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Problem 0. Let f(x, y) and g(u, v) be two functions related by

g(u, v) = f(eu + sin v, eu + cos v).

Use the following values to calculate gu(0, 0) and gv(0, 0) (not all of these will be relevant):

f(0, 0) = 3 g(0, 0) = 6 fx(0, 0) = 4 fy(0, 0) = 8

f(1, 2) = 6 g(1, 2) = 3 fx(1, 2) = 2 fy(1, 2) = 5.

(Hint: this is an application of the multivariate chain rule. How is gu = ∂
∂uf(e

u sin v, eu + cos v)
related to fx and fy?)

(Solution is on the previous worksheet.)

Problem 1.

(a) Let f, g : R2 → R be smooth1 functions. If fx = gx, what can you say about the difference
f − g? What if you replace x with y? If both fx = gx and fy = gy, what can you say about
f − g?

(b) Find a function f(x, y) such that fx = 2xy + 4 and fy = x2 − 12y3.

(c) Prove that there does not exist a function f(x, y) with fx = x and fy = x.

(d) (Bonus.) Generalize parts (b) and (c) in the following ways. Given two smooth functions g, h :
R2 → R, give a necessary and sufficient condition for the existence of f such that fx = g, fy = h.
Describe a procedure/algorithm to compute f (up to a constant) given fx, fy. Generalize to an
arbitrary number of input variables. Be as rigorous as you can about justifying your steps.

(a) Since ∂
∂x(f−g) = fx−gx, if fx = gx then we must have ∂

∂x(f−g) = 0. The only functions whose
derivatives are 0 are constant functions; in the setting of partial derivative setting, this means
that the function is constant with respect to the variable that is being differentiated. Therefore
we conclude that f − g is constant with respect to x, or equivalently that it is a function α(y)
that only depends on y.

Similarly, if fy = gy, then we conclude that f and g differ by a function β(x) that is constant
with respect to y. If both fx = gx and fy = gy, then f and g must differ by a function that
is simultaneously constant with respect to x and with respect to y, so the difference is some
(genuine) constant C.

(b) The general solution is f(x, y) = x2y + 4x− 3y4 + C for some constant C. To get this, we can
integrate fx(x, y) with respect to x to determine f up to a function of y. (When we integrate
a multivariable function, we treat the variables not being integrated against as if they were

1This means that the partial derivatives of all orders exist; that is, ∂i+jf
∂xi∂yj exists for any pair of integers i, j ≥ 0.

It’s usually nice to assume smoothness for a function you don’t know much about since then you can differentiate
without worrying.



constant, just like we treat the variables we are not differentiating as constants when taking
partial derivatives.)

f(x, y) =

∫
fx(x, y)dx =

∫
(2xy + 4)dx = x2y + 4x+ α(y),

where α(y) is some unknown function of y. To determine α(y), and thus determine f , we
differentiate with respect to y and compare to the known expression for fy:

fy =
∂

∂y
(x2y + 4x+ α(y))

x2 − 12y3 = x2 + α′(y).

Therefore α′(y) = −12y3, so α(y) = −3y4 + C, and thus f(x, y) = x2y + 4x − 3y4 + C. Since
adding a constant to f neither affects fx nor fy, this is the most specific we can get for set of
solutions.

(c) If such f existed, then we have fxy = ∂
∂y (fx) = 0 but fyx = ∂

∂x(fy) = 1. This is a contradiction
since we must have fxy = fyx by Clairaut’s theorem.

Problem 2. (Stewart 14.3, Exercises 88 & 89.) Consider n moles of gas sitting in a container of
volume V at pressure P and temperature T . The ideal gas law is the equation PV = nRT , where
R is some constant. This means that given three of the variables P, V, n, T , you can determine the
fourth.

(a) Show that ∂P
∂V ·

∂V
∂T ·

∂T
∂P = −1. (To do this, you’ll need to write P as a function of the other

variables, then V as a function of the other variables, and then T as a function of the other
variables.)

(b) Show that T · ∂P∂T ·
∂V
∂T = nR.

(a) We can write each of the three variables P, V, T as functions of the others:

P =
nRT

V

V =
nRT

P

T =
PV

nR
.

Using these equations, we compute

∂P

∂V
· ∂V
∂T
· ∂T
∂P

=

(
−nRT

V 2

)(
nR

P

)(
V

nR

)
= −nRT

PV
= −1

where nRT
PV = 1 comes from rearranging the ideal gas law.



(b) Again using the functions from part (a), we have

T · ∂P
∂T
· ∂V
∂T

= T

(
nR

V

)(
nR

P

)
= nR

(
nRT

PV

)
= nR.


