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Problem 1. Let f(x, y, z) : R3 → R be a smooth function of three variables. If we take the level
set f(x, y, z) = 0, this makes z into an implicit function of x and y (at least at most points).

(a) Recall the implicit differentiation formulas
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and the definition of the gradient
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Compute ∂z
∂x ,

∂z
∂y , and ∇f for

f(x, y, z) = yz + x ln y − z2.

(b) For your results in part (a), show that ∇f is perpendicular to both (1, 0, ∂z∂x) and (0, 1, ∂z∂y ) (at
least when all three of these things are defined).

(c) Show more generally that part (b) is true for any function f assuming that the partial derivatives
involved exist and are finite. Give a conceptual explanation for why this should be true. (Hint:
first explain why the vectors (1, 0, ∂z∂x) and (0, 1, ∂z∂y ) both lie in the tangent plane to the surface
defined by f(x, y, z) = 0. How can you relate this to the gradient?)
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(b)
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(c) In general,
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and similarly
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both assuming ∂f/∂z 6= 0. In short, the reason why this is true is that ∇f is normal to the
surface f(x, y, z) = 0, whereas both (1, 0, ∂z/∂x) and (1, 0, ∂z/∂y) lie in the tangent plane to
the surface since they run along the level set f(x, y, z) = 0. Therefore, they must be orthogonal.

Problem 2. (Stewart Exercise 14.5.55.) A function f is called homogeneous of degree n if it
satisfies the equation

f(tx, ty) = tnf(x, y)

for any t ∈ R, where n is some positive integer.

(a) Show that f(x, y) = x2y + 2xy2 + 5y3 is homogeneous of degree 3. (The multivariate homoge-
neous polynomials are probably the most common source of homogeneous functions.)

(b) Show that if f is homogeneous of degree n, then

x
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(Hint: Use the chain rule to differentiate both sides of f(tx, ty) = tnf(x, y) with respect to t.)

(a)

f(tx, ty) = (tx)2(ty) + 2(tx)(ty)2 + 5(ty3)

= t3x2y + 2t3xy2 + 5t3y3

= t3(x2y + 2xy2 + 5y3)

= t3f(x, y).

(b) Differentiating both sides of f(tx, ty) = tnf(x, y) with respect to t gives
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x · fx(tx, ty) + y · fy(tx, ty) = ntn−1f(x, y).

This equation is true for any value of t, so in particular it is true for t = 1, whence

x · fx(x, y) + y · fy(x, y) = nf(x, y).


