution must have 3x+ 4y = 0. Plugging this into the constraints, this is

4x− 3(3x/4) + 8z − 5 = 0

x2 + (3x/4)2 + z2 = 0



and finally solving this gives two solutions (x, y, z) = (−4/3, 1, 5/3) and (4/13,−3/13, 5/13). Since
there are only two Lagrange points and the region is closed and bounded, one of them must be the
maximum and the other must be the minimum, so we conclude that (−4/3, 1, 5/3) is the highest
point and (4/13,−3/13, 5/13) is the lowest point (since 5/3 > 5/13).


