Problem 1.

- (a) If g(x, y, z) is a smooth function of two variables and g(P) = 0, why is $\nabla g(P)$ normal to the surface defined by g(x, y, z) = 0? What happens if $\nabla g(P)$ is the zero vector? If you're having trouble visualizing this, try the example of the cone $g(x, y, z) = x^2 + y^2 z^2$ at P = (0, 0, 0).
- (b) Assume $\nabla g(P) \neq 0$. If P is a local maximum of another function f(x, y, z) when constrained to the surface g(x, y, z) = 0, why must $\nabla f(P)$ be normal to the surface (and therefore parallel to $\nabla g(P)$)?

Problem 2. Consider the function f(x, y) = xy on the constraint 2x + y = 3.

- (a) Use Lagrange multipliers to find candidates for local extrema.
- (b) Alternatively, by substituting y = 3 2x, treat f(x, y) = f(x, 3 2x) as a single variable function in x when subjected to the constraint. Find its critical points. You should get the same points as part (a).
- (c) Does f have a global minimum subject to the constraint? What about a global maximum?

Problem 3. (Multiple constraints.) Lagrange multipliers can be generalized to the scenario when the objective function is subject to more than one constraint. If f(x, y, z) attains an extreme value at a point P when constrained to both g(x, y, z) = 0 and h(x, y, z) = 0, then there exists constants $\lambda, \mu \in \mathbb{R}$ such that

$$\nabla f(P) = \lambda \nabla g(P) + \mu \nabla h(P).$$

In the language of linear algebra, this is saying that $\nabla f(P)$ is a linear combination of the other two gradients.

The plane 4x - 3y + 8z = 5 intersects the cone $z^2 = x^2 + y^2$ in an ellipse. Find the highest and lowest points on this ellipse, i.e. the points with minimum and maximum z-values.