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Problem 1. Are there any vectors v ∈ R3 such that (1, 2, 1) × v = (3, 1,−5)? If so, find all of
them; otherwise, prove that none exist. Do the same question for (1, 2, 1)× v = (3, 1, 5).

For the second question, the answer is no becauase (3, 1, 5) is not perpendicular to (1, 2, 1), and
the cross product ~a×~b is always perpendicular to both ~a and ~b. We can tell that these two vectors
are not orthogonal since their dot product (3, 1, 5) · (1, 2, 1) = 10 is not zero.

However, (3, 1,−5) is orthogonal to (1, 2, 1) so we should expect some solutions in this case.
Here are two ways to do this:

1. Solution 1: Set up a linear system. Let v = (a, b, c). Then

(1, 2, 1)× v = (2c− b, a− c, b− 2a),

so we can solve for v by setting this cross product to (3, 1,−5). This gives us a linear system
of 3 equations in 3 variables:

2c− b = 3

a− c = 1

b− 2a = −5.

You can use any method you like to do this; I like substitution. We have c = a − 1, so the
system becomes

2(a− 1)− b = 3

b− 2a = −5

and both of these are equivalent to 2a− b = 5, or b = 2a− 5. We can let a take on any value,
and then b and c are functions of a, so our complete solution set is

(a, 2a− 5, a− 1), a ∈ R.

We can verify quickly that all vectors of this form give the right cross product:

(1, 2, 1)× (a, 2a− 5, a− 1) = (2(a− 1)− (2a− 5), a− (a− 1), (2a− 5)− 2a) = (3, 1,−5).

2. Solution 2: Find one solution and then add multiples of (1, 2, 1). If we find one solution v0 to
the equation, then

v0 + t(1, 2, 1)

is also a solution, since

(1, 2, 1)× (v0 + t(1, 2, 1)) = (1, 2, 1)× v0 + (1, 2, 1)× t(1, 2, 1) = (3, 1,−5) + (0, 0, 0)



since the cross product is linear and the cross product of any two parallel vectors is 0. Every
solution must be of the form v0 + t(1, 2, 1), since if u is not a scalar multiple of (1, 2, 1) then

(1, 2, 1)× (v0 + u) = (3, 1,−5) + (1, 2, 1)× u

where (1, 2, 1)× u is nonzero, so (1, 2, 1)× (v0 + u) cannot be equal to (3, 1,−5).
Therefore we only need to find one solution v0 and we get the rest for free. Any nonzero
vector perpendicular to (3, 1,−5) will have a scalar multiple that is a solution, so let’s find
a vector perpendicular to (3, 1,−5) by taking its cross product with something, say (1, 0, 0).
(In section, I chose to take its cross product with (1, 2, 1), but really any choice works as long
as it’s not a multiple of (3, 1,−5)).

(3, 1,−5)× (1, 0, 0) = (0,−5,−1).

To see how we need to scale this, we check

(1, 2, 1)× (0,−5,−1) = (−2 + 5, 0 + 1,−5) = (3, 1,−5).

In this case, we happened to be lucky and chose a vector that was exactly the right length to
give the correct cross product, so we can set v0 = (0,−5,−1). (If you weren’t lucky, you’d
have to rescale this vector appropriately). Therefore the general solution is

(0,−5,−1) + t(1, 2, 1) = (t, 2t− 5, t− 1).

Lo and behold, this is exactly the same solution from the first part.

Problem 2. Suppose I am riding a monorail in a straight line in the direction ~v. There is a
wind blowing with constant force ~F on the monorail. The monorail is sturdy; pushing it in a
direction perpendicular to the rail does nothing. With this in mind, what is the effective force on
the monorail, i.e. the component of the wind force that will actually do anything? How is this
situation related to projection and the dot product? What does it have to do with work, in the
physics sense? (This type of scenario will become very important not too long from now when we
talk about path integrals.)

The effective component of the force on the monorail is the component that is pointing in the
same direction as the rail. In other words, the effective force is the projection of ~F onto ~v, which
is (~F · v̂)v̂, or ‖~F‖ cos θv̂ where θ is the angle the force vector makes with ~v. This is the the work
per distance that the wind does on the monorail as it travels—only the component of force in the
direction of travel contributes to work. This is how one does problems involving work when the
force isn’t pointing in the same direction as motion.

Problem 3. Let L1 be the line passing through the points (1,−2, 4) and (2, 1, 3), and let L2 be
the line passing through (0, 3,−3) and (2, 4, 1).

(a) Write parametric equations for each of these lines.

(b) Are L1 and L2 parallel, skew, or intersecting? If they intersect, where? If they do not intersect,
how far apart are they, and where are they closest, i.e. which pair of points P1 ∈ L1 and P2 ∈ L2

minimizes the distance d(P1, P2)?



(a) The direction vector for L1 is

v1 = (2− 1, 1− (−2), 3− 4) = (1, 3,−1)

and the direction vector for L2 is

v2 = (2− 0, 4− 3, 1− (−3)) = (2, 1, 4).

Therefore, one set of parametric equations for these two lines is

L1 = {(1,−2, 4) + tv1 = (1 + t,−2 + 3t, 4− t) | t ∈ R}
L2 = {(0, 3,−3) + tv2 = (2t, 3 + t,−3 + 4t) | t ∈ R}.

(b) We can see that L1 and L2 are not parallel since their direction vectors are not scalar multiples
of each other. Instead of determining whether they are intersecting or skew beforehand, I’m
just going to compute the minimum distance between two points on these lines; if this distance
is 0, then the lines intersect, and otherwise they are skew.

One method to find the distance between the two lines is to find the component of the vec-
tor between any two given points, say (1,−2, 4) ∈ L1, (0, 3,−3) ∈ L2, that is simulteneously
perpendicular to v1 and v2. This is

comp(1,3,−1)×(2,1,4)((1,−2, 4)− (0, 3,−3) = comp(13,−6,−5)(1,−5, 7) = 8/
√
230.

This is probably the easiest way in general to compute the distance between two lines. However,
this doesn’t give us the points that minimize the distance.

Actually finding the points was probably too messy of a question to ask for section. Here’s one
solution: compute the minimum distance of a given point on L1 to L2, and then minimize this
distance among all points on L1. We can do both of these steps using single variables calculus,
or we can do them at the same time with multivariable calculus. One neat trick to simplify
this computation is that minimizing the distance is the same as minimizing the square of the
distance, so we can drop all the square roots in our computations. Therefore you are trying to
minimize

(2t2 − t1 − 1)2 + (t2 − 3t1 + 5)2 + (4t2 + t1 − 7)2.

If you want to do this yourself (I’d probably reccomend using a calculator), the correct answer
is t1 = 233/115, t2 = 148/115, and the corresponding points are

P1 =

(
348

115
,
469

115
,
227

115

)
P2 =

(
296

115
,
493

115
,
247

115

)
.

and you can check that the two corresponding points lie at distance 8/
√
230.


