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Problem 1. In 3D space, I shoot a cannonball out of a cannon at the speed of light (= 3×108 m/s)
from the origin. I can describe the direction the cannon is pointing using two angles: the angle
θ describes which direction in the xy-plane the cannon is pointing, and the angle ϕ describes the
angle of elevation of the cannon off the ground.

(a) Draw (i) bird’s eye view of the cannon in the xy-plane, labeling the angle θ and (ii) a diagram
of the cannon from the side, labeling the angle ϕ.

(b) What is the velocity vector of the cannonball the moment it gets shot? Check your answer by
making sure the length of this vector is equal to the speed of light.

(c) Acceleration due to gravity is 10 m/s2. Write down the acceleration vector of the cannonball,
ignoring air resistance. Then write down the velocity vector as a function of time t after the
cannon gets shot, and then finally write down the position vector of the cannonball as a function
of t. (You can assume that t is small enough that the cannonball hasn’t hit the ground yet).

(a)

(b) The speed c = 3× 108 of the cannon ball is the length of the velocity vector ~v0. We first break
the velocity into its vertical and horizontal components. Letting ĥ be the horizontal direction of
travel (of unit length) and taking ~k to be the height direction, using a right triangle we conclude
that ~v0 = c sinϕ~k + c cosϕĥ. However, we still need to break ĥ into its ~i and ~j components;
again using a right triangle, the horizontal direction decomposes as ĥ = cos θ~i+ sin θ~j. Putting
this all together, we conclude

~v0 = (c cos θ cosϕ)~i+ (c sin θ cosϕ)~j + (c sinϕ)~k.

(c) The acceleration vector is ~a = (0, 0,−10). Integrating and setting initial velocity to ~v0 gives
velocity

~v = (c cos θ cosϕ, c sin θ cosϕ, c sinϕ− 10t)

as a function of time. Integrating one more time and setting initial position to 0 finally yields

~d = (tc cos θ cosϕ, t sin θ cosϕ, tc sinϕ− 5t2).

Problem 2. (Expressing reflection with vectors.)

(a) A beam of light travelling with velocity v bounces off a flat mirror with normal vector n. We
can write

v =
v · n
‖n‖2

n+

(
v − v · n
‖n‖2

n

)
.

Explain why this is the decomposition of v into its normal and tangent components relative to
the mirror. (If the concept of projecting a vector onto another vector is new to you, talk it over
with your groupmates!)



(b) Use this decomposition and the fact that reflection is a linear transformation1 to show that the
new velocity of the light after reflecting is

v − 2
v · n
‖n‖2

n.

Check to make sure that the speed hasn’t changed, i.e. the length of this vector is equal to ‖v‖.

(c) On the Euclidean plane, a beam of light travels in the vertical straight line x = x0 for some
−1 < x0 < 1, going northward at a speed of 1. However, the unit circle has been replaced by
a perfectly circular mirror. The beam of light hits this circular mirror and reflects off in a new
direction. Draw a picture of the situtation and then find the velocity vector of the light beam
after reflecting off the mirror; this velocity vector will depend on x0. Sanity check your answer
in the cases x0 = 0,±

√
2/2 and in the limits as x0 → ±1.

(a) The formula is writing v as projn(v) + (v − projn(v)). Here projn v is the component of v that
is parallel to n, and v − projn v is whatever is leftover, which must be perpendicular to n, i.e.
tangent to the mirror. (I’m using Stewart’s notation for projection here, but I think it’s terrible,
since projn(v) is a scalar multiple of n, not v. Having it look like a multiple of v is incredibly
misleading.)

(b) If I shine a beam of light directly into a mirror at a 90 degree angle, its direction will simply
reverse. Therefore, since projn v is in the normal direction, its direction after reflecting will
be −projn v. Meanwhile, the tangent component is unaffected by reflection—if you shine a
light tangent to a mirror, you can think of it as not hitting the mirror at all. Therefore
v−projn(v) is not changed by the reflection. Adding the effects on the two components together
using the fact that reflection is a linear transformation, we conclude that the new velocity is
−projn v + v − projn(v), which is the same as v − 2 v·n

‖n‖2n.

(c) Note that the beam will hit the mirror from the bottom, so the point of impact is (x0,−
√
1− x20).

The normal vector to the circle points in the radial direction, so it has the same coordinates
as this point: n = (x0,−

√
1− x20). Note also that ‖n‖ = 1 already. The direction of the light

beam before impact is (0, 1), so using the formula from part (b) we compute

v − 2
v · n
‖n‖2

n = (0, 1)− 2

[
(0, t) ·

(
x0,−

√
1− x20

)](
x0,−

√
1− x20)

)
= (0, 1) + 2

√
1− x20

(
x0,−

√
1− x20

)
=

(
2x0

√
1− x20,−1 + 2x20

)
.

so the new direction is
(
2x0
√

1− x20,−1 + 2x20

)
.

We sanity check this: if x0 = 0, then the beam will hit the center of the circle and bounce
directly backwards with new velocity (0,−1). If x0 = ±

√
2/2, then we expect the light beam to

bounce at a right angle from its old direction, and indeed when we plug in these values to our
solution we get (±1, 0). Finally, as x0 → ±1, the beam gets closer and closer to being tangent
to the mirror, so the limit of the reflection as x0 → ±1 should be (0, 1), as if no reflection had
occured. And we do find that setting x0 = ±1 gives solution (0, 1).

1A linear transformation T : Rn → Rm is a function that takes a vector as input and gives a vector as output and
satisfies the property T (λv + µw) = λT (v) + µT (w) for any vectors v, w ∈ Rn and scalars λ, µ.


