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Part I

Analytic theory of CM abelian

varieties

1 Introduction (01/17/2024)

This course is about abelian varieties with complex multiplication (abbreviated as CMAVs).

Major results we will prove include definability of CMAVs over Q, the Shimura-Taniyama

formula, and the Main Theorem of Complex Multiplication. Additionally, a substantial

portion of the course will be devoted to developing the general theory of abelian varieties.

We will have roughly biweekly homeworks (5 total).

Prerequisites:

• A graduate course in algebraic number theory. We will review some of the main

statements of class field theory near the end of the course when we state and prove

the Main Theorem of Complex Multiplication, but we will not have time to prove any

results from CFT—see the references, especially [Mil20] and [Ked21], if you would like

to learn more. We will not need group cohomology.

• A graduate course in scheme theory, especially comfort working with line bundles. We

will review some results from sheaf cohomology.

• We will cite results from noncommutative algebra without proof, which will be relevant

when studying the endomorphism ring of an abelian variety. Good sources for these

results are [Mil20, §IV] and [Mil10].

• Near the beginning of the course we use some basic Lie theory, although not nearly

enough to make Lie theory a strict prerequisite.

• Familiarity with complex manifolds is largely unnecessary, although we will cite the

Hodge decomposition when discussing the CM type associated to a CMAV.

We attempt to give examples where possible. Keep in mind that many basic examples

of abelian varieties are supplied by elliptic curves. Unfortunately, it is generally difficult to

write down explicit polynomial equations cutting out an abelian variety inside projective

space, even starting in dimension 2. Explicit descriptions are much easier in the complex

analytic setting, where abelian varieties are of the form Cn/Λ for a suitable lattice Λ.

Moreover, in the analytic setting is especially simple to write down a CM abelian variety

with a prescribed CM type.

In the first couple weeks, we will be stating a lot of results without necessarily fully

explaining them. Do not worry; we will eventually see more rigorous proofs, especially

for the general theory of abelian varieties from the perspective of algebraic geometry. One

major result whose proof we unfortunately omit is the algebraizibility of tori with a Riemann

form (Theorem 1.1), which implies the equivalence of the algebraic and analytic categories

of abelian varieties over C. Despite this, we will freely switch between the analytic and

algebraic categories as best suits our needs.
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CJ’s note: These are an edited version of my course notes for Yunqing Tang’s Math

254B in the Spring 2024 semester at UC Berkeley. I worked to revise and polish these notes

during the semester and the following summer. In some areas these notes are substantially

expanded versions of original lectures, mainly where I felt more detailed explanations were

needed. I learned the majority of the content of these notes during the course. Since I am

not an expert, these notes may contain silly mistakes that I missed. If you see any errors

in these notes, or if you can offer details in places where they seem to be missing, please let

me or Prof. Tang know.

1.1 Abelian varieties over C

Definition 1.1. An elliptic curve over a field k is a pair (E, e), where E is a smooth proper

curve of genus 1 over k and e ∈ E(k).

If k = C, then E(C) may be given the structure of a compact genus 1 Riemann surface

isomorphic to C/Λ for some lattice1 Λ ⊂ C. The identity e corresponds to the coset Λ in

this interpretation.

More generally:

Theorem 1.1. [Mum08, Cor on p.33] Consider X = V/Λ, where V ≃ Cn and Λ ⊂ V
is a lattice. The following are equivalent:

1. X can be holomorphically embedded into CPn.

2. X is the analytification of some algebraic variety.a

3. There exists a positive definite Hermitian form H : V × V → C such that

ImH(Λ× Λ) ⊆ Z.
aOur definition of a variety is a reduced separated scheme of finite type over a field. In particular,

we do not assume projectivity or quasiprojectivity.

The main idea for (3) =⇒ (1) in Theorem 1.1 is to associate a certain line bundle L to

the positive definite form H. One then shows that this line bundle is ample—in fact, that

L ⊗3 is very ample—by studying the so-called theta functions associated to the pair (Λ, H).

These theta functions form the space of global sections of L . One of the key ingredients is

Fourier analysis. Unfortunately, we will not say any more about these things in this course;

read [Mum08, §I.3] if you are interested in the full proof.

Definition 1.2. An abelian variety over C is the algebraic variety associated to a complex

torus V/Λ satisfying one of the equivalent conditions of Theorem 1.1.

1In this course, whenever we say a discrete subgroup Λ is a lattice of some real vector space V , we mean
full rank, i.e. Λ⊗Z R ≃ V as real vector spaces. Such lattices are always cocompact.
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Lemma 1.2. Suppose V ≃ Cn. We have a bijection between:

1. Hermitian forms H on V;

2. Skew-symmetric forms on VR (V viewed as an R-vector space) such that

ψ(iv, iw) = ψ(v, w).

The skew-symmetric form associated to a Hermitian form H is ImH, and the Her-

mitian form associated to a skew-symmetric form is H(v, w) = ψ(iv, w) + iψ(v, w).

Definition 1.3. A skew-symmetric form ψ : Λ × Λ → Z is said to be a Riemann form if

ψR : V × V → R satisfies

1. ψ(iv, iw) = ψ(v, w); and

2. The associated Hermitian form H from Lemma 1.2 is positive definite.

Hence condition 3 in Theorem 1.1 is equivalent to existence of a Riemann form.

1.2 CM fields

Lemma 1.3. [Mil10, Prop. 1.4] For a number fielda E, the following are equivalent:

1. There exists a field E+ ⊂ E such that E+/Q is totally real and E/E+ is an

imaginary quadratic extension.

2. There exists a nontrivial c ∈ Aut(E) such that for all embeddings τ : E ↪→ C,
we have c′ ◦ τ = τ ◦ c, where c′ denotes complex conjugation in C.

3. There exists a field E+ ⊂ E with E+/Q totally real such that E = E+[α],

where α2 ∈ E+ is totally negative, i.e. under every embedding τ : E+ → R we

have τ(α2) < 0.

aA finite field extension of Q.

The automorphism c in condition 2 is uniquely determined, since under any given em-

bedding E ↪→ C, at most one automorphism of E corresponds to complex conjugation. We

must have E+ = Fix(c) ⊂ E, so the totally real subfield E+ is also uniquely determined.

Definition 1.4. A number field E satisfying one of the conditions in Lemma 1.3 is said to be

a CM field. More generally, a CM algebra is a finite product of CM fields: E = E1×· · ·×En
for CM fields E1, . . . , En.

Remark 1.4. Some authors additionally define totally real fields to be CM by taking

criterion (2) above without the assumption that c is nontrivial. For us, the term “CM

field” will be reserved exclusively for a quadratic imaginary extension of a totally real

field.

The symbol E will typically be reserved for CM fields or algebras in these notes.2

2Although we will occasionally also use E to denote an elliptic curve when no confusion is possible.
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Example 1.5. All quadratic imaginary fields are CM with totally real subfield Q.

All cyclotomic fields Q(ζn) for n ≥ 3 are CM with totally real subfield Q(ζn + ζ−1
n ).

Example 1.6. A CM field need not be Galois. For example, let E+ be any non-

Galois totally real field, e.g. Q[α] where α is a root of a generic irreducible cubic

with real roots. Then E := E+(i) is a CM field which is non-Galois; otherwise,

Gal(E/E+) would have index 2 in Gal(E/Q), hence a normal subgroup, so that E+

would be Galois.

Corollary 1.7. If E1, . . . , En ⊆ Q are CM fields, then their compositum E1 · · ·En
is also CM. In particular, the Galois closure of E ⊂ Q is CM.

Proof. We use condition 3 from Lemma 1.3. It suffices to prove this fact for the compositum

of two CM fields E1, E2 with respective totally real subfields E+
1 , E

+
2 . Let α1, α2 be elements

in E1, E2, respectively, with totally negative squares such that E+
i [αi] = Ei. Then α1α2

has totally positive square, so α1α2 is totally real. We conclude that E+ := E+
1 E

+
2 [α1α2]

is totally real, and we have E+[α1] = E+[α2] = E1E2, so condition 3 is again satisfied.

The remark about the Galois closure follows from the fact that the Galois closure of E

is the compositum of the images of the finitely many embeddings E ↪→ Q. ■

Definition 1.5. Let E be a CM algebra. A CM type on E is a subset Φ ⊆ Hom(E,C) such
that Hom(E,C) = Φ

∐
cΦ, where c is complex conjugation. We may also denote complex

conjugation with a bar when there are no ambiguities.

Remark 1.8. If E = E1× · · ·×En is a CM algebra, then choosing a CM type on E

is not equivalent to choosing a CM type on each of the Ej individually. If Φ1, . . . ,Φn

are respective CM types on E1, . . . , En, then Φ1 × · · · × Φn ⊂
∏n
j=1 Hom(Ej ,C) ≃

Hom(E,C) is too small to be a CM type on E if n > 1.

Example 1.9. (Construction of CM abelian varieties.) Given a CM type (E,Φ) with

n = 1
2 [E : Q] = |Φ|, consider the embedding Φ : OE ↪→ Cn given by α 7→ (φ(α))φ∈Φ.

Then Cn/OE is a complex torus, and indeed an abelian variety.

To prove this, by Theorem 1.1 we need to exhibit a Riemann form on OE . Fact: by
weak approximation, we can find a totally imaginary ξ ∈ OE such that Im(φ(ξ)) > 0

for all φ ∈ Φ. Given such ξ, we define ψ : OE ×OE → Z by (x, y) 7→ trE/Q(ξc(x)y).

On the homework, you will verify that this is indeed a Riemann form.
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Example 1.10. The case n = 1 of the previous example corresponds to the case

of a CM elliptic curve. Let E/Q be an imaginary quadratic extension and let Φ

be a choice of embedding E ↪→ C (out of only two possibilities). Let τ ∈ OE be

any element such that OE = Z + τZ, and let ξ be as in the previous example. We

compute trE/Q(ξc(x)y) = ξxy + ξxy = ξ(xy − xy). The associated Riemann form ψ

has matrix (
0 ξ(τ − τ)

ξ(τ − τ) 0

)
with respect to the basis {1, τ}. (Note that the entries of this matrix are real—in

fact integers—since both τ − τ and ξ are pure imaginary.)

We have essentially constructed all CM abelian varieties in this way, though we have not

defined what this means yet. However, there is a slight generalization we can make: instead

of using the ring of integers OE , we can more generally use a fractional ideal of this ring

and make some adjustments.

2 Basic properties of abelian varieties (01/19/2024)

2.1 Group objects

Definition 2.1. Let S be a base scheme. A group scheme over S is a group object in the

category of S-schemes.

A group variety over a field k is a group object in the category of k-varieties.

A complex analytic Lie group over C is a group object in the category of complex man-

ifolds.

What is a group object in a category C? This is an object G ∈ C endowed with morphisms

m : G × G → G, i : G → G, and e : {∗} → G corresponding to multiplication, inversion,

and an identity section. Here, the product is the product in the category C—in the category

of S-schemes or k-varieties, this is the fiber product over S or k—and {∗} denotes the

final object in the category, which is S, Spec k, or a point in each of the three cases listed

previously.

We require these morphisms to satisfy commutative diagrams encoding the usual group

axioms:

• Associativity:

G×G×G G×G

G×G G

id×m

m×id m

m

• Identity:

G× {∗} ≃ G ≃ {∗} ×G G×G

G×G G

id×G

idG×id m

m
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• Inverse:

G G×G

{∗}

G×G G

i×id

id×i

m

e

m

2.2 Abelian varieties

Definition 2.2. An abelian variety over a field k is a smooth connected proper group scheme

over Spec k.

Remark 2.1. These properties allow us to deduce quite a bit more—for example, we

can use connectedness and the existence of a k-valued point to deduce that abelian

varieties are geometrically connected, hence geometrically irreducible. Smoothness

is equivalent to geometric reducedness for group schemes over a field, so we even

get geometric integrality. In particular, even though our definition specifies that an

abelian variety is a group scheme over k, it is in fact also a group variety over k.

We will eventually prove that every abelian variety is projective, not just proper,

but we need to develop the theory of line bundles on abelian varieties first. There

are many equivalent definitions of an abelian variety; the Stacks Project gives 16 of

them [Sta24, Tag 0H2U].

These remarks are largely unimportant in the context of this course, but if you are

interested in the details, see [EvdGM24], especially Theorem 2.25 and Section 3.2, or

[Sta24, Tag 0BF9]. If you would prefer to work through facts like these on your own,

see instead the exercises in the first few chapters of Brian Conrad’s notes [Con15].

Note that we don’t actually include commutativity of the group law here. A general,

non-proper group variety is not commutative, e.g. the algebraic variety GLn for n ≥ 2.

However, it turns out that properness guarantees commutativity.

Definition 2.3. An abelian scheme A over S is a group scheme A/S such that the structure

morphism π : A→ S is proper and smooth with geometrically connected fibers.

Again, we will not worry about the technical scheme-theoretical details of these require-

ments. Our use case for a general abelian scheme will be over an arithmetic base such as

SpecZp. If s = Spec k → S is a geometric point of S, then the fiber As is connected, so in

particular As is an abelian variety over k.

It is often more intuitive to view abelian varieties from the perspective of the functor of

points. For example, to check or define the group law, it suffices to work with A(k).

Theorem 2.2. Let A/k be an abelian variety. Then A is commutative.

We will prove this in full generality once we start developing the algebraic theory of

abelian varieties, but for now we prove commutativity in the analytic setting. Given an

11
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abelian variety A/C, the set of C-points A(C) can be endowed with the structure of a

smooth compact connected complex analytic Lie group.

Proposition 2.3. [Mum08, pp.1-2] A connected compact complex Lie group is iso-

morphic to V/Λ for some vector space V ≃ Cn and lattice Λ ⊂ V .

Proof. (Sketch.) Consider the Lie algebra LieA(C) := Te(A(C)). You can think of this

either as the algebraic tangent space or the complex analytic tangent space. For every

x ∈ A(C), we obtain a conjugation morphism cx : A(C) → A(C) defined by y 7→ xyx−1.

Taking the derivative yields, for each x ∈ A(C), a linear map dcx : LieA(C) → LieA(C).
The map x 7→ dcx defines a holomorphic homomorphism A(C) → GL(LieA(C)). But

A(C) is compact and connected and GL(LieA(C)) may be viewed as an open subset of Cn,
so we conclude that x 7→ dcx is constant, hence dcx = idLieA(C) for all x. This implies

that cx(y) = y for all x ∈ A(C) and all y in some neighborhood of the identity. Such

neighborhoods generate all of A(C), so we conclude cx = idG for all x ∈ A(C), i.e. the

group law is commutative.

Since the group law is commutative, the exponential map expA : LieA(C) → A(C) is

a group homomorphism, hence a Lie group covering map, so we conclude that A(C) ≃
LieA(C)/ ker expA as complex Lie groups. Since expA is a local homeomorphism near the

origin and A(C) is compact, this kernel must be a lattice in the Lie algebra. ■

Corollary 2.4. Let A/C be an abelian variety of dimension g.

1. [n] : A→ A is surjective with kernel isomorphic to (Z/nZ)2g. Here, [n] denotes

the map x 7→ x+ x+ · · ·+ x︸ ︷︷ ︸
n times

.

2. π1(A(C)) ≃ H1(A(C),Z) ≃ Λ ≃ Z2g.

Proof. Both of these are clear from the description of A ≃ V/Λ from the previous proposi-

tion. Note that the universal covering space of A is V , which gives part 2. ■

Definition 2.4. Let A,B be abelian varieties over k. A morphism f : A → B is called an

isogeny if f is a surjective homomorphism with finite kernel.

Example 2.5. Multiplication by n is an isogeny [n] : A→ A for any abelian variety

A.

Proposition 2.6. [Mil86, 1.2] Given complex tori V/Λ, V ′/Λ′, holomorphic maps

V/Λ → V ′/Λ′ sending 0 7→ 0 are in bijection with C-linear maps α : V → V ′ such

that α(Λ) ⊆ Λ′.

Corollary 2.7. Any holomorphic map between abelian varieties preserving the iden-

tity is automatically a group homomorphism.

This is also true more generally for abelian schemes.
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3 Structure theory, definition of CM abelian varieties

(01/22/2024)

3.1 Structure of the category of abelian varieties

Remark 3.1. Given abelian varieties A,B/k, we say A is isogenous to B if there

exists an isogeny A → B, and write A ∼ B. Perhaps surprisingly, A ∼ B is an

equivalence relation in the category of abelian varieties. Reflexivity and transitivity

are obvious. For symmetry, it is true that given any isogeny f : A→ B there exists

an isogeny g : B → A such that g ◦ f = [n], for some n ∈ Z, although we won’t prove

this yet.

Theorem 3.2. (Poincaré reducibility.) Let A/k be an abelian variety and let B ⊆ A
be an abelian subvariety (i.e. a closed subvariety over k that is closed under the

group operations and inherits the structure of an abelian variety). Then there exists

another abelian subvariety B′ ⊆ A/k such that B∩B′ is a finite set and B+B′ = A,

or equivalently A ∼ B ×B′.

Proof. Exercise/read [Mum08, p.160], or [Mil10, Thm 2.12] for the case over C. ■

Remark 3.3. Any reduced connected closed subgroup variety of an abelian variety

is automatically abelian, since closed immersions are proper. In characteristic 0, all

group varieties are automatically reduced, so the only requirement is connectedness

in this case.

On the homework, you will also be asked to give an example of B ⊆ A such that any

complement B′ as in the theorem necessarily has B ∩B′ nontrivial.

Definition 3.1. An abelian variety A/k is called simple if the only abelian subvarieties are

{e} or A itself.

Remark 3.4. The definition of simplicity depends on the field of definition k.

Abelian varieties that are simple over a given field might not be simple after base

change to a field extension.

Corollary 3.5. For any abelian variety A/k, we can write

A ∼
n∏
i=1

Arii ,

where each Ai/k is simple, ri ∈ Z>0, and the Ai are pairwise nonisogenous.

Proof. Apply Poincaré reducibility inductively. ■
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Definition 3.2. Let A,B/k be abelian varieties. We write Hom(A,B) for the abelian

group (equivalently, Z-module) of homomorphisms from A to B; we do not require these

to be isogenies. We write Hom0(A,B) := Hom(A,B) ⊗Z Q. Likewise, we write End(A) =

Hom(A,A) and End0(A) := End(A)⊗Z Q.

Remark 3.6. We are implicitly working in the category of abelian varieties over

some given field k, so when we refer to a homomorphism A → B, we mean one

defined over k. Therefore these Hom groups and endomorphism rings may get larger

after base change. If we really want to emphasize that the homomorphisms must

be defined over the base field, we will write Homk(A,B), or for endomorphisms

End0(A/k).

Remark 3.7. You can think of End0(A) as the group obtained from End(A) by

formally inverting all of the multiplication by n maps.

Remark 3.8. Hom0(A,B) and End0(A) depend only on the isogeny classes of A

and B, since isogenies become isomorphisms after tensoring with Q.

Corollary 3.9. If A/k is simple, then End0(A) is a division algebra. More generally,

with A decomposed as in Corollary 3.5, we have

End0(A) =

n∏
i=1

Mri(End
0(Ai)).

Proof. The first part follows from the fact that for a simple abelian variety, the only en-

domorphisms are 0 and isogenies, and for any isogeny f on A, there exists g such that

g ◦ f = [n] for some n ∈ Z; then the inverse of f in End0(A) is [n]−1 ◦ g. The general

decomposition follows from the fact that there are no nontrivial homomorphisms between

the distinct simple factors Ai. ■

3.2 Definition of CM abelian varieties

Definition 3.3. An abelian variety A/k is said to have complex multiplication over k if

End0(A) contains a CM algebra E such that [E : Q] = 2 dimA. (A CM algebra is a finite

product of CM fields.)

Remark 3.10. The main idea is that CM abelian varieties have unusually large

endomorphism rings, which gives them special properties. Chief among these prop-

erties, as we will see over and over again later in these notes, is that the Tate modules

Tℓ(A) are rank 1 free E-modules. This fact alone will be responsible for a substantial

portion of the CM theory.

A CM abelian variety has the “largest endomorphism ring possible,” in the following

sense:

14



Lemma 3.11. If A is a simple abelian variety over a field k ⊆ C, then [End0(A) :

Q] ≤ 2 dimA.

Proof. Over k ⊆ C, we identify a simple abelian variety A with a torus V/Λ. Then End0(A)

acts faithfully on H1(A(C),Q) ≃ Λ ⊗Z Q ≃ Q2 dimA, giving an embedding End0(A) ↪→
End(Q2 dimA).

We show in general that if V is an n-dimensional vector space, then any subspace W ⊆
End(V ) of dimension at least n + 1 contains nonzero noninvertible elements. This proves

the claim since End0(A) is a division algebra. Choose any nonzero v ∈ V and independent

elements φ1, . . . , φn+1 ∈W . Then the vectors φ1(v), . . . , φn+1(v) satisfy a nontrivial linear

dependence, which pulls back to some nontrivial linear combination φ of the φi such that

φ(v) = 0, so φ is not invertible. ■

Remark 3.12. This lemma is false in positive characteristic, since, for example,

supersingular elliptic curves have endomorphism rings of degree 4.

Example 3.13. Being CM and simple over k ⊆ C is equivalent to saying End0(A) is a

CM field of degree 2 dimA. If A is simple and CM, then an embedding E ↪→ End0(A)

with [E : Q] = 2 dimA forces E = End0(A) by the previous lemma, and the CM

algebra E must be a field since the only CM algebras that are division algebras are

fields.

Conversely, suppose A is an abelian variety with End0(A) a CM field of degree

2 dimA. Then A is automatically CM, and A is simple by Corollary 3.9, since

otherwise we see explicitly that End0(A) has zerodivisors.

Remark 3.14. We are not claiming if A has CM by a field (of degree 2 dimA), then

it is simple—it’s important that we’ve identified E = End0(A) in the above example,

since generally End0(A) can be larger than E. A condition for simplicity that is

determined solely by the CM field, without reference to End0(A), is discussed later

in Proposition 4.8.

For more general k, we can instead work with the Tate module Tℓ(A) to mimic the first

homology group; we have a similar faithful action End(A) ↷ Tℓ(A) := lim←−A[ℓ
n].

Example 3.15. Let E1, E2 be any nonisomorphic imaginary quadratic fields. We

have embeddings OEi ↪→ C as lattices. Then

End0(C/OE1
× C/OE2

) = E1 × E2.

This is a CM algebra that is not a field, and it is degree 4 over Q.
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Example 3.16. Instead of taking two different fields, instead consider

End0((C/OE1
)2) =M2(E1).

This contains many degree 4 CM fields; for example, given any D ∈ Z̸=0, we have(
0 D

1 0

)2

= DI,

so we realize Q(
√
D) ·E1 as a degree 4 CM subfield of M2(E1). This illustrates that

the CM algebra of an abelian variety might not be unique, not even abstractly up to

isomorphism.

The ambiguity demonstrated by the previous example necessitates some rigidification of

the data.

Definition 3.4. Let E be a CM field. An abelian variety with CM by E is a tuple (A, i),

where A is an abelian variety of dimension 1
2 [E : Q] and i : E ↪→ End0(A) is an embedding

of E as a subfield of End0(A).

We will very often abbreviate “abelian variety with CM” to just CMAV. Don’t forget

that these objects include the data of the embedding i : E ↪→ End0.

More generally, let O be an order in a CM field E. Then an abelian variety with CM

by O is the data of a tuple (A, i) where A is an abelian variety of dimension 1
2 [E : Q] and

i : O ↪→ End(A) is a choice of embedding of O into the endomorphism ring End(A).

The tuple (A, i) determines a CM type Φ ⊆ Hom(E,C) on E associated to (A, i), via

the following recipe.

Let (A, i) have CM by E. The choice of i : E ↪→ End0(A) determines a faithful rep-

resentation E ↷ H1(A(C),Q), which gives H1(A(C),Q)) the structure of a 1-dimensional

E-vector space. By Hodge theory we have a canonical decomposition

H1(A(C),C) = H0,1 ⊕H1,0

where H1,0 = H0,1. We have

H0,1 = H0(A(C),Ω1) =
⊕

C · dzi,

where Ω1 is the sheaf of holomorphic 1-forms and the zi are the coordinate functions of

A ≃ Cn/Λ near the identity. There is a natural identification H0(A(C),Ω1) = Te(A)
∗,

so dualizing gives a canonical decomposition H1(A(C),C) = LieA(C) ⊕ LieA(C). Since

H1(A(C),C) ≃ H1(A(C),Q)⊗QC by the universal coefficient theorem, H1(A(C),C) inherits
the structure of an 2 dimA-dimensional E-module over C. By standard algebraic number

theory we have

H1(A(C),C) ≃ E ⊗Q C ≃
⊕

φ∈Hom(E,C)

Cφ

as E-modules, where Cφ denotes the space C treated as an E-module via multiplication
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under a given embedding φ : E ↪→ C. In the decomposition H1(A(C),C) = LieA(C) ⊕
LieA(C), the two factors are E-invariant—(anti)holomorphic vector fields certainly push

forward to (anti)holomorphic vector fields under any automorphism—but swapped by com-

plex conjugation c, so we conclude that our decomposition restricts to a decomposition

LieA(C) =
⊕
φ∈Φ

Cφ,

where Φ ⊆ Hom(E,C) is a CM type of E. Except for the choice of embedding i : E ↪→
End0(A), all the identifications we have made are canonical, so Φ is uniquely determined by

the tuple (A, i).

Definition 3.5. We say that the pair (E,Φ) is the CM type of (A, i).

If we want to define the CM type of an abelian variety over some k ⊆ C, we should also

specify the embedding k ↪→ C.

4 Classification of CMAVs (01/24/2024)

A recap: Given A/C and i : E ↪→ End0(A) for a CM field E, E acts on Lie(A(C)), and we

may decompose this representation as
⊕

φ∈Φ Cφ, where Φ is the CM type of (A, i).

4.1 Classification of CM abelian varieties by CM type

Remark 4.1. Given a CM field E with CM type Φ, recall that we defined an abelian

variety A(C) = CΦ/OE ≃ LieA(C)/Λ in Example 1.9. Then the CM type of this

A is (E,Φ), where the embedding i : E ↪→ End0(A) is the obvious one induced by

isomorphism A(C) = CΦ/OE .

Definition 4.1. An isomorphism of CM types (E,Φ) → (E′,Φ′) is a field isomorphism

α : E → E′ such that φ′ ◦ α ∈ Φ for all φ′ ∈ Φ′.

Proposition 4.2. Given a CM algebra E, we have a bijection between:

1. Abelian varieties (A, i) with CM by E, modulo E-equivariant isogenies; and

2. CM types (E,Φ) on E up to isomorphism.

The bijection is given by sending a CM type (E,Φ) to the class of abelian variety

CΦ/OE , and in the other direction sending a CM abelian variety to its CM type.

Proof. We first check that the map (2) → (1) defined by (E,Φ) → CΦ/OE is well-defined,

i.e. if we have an isomorphism of CM types α : (E,Φ)→ (E,Φ′), then we get an E-invariant

isogeny (in fact, isomorphism) CΦ/OE → CΦ′
/OE . Since α induces a bijection α∗ : Φ→ Φ′,

we have a commutative diagram

CΦ CΦ′

OE E E OE ,

α∗

α
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which shows that we get an isomorphism CΦ/OE ≃ CΦ′
/OE where the respective OE-

actions are identified, as desired.

Next, we must describe all possible (A, i). An arbitrary CMAV, say with with CM type

(E,Φ), is of the form A = Lie(A)/Λ = CΦ/Λ, where Λ is some lattice, and we are given

some embedding E ↪→ End0(A). Here, E acts on CΦ =
⊕

φ∈Φ Cφ appropriately, and Φ is

the given CM type by definition (we defined it using the Lie algebra). The main idea is to

embed an order of E into Λ, compatibly with the E-action. We also know that End0(A),

hence E, acts faithfully on Λ⊗Z Q.

We claim that there exists v ∈ Λ ⊗Z Q with trivial stabilizer in E. If E is a field, then

any nonzero v works, and more generally:

Lemma 4.3. Let E = E1 × · · · × En be a product of division algebras with an

embedding E ↪→ End(kn) for an infinite field k. Then there exists v ∈ kn such that

x · v = 0 with x ∈ E implies x = 0.

Proof. Let ei be the i-th idempotent in the algebra E, i.e. the element whose i-th coordinate

is 1 and all other coordinates are 0 in the coordinates E = E1 × · · · × En. Since E acts

faithfully, ker(ei) ⊊ kn is a proper subspace, so since k is infinite,
⋃n
i=1 ker(ei) is a proper

subset of kn (standard important linear algebra fact).

Choose any v in the complement of this set, and suppose e = (ai)
n
i=1 satisfies e ·v = 0. If

the i-th coordinate ai is nonzero for some i, then (a−1
i ei)(e) ·v = ei ·v = 0, which contradicts

the choice of v. Hence e = 0, so E acts freely on the orbit of v. ■

Since [E : Q] = dimQ Λ ⊗ Q, we conclude any such choice of v yields an isomorphism

E ≃ Λ ⊗Z Q as E-modules, hence an embedding Λ ⊆ E as a lattice that is commensurate

with the ring of integers OE . This commensurability induces an E-equivariant isogeny

CΦ/Λ→ CΦ/OE , so indeed the map (2)→ (1) is surjective.

The composition (2) → (1) → (2) is the identity by Remark 4.1 (though we neglect to

prove this remark), so we conclude that these maps are actually all bijections. ■

Remark 4.4. (Very vague, don’t worry about this.) If A is an abelian variety, and

we have E′ ↪→ End0(A) with E′ CM but [E′ : Q] < 2 dimA, then in the moduli space

of principally polarized abelian varieties Ag, we get something positive dimensional,

and the CM type is related to signatures on PEL type Shimura varieties. In contrast,

the CM case gives a finite set of points.

If O is an order in a CM field E, recall that we can more generally refer to abelian

varieties with CM by O, which is the data of a tuple (A, i), where i : O ↪→ End(A). This

also specifies CM by E if we tensor with Q.
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Corollary 4.5. Let O ⊂ E be an order in a CM algebra. There is a bijection

between

• Abelian varieties (A, i) with CM by O, where i : O ↪→ End(A) for an order O
of E, modulo O-invariant isomorphisms; and

• Equivalence classes of tuples (E,Φ, a), where (E,Φ) is a CM type, a is a frac-

tional ideal of O, and we define (E,Φ, a) ∼ (E′,Φ′, a′) if we have an isomor-

phism of CM types α : (E,Φ) → (E′,Φ′) such that α(a) = ka′ for some

k ∈ (E′)×.

Corollary 4.6. For a given CM type (E,Φ), isomorphism classes of abelian varieties

with CM by OE are in natural bijection with the class group of E.

4.2 Primitive CM types

Definition 4.2. Let E0 ⊆ E be CM algebras.

1. Given a CM type (E0,Φ0), its extension (E,Φ) is given by setting

Φ := {φ : E ↪→ C : φ|E0 ∈ Φ0}.

This is always another CM type.

2. Conversely, given a CM type (E,Φ), its restriction is (E0,Φ0), where

Φ|E0 := {φ|E0 : φ ∈ Φ}.

However, (E0,Φ0) is not always a CM type; in fact, it is a CM type if and only if

(E,Φ) is already an extension of a CM type on E0.

Definition 4.3. We say a CM type (E,Φ) is primitive if there exist no proper sub-CM

types (E0,Φ0) that extend to Φ (equivalently, such that Φ|E0 is a CM type).

Proposition 4.7. Let E be a CM field. For any CM type (E,Φ), there exists a

unique primitive CM type (E0,Φ0) such that E0 ⊆ E and Φ|E0
= Φ0.

Proof. [Mil10, Prop. 1.9]. ■

Proposition 4.8. There is a bijection between:

1. Simple CMAVs/C up to isogeny; and

2. Primitive CM types (E,Φ) up to isomorphism.

The bijection is given by sending (A, i) to (End0A,Φ), where Φ is the CM type of

(A, i).
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Corollary 4.9. A CMAV is simple if and only if its CM is by a field with primitive

CM type.

Example 4.10. Let (E,Φ) be an extension of (E0,Φ0). Then CΦ/OE is isogenous

to (CΦ0/OE0)
[E:E0] ≃ (CΦ0/OE0)⊗OE0

OE .

5 Jacobian of the Fermat curves (01/26/24)

5.1 Wrapping up yesterday

A clarification from last time: whenever we are talking about isogeny or isomorphisms of

CMAVs (A, i), (A′, i′) with CM by E,E′, we mean a pair (f, α), where α : E → E′ is an

isomorphism and f : A → A′ is an isogeny/isomorphism such that the following diagram

commutes:

E End0(A)

E End0(A′)

α

i

f∗

i′

(Note that f also induces an isomorphism f∗ : End0(A) → End0(A′) even if f is only an

isogeny, since isogenies become isomorphisms after tensoring with Q.) We will usually fix a

single CM type (E,Φ), in which case the only ambiguity is the embedding i : E ↪→ End0(A).

This is usually what we have in mind for the bijections in Proposition 4.2 and Corollaries

4.5 and 4.6.

We now prove Proposition 4.8 from last time.

Proof. We already have a general correspondence from Proposition 4.2, so we need only

show that it restricts in the desired case.

If (E,Φ) is an extension of (E0,Φ0) with E0 ⊊ E, then A is not simple, since (proper

nonzero) subset of A fixed by E0 ↪→ End0(A) is also an abelian variety.

Conversely, suppose (E,Φ) is primitive. We want to show that CΦ/OE is simple. We

sketch this; see [Mil10, Proposition 3.6]. Suppose CΦ/OE is not simple. Then:

1. Show that A ≃ Ar0 for some simple A0.
3 This follows from the fact that E is a field:

if there were distinct factors in the decomposition, then we would not be able to find

a CM field of degree 2 dimA in End0(A).

2. Show that if r > 1, then (E,Φ) is not primitive.

■
3An abelian variety whose Poincaré decomposition into simple factors only has one isogeny class is called

isotypic.
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5.2 Jacobians

We introduce Jacobians via an example. Let C ⊆ P2
C be the Fermat curve C = V (Xp +

Y p = Zp), described in homogeneous coordinates with p prime. This is smooth with genus
(p−1)(p−2)

2 . Its Jacobian J(C) is the group variety whose functor of points parametrizes

degree 0 divisor classes (equivalently, line bundles) on C. It is not obvious that this functor

is representable, but in the complex case there is a nice explicit analytic construction.

For an arbitrary smooth curve C, we construct

J(C) = H0(C,Ω1)∨/H1(C,Z).

Here, a class in H1(C,Z), represented by a loop γ, is identified with the functional on

H0(C,Ω1) given by ω 7→
∮
γ
ω, and the integral is independent of representative of the

homology class.

How exactly does this parametrize line bundles? Let an element of Pic0(C) be repre-

sented by some divisor of the form
∑
i[pi]− [qi]. Then to this divisor we associate the func-

tional ω 7→
∑
i

∫ qi
pi
ω. This integral is not well defined a priori, since it depends on the choice

of path, but the only ambiguities occur from integrating around loops. So it is a well-defined

functional modulo integration around loops, i.e. as an element of H0(C,Ω1)∨/H1(C,Z).
Moreover, this element is independent of the choice of representative divisor.

Theorem 5.1. J(C) is a CM abelian variety, where C is the Fermat curve above.

In general, if C is a smooth curve, then J(C) is an abelian variety—clear from its

description as a torus once we know that this construction is actually algebraic—but it

might not be CM.

We momentarily specialize to the case p = 3. The curve X3 + Y 3 = Z3 is a genus 1

elliptic curve, choosing identity element (0 : 0 : 1). The group of third roots of unity µ3 acts

on this curve by (X : Y : Z) 7→ (ζi3X : Y : Z), and this preserves the identity element, so

we conclude that we have CM by Q(ζ3). (An elliptic curve is naturally its own Jacobian.)

5.3 Constructing CMAVs for cyclotomic fields via the Fermat curve

For concreteness, we set ζp = e2πi/p to give a fixed embedding of Q(ζp) into C. In the case

of a general Fermat curve C = V (Xp + Y p = Zp), µp × µp acts on C by

(X : Y : Z) 7→ (ζipX : ζjpY : Z)

so we conclude we have an embedding µp × µp ↪→ End(J(C)). Fact: working in the affine

coordinate chart with x = X
Z , y = Y

Z , the 1-forms

ωr,s :=
1

p
xrys

dxp

xpyp
= xr−1ys−1 dx

yp−1
= −xr−1ys−1 dy

xp−1

where 1 < r, s ≤ p − 1 are integers with r + s ≤ p − 1, form a C-basis of H0(C,Ω1). This

condition on a pair of integers (r, s) will show up a lot in the remainder of this section, so

for brevity we define:
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Definition 5.1. We say that a pair of integers (r, s) is admissible if 1 ≤ r, s ≤ p − 1 and

r + s ≤ p− 1.

The µp × µp action sends

(ζip, ζ
j
p) : ωr,s 7→ ζir+jsp ωr,s.

(no restrictions on the pair (i, j) ∈ Z/pZ). That is, these basis elements are eigenforms for

the µp×µp-action. Since µp×µp acts on each form ωr,s by a different character, this shows

that these forms are linearly independent, which gives a proof that these forms do indeed

constitute a basis of H0(C,Ω1
C) ≃ C(p−1)(p−2)/2 once we know:

Lemma 5.2. There are exactly p − 2 equivalence classes of admissible pairs (r, s),

each of size (p − 1)/2, defined by the relation (r, s) ≃ (r′, s′) iff there exists m ∈
(Z/pZ)× such that mr ≡ r′ mod p and ms ≡ s′ mod p. Hence there are (p− 1)(p−
2)/2 different admissible pairs in total.

Proof. Every equivalence class of admissible pairs has a unique representative of the form

(1, s) with 1 ≤ s ≤ p − 2. For such a representative, there are exactly (p − 1)/2 values

of m ∈ (Z/pZ)× for which (m,ms) is congruent to an admissible pair mod p. In fact, m

satisfies this property if and only if −m does not satisfy it, i.e. such m constitute a full set

of coset representatives for {±1} mod p. ■

Example 5.3. Let p = 5. The three equivalence classes of admissible pairs in Lemma

5.2 are

{(1, 1), (2, 2)}

{(1, 2), (3, 1)}

{(1, 3), (2, 1)}.

Corollary 5.4. The equivalence classes of admissible pairs [(r, s)] yield CM types

on Q(ζp): identifying Hom(Q(ζp),C) ≃ (Z/pZ)× via (ζp 7→ ζnp ) 7→ n mod p, the class

[(r, s)] corresponds to the CM type Φ = {r′ : (r′, s′) ∈ [(r, s)]}.

Proof. WLOG take (r, s) = (1, s). Complex conjugation sends n 7→ −n under the identifica-

tion Hom(Q(ζp),C) ≃ (Z/pZ)×, so a set Φ is a CM type if it corresponds to a complete set

of coset representatives for {±1}. But we’ve already observed that {m : (m,ms) ∈ [(1, s)]}
satisfies this property. ■

Remark 5.5. We are not claiming that this construction yields all CM types on

Q(ζp). In fact, we miss most of them: there are 2(p−1)/2 CM types on Q(ζp), but the

construction only gives p− 2 of them.

Let (r, s) be an admissible pair. We can construct a curve Cr,s equipped with a map

C → Cr,s : (x, y) 7→ (xp, xrys). More specifically, this is the unique smooth curve with
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function field C(u, v)/(vp−ur(1−u)s). The map C → Cr,s induces a map J(Cr,s)→ J(C).

Proposition 5.6. Cr,s is a curve of genus (p− 1)/2. Moreover, Cr,s ≃ Cr′,s′ if and

only if (r, s) ≃ (r′, s′) as admissible types. In particular, Cr,s is isomorphic to a

unique curve of the form C1,s′ .

Since we have a concrete description of J(Cr,s) = H0(Cr,s,ΩCr,s
)∨/H1(Cr,s,Z), hence a

natural identification H0(Cr,s,ΩCr,s
)∨ ≃ Lie(J(Cr,s)), we can explicitly determine the CM

type on this abelian variety via the action on differentials described previously. Let µp act

on C via ζp · (X : Y : Z) = (ζpX : Y : Z) (only using half of the µp × µp-action). We

also have action of µp on Cr,s via ζp · (u, v) = (u, ζrpv), which is compatible with the map

C → Cr,s. These actions descend to compatible actions by Z[ζp] on the respective Jacobians,

hence CM by Q(ζp) on J(Cr,s) since the dimensions are correct.

By our computation of the action on differentials, the eigenvalues of ζp on H0(C,Ω1
C)

are {ζrp : 1 ≤ r ≤ p − 2}, and each eigenvalue has multiplicity (p − 1)/2. Note that

dimCH
0(C,Ω1

C) = (p−1)(p−2)/2, but dimCH
0(Cr,s,Ω

1
Cr,s

) is only (p−1)/2, so the image

of the pullback map H0(Cr,s,Ω
1
Cr,s

) ↪→ H0(C,Ω1
C) is a proper Q(ζp)-subrepresentation.

(This map is injective because it is induced by a finite separable morphism of curves.)

To determine the CM type of J(Cr,s), we therefore must determine precisely what this

subrepresentation is.

Proposition 5.7. As a subspace of H0(C,Ω1
C), H

0(Cr,s,Ω
1
Cr,s

) has basis given by

{ωr′,s′ : (r′, s′) ∼ (r, s)}, ranging over all admissible pairs (r′, s′) equivalent to (r, s).

Proof. See [Lan83, Theorem 7.2]. ■

Corollary 5.8. J(Cr,s) has CM by Q(ζp) with CM type Φ = {r′ : (r′, s′) ≃ (r, s)} ⊂
(Z/pZ)× ≃ Hom(Q(ζp),C), with notation as in Corollary 5.4.

Proof. The eigenvalue of the action of ζp on ωr,s is ζrp , so by Proposition 5.7, the spectrum

of this operator on H0(Cr,s,Ω
1
Cr,s

), hence also on H0(Cr,s,Ω
1
Cr,s

)∨, is {ζr′p : (r′, s′) ≃ (r, s)}.
This precisely determines the CM type to be Φ = {r′ : (r′, s′) ≃ (r, s)}. ■

This also shows how to find the CM type on J(C) as well, since Proposition 5.7 implies

that H0(C,Ω1
C) is the direct sum of the various H0(Cr,s,Ω

1
Cr,s

) ranging over admissible

equivalence classes [(r, s)]. In particular,
∏

[(r,s)] J(Cr,s) → J(C) is an isogeny, since the

images of differentials of the J(Cr,s) form a direct sum decomposition of Lie(J(C)).

Remark 5.9. The J(Cr,s) might not be simple. On Homework 1, you should find a

case where the CM type of J(Cr,s) is non-primitive.

For more details and discussion of this construction, see [Lan83], especially §1.6 and §1.7.
This includes discussion of the case of the Fermat curve XN +Y N = ZN and CM by Q(ζN )

when N is not necessarily prime. However, Lang’s discussion of the Jacobian at the end of

§1.7 is very brief.
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6 Rosati involution (01/29/2024)

6.1 Rosati involution

Let A/C = V/Λ with Riemann form ψ : Λ× Λ→ Z.

Definition 6.1. The Rosati involution is the unique involution on End0(A), usually denoted

by a superscript †, satisfying

ψ(αx, y) = ψ(x, α†y)

for all α ∈ End0(A) and all x, y ∈ Λ.

Remark 6.1. A Riemann form gives a map ψ : Λ→ Λ∨, which becomes an isomor-

phism after tensoring with Q. The Rosati involution yields, for any α ∈ End0(α), a

commutative diagram

Λ⊗Q Λ∨ ⊗Q

Λ⊗Q Λ∨ ⊗Q

ψ

α† α∨

ψ

This gives a direct formula for the Rosati involution as

α† = ψ−1 ◦ α∨ ◦ ψ

and shows that it exists and is unique.

In a more general algebraic setting over an arbitrary field k, we will have a similar

description of the Rosati involution based on a polarization ψ : A→ A∨.

Lemma 6.2. Let V = Te(A(C)), and let H be the positive definite Hermitian form

on V induced by a Riemann form ψ : Λ×Λ→ Z; note that End0(A(C)) acts faithfully
on V . Then the Rosati involution associated to ψ also defines an adjoint involution

on End0(A(C)). with respect to H.

Proof. There isn’t really much to do here besides recall definitions: H is defined byH(v, w) =

ψ(iv, w) + iψ(v, w), where ψ is extended to Λ ⊗Z R ≃ VR as real vector spaces. Then for

α ∈ End0(A), we have

H(αv,w) = ψ(α(iv), w) + iψ(v, w)

= ψ(iv, α†w) + iψ(v, α†w)

= H(v, α†w).

■
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Proposition 6.3. Let Tr : End0(A) → Q be the trace map, treating elements of

End0(A) as Q-linear endomorphisms on H1(A,Q). Then Tr(α† ◦ α) > 0 for all

nonzero αEnd0(A).

Proof. See also the first few pages of [Lan83].

Let V = Te(A(C)) and let H : V × V → C be the positive definite Hermitian form

associated to ψ. The trace of an element of End0(A) on V as an R-endomorphism is the

same as its trace as an operator on H1(A,Q) as a Q-endomorphism, so it suffices to show

that that Tr(α† ◦ α) > 0 treating α† ◦ α as an endomorphism of V .

Note that any α ∈ End0(A) is in fact C-linear on V = Cg, since by definition endomor-

phisms of A must respect the complex structure. Hence it makes sense to say that α† ◦α is a

self-adjoint operator on V with respect to the Hermitian form H. By the spectral theorem,

we conclude that α† ◦ α, treated as a complex endomorphism, is diagonalizable with real

eigenvalues. Moreover, if v is a λ-eigenvector of α† ◦ α, then

0 ≤ H(αv, αv) = H((α† ◦ α)v, v) = λH(v, v),

so λ ≥ 0, and if α ̸= 0 at least one eigenvalue is positive.

This tells us that α† ◦ α has positive trace as a C-linear operator. If we instead treat

α† ◦ α as an R-linear operator on VR ≃ R2g, by restricting scalars, the trace gets multiplied

by 2.4 Therefore the trace is also positive as an R-linear operator. ■

Fact: on a CM algebra E, there exists a unique positive involution, given by complex

conjugation on each factor. Therefore, for any simple CMAV A, we may identify End0(A)

with a CM algebra with Rosati involution given by conjugation. Then we have

ψ(αx, y) = ψ(x, c(α)y).

If A is not necessarily simple, then for any given Riemann form ψ there exists a CM algebra

E ⊆ End0(A) with [E : Q] = 2 dimA such that E+ = E.

Lemma 6.4. Let A = V/Λ be simple,

ψ : Λ⊗Z Q× Λ⊗Z Q→ Q

be a nondegenerate skew-symmetric form such that ψ(αx, y) = ψ(x, c(α)y) for all

α ∈ E ≃ End0(A). Then ψ(x, y) = trE/Q(ξc(x)y) for all x, y ∈ E ≃ ΛQ, where

ξ ∈ E is a totally imaginary element, i.e. c(ξ) = −ξ.

6.2 Data of CMAVs with polarizations

Definition 6.2. Let (A, i, ψ) be a tuple consisting of the data of an abelian variety A, an

embedding E ↪→ End0(A) for a CM algebra E, and a Riemann form ψ such that E† = E

4In general, let L/K be a finite field extension, let V be an L-vector space, say of dimension n, and
let α ∈ EndL(V ). Denote by TrL(α) the usual trace of α as an L-linear endomorphism on V , and denote
by TrK(α) the trace we get by instead treating α as a K-linear endomorphism on V ≃ Kn[L:K]. Then
TrK(α) = TrL/K(TrL(α)), where TrL/K : L → K is the field-theoretic trace map.
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with respect to the Rosati involution induced by ψ. We define (A, i, ψ) ∼ (A′, i′, ψ′) if there

exists an isomorphism f : A → A,α : E → E′ making all diagrams relevant to these data

commute.

To such a tuple (A, i, ψ), we associate a tuple (E,Φ, a, ξ) consisting of a CM type (E,Φ),

a fractional ideal a ⊆ E, and a totally imaginary element ξ ∈ E. We already know how to

get a CM type from (A, i). Pick some v ∈ H1(A,Q) such that E → H1(A,Q) : a 7→ a · v is

an isomorphism (see the proof of Theorem 4.2). Let a ⊂ E be the lattice identified with Λ

under this isomorphism, and let ξ ∈ E× such that c(ξ) = −ξ. The choice of v ambiguous up

to multiplication by E×, and a different choice sends v 7→ a−1v for some a ∈ E×, yielding

an isomorphism

(E,Φ, a, ξ) ≃ (X,Φ, aa, ξ/a(ca)).

6.3 Every CMAV is defined over Q

Proposition 6.5. Let k = k ↪→ C. The functor

AVk → AVC

A 7→ AC

(from the category of abelian varieties over k to the category of abelian varieties over

C) is fully faithful, and its essential image contains all CMAVs over C. In particular,

taking k = Q, all CMAVs are defined over Q.

This allows us to port a lot of the theory we have developed over C to Q.

Proof. The key observation is that we get a map A(k) ↪→ A(C) such that A(k)tors ≃ A(C),
since the equations cutting out torsion elements (of any given order n) are algebraic with

coefficients in k.

Faithfulness: Suppose we have two homomorphisms f, g : A → A′ such that fC =

gC. Hence in particular fC|A(C)tors = gC|A(C)tors . By the previous observation, this implies

f |A(k)tors = g|A(k)tors . Then the claim that f = g follows if we can show that A(k)tors is

Zariski dense in A, which we can do by applying the following lemma for any prime number

ℓ.

Lemma 6.6. Let A be an abelian variety over an algebraically closed field k. Then

for any prime ℓ ̸= char(k), A[ℓ∞] is Zariski dense in A. (This should be read as “the

only closed subscheme of A containing all of the closed subschemes A[ℓm],m ∈ Z, is
A itself.”)

We state this in the general algebraic setting since it is not much harder to prove there—

however, we will use the fact that A[ℓm] ≃ (Z/ℓmZ)2 dimA. We will get to this later, but

this fact is clear when working in the analytic setting over C, so we still obtain a complete

proof of Proposition 6.5.
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Proof. Let B be the Zariski closure of A[ℓ∞] with its reduced induced structure. Then B

is proper and reduced. Moreover, we claim B is a subgroup variety of A. To show this,

we need to show that the group operations factor through B, e.g. m|B×B : B × B → A

factors through B ↪→ A. Let g, h ∈ B(k); then any open neighborhoods U1 ∋ g, U2 ∋ h
in A intersect A[ℓ∞](k) since B is the closure of this set. Let V be an open neighborhood

of g + h ∈ A(k); then the preimage m−1(V ) is open and therefore contains a product of

neighborhoods U1 × U2 as above. Choosing any two ℓ∞-torsion points z1, z2 ∈ U1, U2 we

conclude that z1 + z2 is an ℓ∞-torsion point in V . But this shows that any neighborhood of

g + h contains an ℓ∞-torsion points, hence by definition g + h ∈ B(k). A similar argument

shows that B is preserved by inversion, and the fact that the unit map factors through B

is clear.

Hence B is a proper reduced subgroup variety of A, so the connected component of its

identity B0 is an abelian subvariety. We claim that A[ℓ∞] ⊆ B0. Since B is finite type,

it has a finite number n of connected components. Suppose e = vℓ(n) is the maximum

power of ℓ dividing n; then ℓeA[ℓ∞] is contained in B0, since the only ℓ∞-torsion elements

of the finite group B/B0 have order dividing ℓe. But A[ℓ∞] is an ℓ-divisible group, so in

fact A[ℓ∞] = ℓeA[ℓ∞] ⊆ B0 too.

For ℓ ̸= char(k) and any abelian variety A′, we have A′[ℓ] ≃ (Z/ℓZ)2 dimA′
. Therefore

the fact that B0 ⊇ A[ℓ] implies that dimB0 ≥ dimA. But A is connected and B0 is a

subvariety of A, whence B0 = B = A. ■

Remark 6.7. This proof can be easily modified to prove Lemma 6.6 for ℓ = char(k)

if A is assumed to be an ordinary abelian variety.

Fullness: We apply descent theory. We can write5 k = CAut(C/k). Let f : AC → A′
C be

any homomorphism over C; we wish to show that this actually comes from a homomorphism

over k. For τ ∈ Aut(C/k) we consider the map τf : AC → A′
C given by the map τ ◦ f ◦ τ−1.

By descent theory, f comes from a morphism over k if and only if τf = f for all τ . This is

again true if and only if τf and f agree on the dense subset (AC)tors, but again all points

of these subgroups are defined over k = k, so these maps are the same.

We’ll finish the claim about CMAVs next time. ■

7 Fields of definition (01/31/2024)

7.1 CMAVs in the essential image

Suppose A is a (not necessarily abelian) variety over C. Then there exists a ring R, with

Q ⊇ R ⊋ C and R finitely generated Q-algebra, such that A is defined over R as a scheme,

i.e. there exists an R-scheme A such that AC ≃ A. This is not very mysterious: A is finite

type over C, so there are finitely coefficients involved in the polynomials cutting it out. We

can take R to be generated by these polynomials and then use the same equations as before

for A . We say that A is obtained from A by “spreading out.”

5If α, β ∈ C are two transcendental elements over k, then a Zorn’s lemma argument shows that the
automorphism on k[α, β] swapping the two elements extends to C.
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Proposition 7.1. With notation as above, suppose that A is an abelian variety over

C. Then there exists a finitely generated R/Q, a proper group scheme A /R, and

nonempty open U ⊆ SpecR such that AU/U is an abelian scheme.

Proof. The morphisms defining the group laws again involve only finitely many coefficients,

and we can take R large enough to include all of them. Therefore we can spread out to find

A /R with the structure of a group scheme such that AC ≃ A.
Since we can originally write A/C as a closed subvariety of PNC for some N , we can

use the same equations to write A as a closed subscheme of PNR . In particular, A /R is

projective, hence proper. Since properness is stable under base change, this will remain true

if we later restrict to some open U ⊆ SpecR.

For connectedness on geometric fibers, we have a morphism OSpecR → π∗OA . A fiber

over a geometric point s ↪→ SpecR is connected if and only if this morphism is an iso-

morphism on the stalk at s. But s = Spec k′ for some algebraically closed k′ ⊆ C, and a

k′-scheme is (geometrically) connected if and only if it is (geometrically) connected over C:
one definition of geometric connectedness is that the scheme is connected after base change

to any field extension, not necessarily an algebraic field extension.

Note that if A is an R-group, then AU is a U -group for any open U ⊆ SpecR. Since A

is smooth on the generic fiber, and smoothness is an open condition, we may choose some

U ⊆ SpecR so that AU is smooth over U , and AU/U still satisfies all of the other criteria

for being an abelian scheme.

See also [Mil86, Remark 20.9]. ■

We finish the proof of Proposition 6.5.

Essential image: Let A/C be an arbitrary CM abelian variety defined over C. Spread
out A to an abelian variety over some open U ⊆ SpecR, with k ⊆ R ⊂ C and R finitely

generated over k. We may assume k = k. Letting O := End(A/C), we may enlarge R

and shrink U sufficiently to have O ⊆ End(AU/U) too, since End(As) is always finitely

generated6 over Z. Pick a geometric point s : Spec k → U ; then B := As is an abelian

variety over k that base changes to A, so we have B(k)tors = A(C)tors.
B/k is CM with the same CM type as A; its endomorphism ring is large enough since we

took U appropriately, and we have an isomorphism Lie(BC) ≃ Lie(A). By Proposition 4.2,

this means that BC is isogenous to A. Therefore, there exists a finite subvariety G ⊂ BC

such that BC/G = A. But such G is torsion, so B(k)tors = A(C)tors implies that G is defined

over k, too, so we may descend BC/G to a quotient7 of B defined over k.

6We will eventually prove this in full detail in Theorem 24.1, but it is easy to show finite generation in
the analytic category by using the fact that morphisms between abelian varieties are in correspondence with
maps between lattices.

7We have not defined how to take a quotient of a group scheme. In general, quotients of group schemes
are subtle and do not always work (instead requiring algebraic spaces), but the case of quotienting an abelian
variety by a finite subgroup behaves as it should. We’ll discuss this in more detail after we learn about fpqc
descent.
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7.2 Reflex fields

Remark 7.2. We can alternatively define a CM type as a subset of Hom(E,Q)

rather than Hom(E,C)—it does not matter which complex conjugation we choose

on Q, since all choices become the same on E if E is a CM algebra.

Definition 7.1. Given a CM type (E,Φ), its reflex field E∗ ⊆ Q ⊂ C is the fixed field of

the subgroup

{σ ∈ Gal(Q/Q) : σΦ = Φ}

.

Fact: if E is a field, then E∗ is contained in the Galois closure of E in Q. By definition,

E∗ is a field even if E is not a field.

Lemma 7.3. [Mil10, Propositions 1.16, 1.18] Let (E,Φ) be a CM type with reflex

field E∗.

1. E∗ is the subfield of Q generated by
∑
φ∈Φ φ(a), ranging over all a ∈ E.

2. E∗ is a CM field.

3. If (E,Φ) =
∏

1≤i≤m(Ei,Φi), then E
∗ is the compositum E∗

1 · · ·E∗
m.

4. If (E1,Φ1) is an extension of (E,Φ), then E∗
1 = E∗.

Proof. Omitted; read Milne. ■

Since E∗ is a CM field, you may ask whether there is a natural CM type on it arising

from the CM type (E,Φ). We’ll talk about this later.

Proposition 7.4. Let A/k with k ↪→ C. Assume Ak is a CMAV with CM type

(E,Φ) and reflex field E∗.

1. If E ⊆ End0(A/k), then E∗ ⊆ k.

2. If E∗ ⊆ k and Ak is simple, then E ⊆ End0(A/k).

Proof. 1. E acts on LieA, which is a k-vector space. By the definition of the CM type on

A, we have LieAC ≃
⊕

φ∈Φ Cφ as E-representations. Given a ∈ E, we can compute

the trace of its action on LieA after base changing to C, so we conclude that

Tr(a|LieAC) =
∑
φ∈Φ

φ(a).

But this trace comes from a k-vector space endomorphism, so it must lie in k. Such

traces generate E∗ by part 1 of Lemma 7.3, so E∗ ⊆ k.
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2. By Example 3.13, simplicity of Akimplies that E is a field and that E = End0(Ak).

The group Gal(k/k) acts on End0(Ak), so we must show this action is trivial, so that

End0(Ak) = End0(A/k).

Any σ ∈ Gal(k/k) fixes k, so it also fixes E∗; by the definition of the reflex field, this

means that σ ◦ Φ = Φ.

We know LieAk ≃
⊕

φ∈Φ kφ as E-representations. Therefore, given σ ∈ Gal(k/k),

the isomorphism σ : LieAk → LieAk induced by σ corresponds to an isomorphism

σ :
⊕

φ∈Φ kφ →
⊕

φ∈Φ kφ. Hence σ induces an automorphism of the CM type (E,Φ),

so there exists α ∈ Aut(E) such that Φ = σ◦Φ = Φ◦α. Letting E0 be the fixed subfield

of α, it follows that the restriction (E0,Φ|E0
) is a CM type; see [Mil10, Proposition 1.9].

But (E,Φ) is primitive, so we must have α = idE .

■

Corollary 7.5. There are no CMAVs defined over Q.

Remark 7.6. When we say that a CMAV A is defined over Q, we specifically mean

that End0Q(A) is already large enough to admit an embedding E ↪→ End0Q(A) with

E CM and [E : Q] = 2 dimA, without needing to take a field extension to get more

endomorphisms. There are plenty of CMAVs that are defined as abelian varieties

over Q, but we do not get enough endomorphisms that are defined over Q. For

example, the elliptic curve A : y2 = x3 + x has EndQ(A) = Z[i], generated by the

endomorphism (x, y) 7→ (−x, iy), but this endomorphism is not defined over Q.

Proof. If A has CM by E and is defined (as a CMAV) over Q, then by definition this means

that E ↪→ End0Q(A). By Proposition 7.4, we conclude that E∗ ⊆ Q. This is impossible since

E∗ is itself CM by Lemma 7.3 Part 2, hence a nontrivial extension of Q. ■

8 Shimura-Taniyama formula (02/02/2024)

8.1 Statements

Let A/K be an abelian variety over a number field K.

Definition 8.1. For a prime p of K, we say that A has good reduction as p if there exists

an abelian scheme A /OSpecKp
such that AK = A.

In particular, good reduction means that A must be smooth over OSpecKp
. The spec-

trum of this DVR only has two points, and we already know that the generic fiber is an

abelian variety A, so really this is equivalent to the special fiber being an abelian variety.

Now let X/Fq be a variety. There exists a map FX : X(Fq) → X(Fq) defined in

coordinates by sending a 7→ aq; this is the (q-th power) Frobenius map on X.

Definition 8.2. If X is an abelian variety, the (ℓ-adic) Tate module is Tℓ = lim←−nA(Fq)[ℓ
n].

Then Frobenius also descends to an action on the Tate module.
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Theorem 8.1. (Shimura-Taniyama formula.) Let A/K be a CMAV with CM type

(E,Φ) such that K contains all Galois conjugates of E (hence also the reflex field E∗)

and E ⊆ End0(A/K). Let p ⊂ OK be a prime of good reduction, with OK/p ≃ Fq.
Assume further:

1. Kp/Qp is unramified;

2. End(A) ∩ E = OE .

Then:

(a) There exists π ∈ OE such that π induces the Frobenius action on A mod p.

(b) The ideal (π) ⊆ OE is given by
∏
φ∈Φ φ

−1(NmK/φE p).

The assumptions (1) and (2) are unnecessary but make the proof easier. There is another

version that we will also consider:

Theorem 8.2. (Shimura-Taniyama formula v2, Tate’s paper.) Let A/K have CM

type (E,Φ) (with E ⊆ End0(A/K), and suppose p is a prime of good reduction lying

over (p) ⊂ Z, with OK/p ≃ Fq. Then:

(a) There exists π ∈ E that induces FA mod p.

(b) For all places of E dividing p, we have

ordv(π)

ordv(q)
=

#(Φ ∩Hv)

#Hv
,

where Hv = Hom(Ev,Qp).

Remark 8.3. The Shimura-Taniyama formula is not to be confused with the

Shimura-Taniyama conjecture, aka the modularity theorem.

8.2 Eigenvalues of Frobenius

Here are some corollaries that will make these results more concrete and actually allow you

to compute things on the homework.

Suppose OE ⊆ End(A/K). By the theory of Néron models, we can take A so that

End(A/K) = End(A /OKp
). The latter injects into End(A mod p) by the theory of Tate

modules, which we will discuss later.
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Corollary 8.4. Let A/K be CMAV with hypotheses as in the Shimura-Taniyama

theorem.

(a) The characteristic polynomial of FA mod p is an integer polynomial.

(b) The q-adic valuations (i.e. the p-adic valuation renormalized so that v(q) = 1)

of the eigenvalues of the characteristic polynomial of FA mod p are{
#(Φ ∩Hv)

#Hv

}
v|p

each with multiplicity #Hv.

Here, we take the characteristic polynomial of Frobenius to be the one via its action

on the Tate module Vℓ = Tℓ ⊗Zℓ
Qℓ over Qℓ. This is also the same as the characteristic

polynomial of the lift of π to H1(A(C),Q). Part (a) is true for non-CM AVs via the Weil

conjectures, but part (b) seems to be a lot harder to approach in general.

The eigenvalues of Frobenius are one of the Great Mysteries of number theory. For

example, they control whether an abelian variety is ordinary or otherwise how non-ordinary

it is; if the valuations are all 0 or 1, then the AV is ordinary, and if all of them are 1/2, it

is supersingular. We know basically everything in the CM case by the above theorem, but

more generally less is known. For example, we don’t even know if a given abelian surface

over K reduces to a supersingular abelian surface over Fq for infinitely many q.

We first prove the corollary from the Shimura-Taniyama formula:

Proof. (a) The characteristic polynomial of Frobenius is the same as the characteristic poly-

nomial of π as a Q-linear transformation on E—we consider π to act on H1(A,Q)—so

it is an integer polynomial. Explicitly, this polynomial is∏
σ∈Hom(E,Q)

(x− σ(π)) ∈ Z[x].

(b) Over Qp, we can rewrite the above polynomial as∏
v|p

∏
σ∈Hom(Ev,Qp)

(x− σ(π)),

and the σ(π) in the inner product all have the same valuation ordv(π)
ordv(q)

, which is equal to
#(Φ∩Hv)

#Hv
by Theorem 8.2.

■
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Example 8.5. Let A be an elliptic curve with CM by an imaginary quadratic field

E. There are two cases for a prime p ∈ Z:

• If p splits in E/Q into two places v1, v2, then #Hv = #Hv2 = 1. Since the

CM type Φ has only one element, we conclude that the Frobenius eigenvalues

have q-adic valuation 0 and 1, each with multiplicity 1. This is the case of an

ordinary reduction.

• Otherwise, if p is inert or ramified, then #Hv = 2, and we get the eigenvalue of

valuation 1/2 with multiplicity 2. This is the case of a supersingular reduction.

By the Chebotarev density theorem, this tells us that exactly half of the reductions

of A will be ordinary and half will be supersingular (in the natural density of primes).

In particular, any CM elliptic curve reduces to a supersingular curve for infinitely

many p.

Example 8.6. Now let dimA = 2 (an abelian surface), and suppose E = Q(ζ5).

1. If p splits completely in E/Q, then we similarly get eigenvalues of valuation

0, 0, 1, 1, yielding an ordinary abelian variety.

2. If p ̸= 5 is inert in E/Q(
√
5), then for any place v lying above p (there are

either 1 or 2) we have c(Hv) = Hv, i.e. Φ ∩Hv consists of exactly half of the

elements of Hv. Hence the q-valuation of all eigenvalues are 1/2.

On the homework, you will compute the q-valuation of the Frobenius eigenvalues for

the Jacobians of some Fermat curves. You will also give an example of an CMAV A of

dimension 2 with Frobenius eigenvalues of valuation 0, 1/2, 1/2, 1.

We will not be able to prove the Shimura-Taniyama formula for a while because we have

not yet built the algebraic theory of abelian varieties and schemes. The proof will be given

in Lecture 30.

Part II

Algebraic theory of abelian varieties

9 General theory of AVs (02/05/2024)

I was absent this day; this section is reconstructed from Prof. Tang’s outline, Nir Elber’s

notes, and the accounts of these facts in [Con15].

9.1 The Rigidity Lemma and applications

We now work in the algebro-geometric setting over an arbitrary field k. Recall from Lecture

2:
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Definition 9.1. An abelian variety over a field k is a group variety that is smooth, con-

nected, and proper (among many other equivalent definitions).

We claimed early on that it is the properness that ensures abelian varieties are commu-

tative group schemes. In the complex analytic setting, we used a compactness argument to

conclude that the adjoint action is trivial. In the algebraic setting, the key is the following

result:

Theorem 9.1. (Rigidity lemma.) Let X,Y be geometrically integral varieties over a

field k and Z a separated k-scheme. Let f : X×k Y → Z be a k-morphism. Suppose:

• X/k is proper and X(k) is nonempty, say x0 ∈ X(k);

• There exists y0 ∈ Y (k) such that f |X×{y} is constant, mapping everything to

a point z0 ∈ Z(k).

Then there exists a morphism g : Y → Z such that the following diagram commutes:

X × Y

Y Z

fprY

g

That is, the morphism f is independent of its first coordinate.

Proof. Define g(y) := f(x0, y); more rigorously, g is the composition

Y ≃ Spec k × Y X × Y Z.
x0×idY f

To show that f = g ◦ prY , it is enough to show that this is true on an open dense subset of

X×Y , since the source is reduced and the target is separated (see [Har77, Exercise II.4.2] or

[Vak, Theorem 11.4.2] for the “Reduced-to-separated theorem”). Since X and Y are both

geometrically integral, X × Y is irreducible, so any nonempty open subset is dense.

Let U ∋ z0 is any open affine neighborhood of z0 in Z. By continuity, f−1(Z \ U) is

closed in X × Y , and since X is proper, the projection prY (f
−1(Z \ U)) is again closed.

(Recall that proper schemes are universally closed by definition, so in the Cartesian diagram

X × Y Y

X Spec k

prY

the top arrow is a closed map because the bottom arrow is.) Define V := prY (f
−1(Z \U)),

which we know is open and nonempty : it at least contains y0, since f(x0, y0) ∈ U .

The open set X ×k V ⊆ X ×k Y is the open set we will use to test the equality of f

and g ◦ projY . It is even enough to check equality on k-points, since these are dense in any

k-variety. (The maximal locus of agreement of any two morphisms φ,ψ : S → T is locally

closed in general and closed if T is separated, in the sense that in the Cartesian diagram

V S

T T × T

φ×ψ

∆
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the map V → S is locally closed, and closed if S is separated.

So let y ∈ V (k). Then f(Xk×k {y}) maps inside Uk, but Xk×k {y} is proper over Spec k
and Uk is affine, so f is constant (the image of a proper morphism is proper, and the only

proper subschemes of an affine scheme are the finite). Hence for any x ∈ X(k), we must

have f(x, y) = f(x0, y) = g(x, y), as desired. ■

Remark 9.2. The hypotheses in the Rigidity Lemma can be slightly weakened; see

the version in [Con15, Theorem 1.7.1].

Some immediate applications:

Corollary 9.3. Let A and B be abelian varieties, and let f : A→ B be an arbitrary

morphism of k-varieties (not necessarily a homomorphism). Then there exists a

homomorphism h ∈ Homk(A,B) and a point b ∈ B(k) such that f = tb◦h, where tb :
B → B is the translation by b. In particular, if f(eA) = eB , then f is automatically

a homomorphism, where the e’s are the identity elements.

Proof. We reduce to the case f(eA) = eB by post-composing with translation by b = −f(eA).
Writing the group law multiplicatively for the moment, without yet knowing that this law

is commutative, define α : A×A→ B by

α(x1, x2) = f(x1x2)f(x2)
−1f(x1)

−1.

Then α(x1, eA) = f(x1)f(eA)
−1f(x1)

−1 = eB , and likewise α(eA, x2) = eB . By the Rigidity

Lemma, α : A×A→ B factors through both projections A×A→ A, so α must be constant

with α(A×A) = {eB}. But this means f(x1x2) = f(x1)f(x2), i.e. f is a homomorphism. ■

Corollary 9.4. The group law on an abelian variety is commutative.

Proof. The inverse morphism i : A→ A preserves eA, so by Corollary 9.3, i is automatically

a homomorphism. But a group is commutative if and only if the inverse map defines a

automorphism. ■

Remark 9.5. Since the group law on A is commutative, multiplication by n is a

homomorphism. We denote the multiplication by n morphism as [n] : A→ A.

Remark 9.6. From now on, we will notate the group law on an abelian variety

additively.
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9.2 Theorem of the Cube statement and corollaries

Theorem 9.7. (Theorem of the Cube.) Let X,Y, Z be geometrically integral k-

varieties with X and Y proper. Let x0 ∈ X(k), y0 ∈ Y (k), z0 ∈ Z(k). Suppose a line

bundle L on X × Y × Z becomes trivial under the three restrictions

L |X×Y×{z0},L |X×{y0}×Z ,L |{x0}×Y×Z .

Then L itself is trivial.

It will take quite a bit of work to prove this; we’ll start next lecture. For now, we give

some consequences.

Theorem 9.8. (Cubical structure of line bundles.) Let A be an abelian variety and

X any variety over k. Given three morphisms f, g, h : X → A and a line bundle L

on A, we have an isomorphism

(f + g + h)∗L ⊗ f∗L ⊗ g∗L ⊗ h∗L = (f + g)∗L ⊗ (g + h)∗L ⊗ (h+ f)∗L .

(1)

In particular, take X = A× A× A and let m• : X → A denote the projection onto

the indices • followed by addition in the group law. Then

m∗
123 L ⊗ pr∗1 L ⊗ pr∗2 L ⊗ pr∗3 L ≃ m∗

12 L ⊗m∗
23 L ⊗m∗

13 L . (2)

Proof. The isomorphism 2 is the universal case: the general case 1 can be obtained from 2

by pulling back along the morphism (f, g, h) : X → A × A × A. Therefore, we need only

prove 2.

Equivalently, we must show that

K := m∗
123 L ⊗ pr∗1 L ⊗ pr∗2 L ⊗ pr∗3 L ⊗m∗

12 L −1 ⊗m∗
23 L −1 ⊗m∗

13 L −1

is trivial. This follows from Theorem 9.7 if we can show that K |{eA}×A×A,K |A×{eA}×A,

and K |A×A×{eA} are all trivial, so by symmetry we need only show that K |{eA}×A×A is

trivial. But

K |{eA}×A×A = m∗
23 L ⊗O ⊗ pr∗2 L ⊗ pr∗3 L ⊗ pr∗2 L −1 ⊗m∗

23 L −1 ⊗ pr∗3 L −1

and the factors cancel. ■
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Remark 9.9. As currently stated, the isomorphism appearing in Theorem 9.8 is not

canonical. Moreover, when considering abelian schemes over a more general base S,

it might not be true that e∗L is trivial, where e : S → A is the unit morphism. The

“correct” version of Theorem 9.8 is

m∗
123 L ⊗ pr∗1 L ⊗ pr∗2 L ⊗ pr∗3 L ≃ m∗

12 L ⊗m∗
23 L ⊗m∗

13 L ⊗ e∗XL

where eX : X → A is the base change of the unit morphism; the extra term cancels

the factor that was trivial in our original computation. Naturality of this version of

the isomorphism is the content of one of the exercises in Homework 2.

Corollary 9.10. (Quadratic structure of line bundles.) Let L be a line bundle on

an abelian variety A. Then for any n ∈ Z,

[n]∗L = L ⊗n(n+1)/2 ⊗ [−1]∗L ⊗n(n−1)/2.

In particular, if L = [−1]∗L (we say such L is symmetric), then [n]∗L = L ⊗n2

,

and if L −1 = [−1]∗L (we say such L is antisymmetric), then [n]∗L = L ⊗n.

Proof. The statement is trivial for n ∈ {−1, 0, 1}. Suppose we know the statement for n

and n− 1. Then

[n]∗L ⊗ [n]∗L ⊗ [1]∗L ⊗ [−1]∗L ≃ [n+ 1]∗L ⊗ [n− 1]∗L ⊗ [0]∗L

by Theorem 9.8, taking X = A and f = [n], g = [1], h = [−1]. By inductive hypothesis, the

above simplifies to

(L ⊗n(n+1)/2 ⊗ [−1]∗L n(n−1)/2)⊗2 ⊗L ⊗ [−1]∗L

≃ [n+ 1]∗L ⊗L ⊗(n−1)n/2 ⊗ [−1]∗L (n−1)(n−2)/2

and gathering like factors gives the formula for [n + 1]∗L . Likewise, this same argument

gives the formula for n− 1 if it is known for n and n+1. Therefore we win by upwards and

downwards induction. ■

10 Theorem of the Cube proof part I (02/07/2024)

The proof of the Theorem of the Cube (Theorem 9.7) will occupy us for the next two

lectures. We will need to cite other well-known theorems in algebraic geometry and apply

some cohomology theory.

The proof is much simpler if one blackboxes the existence of the Picard variety. This is

how [Con15] does it; the proof is a straightforward application of the Seesaw Principle and

the Rigidity Lemma. Instead we will follow the proof in [Mum08], which avoids the Picard

variety but unfortunately is rather technical and unintuitive.
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10.1 Theorem of the square

We first give one last crucial application of the Theorem of the Cube.

Corollary 10.1. (Theorem of the square.) Let A/k be an abelian variety. For all

x, y ∈ A(k) and line bundle L on A, we have

t∗x+yL ⊗L ≃ t∗xL ⊗ t∗yL ,

where tz denotes translation by z.

Proof. Apply the Theorem of the Cube with X = A, f : A → {x}, g : A → {y}, and

h = idA. ■

Remark 10.2. Suppose k′/k is a field extension, and pick any line bundle L on

A. Then the theorem of the square shows that ϕL : A(k′) → Pic(Ak′) defined by

x 7→ t∗xL ⊗L −1 is a group homomorphism, since by tensoring the isomorphism in

the theorem of the square by L −2 we obtain

t∗x+yL ⊗L −1 ≃ (t∗xL ⊗L −1)⊗ (t∗yL ⊗L −1).

The homomorphism ϕL is vitally important in the theory of abelian varieties, espe-

cially when L is ample. If you’ve studied elliptic curves, this is the generalization

of the isomorphism E → Pic0(E) given by P 7→ O(P )−O(e). These are the homo-

morphisms that yield polarizations when L is ample.

10.2 Review of cohomology

Let f : X → Y be a morphism of noetherian schemes. We have higher pushforward functors

Rnf∗ : QCoh(X)→ QCoh(Y ) on the categories of quasicoherent sheaves on X and Y . If

f is proper, then these higher pushforwards send coherent sheaves to coherent sheaves.

We know the following properties of these functors:

1. R0f∗ = f∗ is the usual pushforward map.

2. A short exact sequence of sheaves induces a long exact sequence in cohomology.

3. If Y = SpecR, then Rnf∗F is the sheaf associated to the R-module Hn(X,F ).

4. If Y = SpecR and X is separated, then Hn(X,F ) can be computed using Čech

cohomology. Let U = {Ui}i∈I be a finite cover of X by affine opens, and fix an

ordering of I. The Čech complex C•(U ,F ) is a complex of R-modules with

Cn(U ,F ) =
∏

i0<···<in

Γ(Ui0 ∩ · · · ∩ Uin ,F )
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with coboundary maps dn : Cn(U ,F )→ Cn+1(U ,F ) given by

(dσ)i0<···<in+1 :=

n+1∑
j=0

(−1)jσi0<···<îj<···<in+1
|Ui0

∩···∩Un+1 .

Then we define Čech cohomology to be the cohomology of this complex. For example,

Ȟ0(U ,F ) = Γ(X,F ).

Theorem 10.3. (Semicontinuity theorem.) [Mum08, II.5, Cor. 1], [Vak, 28.1.1] Let

X → Y be a proper morphism of noetherian schemes, and let F be a coherent sheaf

on X that is flat over Y . Then for all integers n ≥ 0, the function Y → Z defined by

y 7→ dimk(y)H
n(Xy,F |Xy

)

is upper-semicontinuous, which means that the preimage of [m,∞) is closed for any

m ≥ 0.

Grauert’s theorem gives a criterion to check whether a higher pushforward is locally free

and determine its rank.

Theorem 10.4. (Grauert’s theorem.) [Mum08, II.5, Cor. 2] [Vak, 25.1.5] Let hy-

potheses be as in the semicontinuity theorem, and assume also that Y is reduced and

connected. Then the following are equivalent:

1. dimk(y)H
n(Xy,F |Xy

) is constant for all y ∈ Y .

2. Rnf∗F is locally free of finite rank and Rnf∗F ⊗ k(y)→ Hn(Xy,F |Xy
) is an

isomorphism for all y ∈ Y .

10.3 Seesaw principle

We can reduce proof of the Theorem of the Cube to the case k = k, since we have:

Lemma 10.5. Let V/k be a proper and geometrically integral scheme.

1. Γ(V,OV ) = k.

2. Let L /V be a line bundle. If Lk is trivial, then L is also trivial.

Proof. 1. See [Sta24, Tag 0BUG].

2. If Γ(V ±1

k,Lk

) ≃ Γ(V,L ±1) ⊗ k are nonzero, then so are Γ(V,L ±1). By Lemma 10.6,

these conditions are equivalent to triviality.

■

Lemma 10.6. Let V/k be again as in the previous lemma, and L a line bundle on

V . Then L ≃ OV if and only if L and L −1 both have nonzero global sections.
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Proof. If L is trivial, the claim is immediate from part (1) of Lemma 10.5. For the other

direction, use a global section s ∈ Γ(V,L ) to define a morphism s : OV → L , and use a

global section t ∈ Γ(V,L −1) to define a morphism OV → L −1. Tensoring the latter by L

yields a morphism t : L → OV . The composition t ◦ s : OV → OV is a nonzero morphism,

but the only automorphisms of OV are scalar multiplication by k, so we conclude that t and

s are isomorphisms. ■

The main reason we need all of these results from cohomology is for the following very

helpful result:

Theorem 10.7. (Seesaw Principle.) Let X/k be proper and geometrically integral,

let T/k be a variety, and let L be a line bundle on X ×k T . Then:

1. The set T1 = {t ∈ T closed: LX×{t} trivial} is closed.

2. There exists some line bundle M on T1 such that L |X×T1 ≃ pr∗T1
M .

Proof. We have

T1 = {t ∈ T : Γ(X × {t},L ±|X×{t} ̸= 0}

= {t ∈ T : dimΓ(X × {t},L ±|X×{t} > 0}.

This set is closed by the semicontinuity theorem, proving part (1) of the theorem. For part

(2), on X × T1, we have

dimk(t)H
0(X × {t},L |X×{t}) = 1,

since by definition L |X×{t} is trivial on this locus. By Grauert’s theorem, we conclude

prT1,∗ L is locally free of rank 1, i.e. a line bundle M . By adjunction, we have a natural

map

pr∗T1
M = pr∗T1

prT1,∗ L |X×T1 → LX×T1

which we can check on fibers to be an isomorphism. ■

We will often use Seesaw Principle in the guise of the following corollary.

Corollary 10.8. Let X,T,L be as in Theorem 10.7. If there exists a point x0 ∈
X(k) such that L |{x0}×T is trivial, and if L |X×{t} is trivial for all t ∈ T , then L

is trivial.

Proof. By the Seesaw Principle, everywhere triviality of L |X×{t} tells us that L = pr∗2 M

for some line bundle M on T . But for any x0 ∈ X(k), the composition

T {x0} × T X × T T∼ pr2

is the identity on T . This means that OT ≃ L |{x0}×T ≃ id∗
TM ≃ M , so M , hence also

L = pr∗2 M , is trivial. ■
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Remark 10.9. (See also [Mum08, pp. 52-53].) We ended lecture by discussing the

Theorem of the Cube in the complex analytic case. Let W = X × Y × Z be a

complex-analytic variety. We have the exponential exact sequence

0 Z OW O×
W 1

exp

inducing an exact sequence

H1(W,OW )→ H1(W,O×
W ) H2(W,Z).

The middle term is Pic(W ).

The Theorem of the Cube may be rephrased as the assertion that

Pic(X × Y × Z)→ Pic(X × Y )× Pic(X × Z)× Pic(Y × Z)

is injective, where the the pullback maps are defined with respect to some arbitrary

base points x0, y0, z0. In general, given a contravariant functor T from the category

of proper varieties to the category of abelian groups, we say that T is of order n if

T (X0 × · · · ×Xn)→
n∏
i=0

T (X0 × · · · × X̂i × · · · ×Xn)

is always injective, where the maps on each factor are induced by the maps X0×· · ·×
{xi}× · · · ×Xn → X0× · · · ×Xn for some collection of base points xi. In this sense,

the functor H1(W,OW ) is order 1 (linear) and H2(W,Z) is order 2 (quadratic) by the

Künneth formulas.a If a functor T is order n, then it is also order m for any m ≥ n,
so we know that Pic is sandwiched in an exact sequence between two quadratic

functors. Hence it, too, must be quadratic, since the middle arrow of the following

commutative diagram must also be injective:

H1(X0 ×X1 ×X2,O) Pic(X0 ×X1 ×X2) H2(X0 ×X1 ×X2,Z)

∏2
i=0H

1(. . . ,O)
∏2
i=0 Pic(. . . )

∏2
i=0H

2(. . . ,Z)

aSee [Sta24, Tag 0BEC] for the Künneth formula for sheaf cohomology, which basically works
as we expect it to in the case of trivial sheaves.

11 Theorem of the Cube proof part II (02/09/2024)

11.1 Reduction to the case of a smooth curve

Today we finish the proof of the Theorem of the Cube 9.7. We want to reduce our proof to

the case of X being a smooth projective curve.

Lemma 11.1. Let X be a proper geometrically integral variety over a field k. For

any x0, x1 ∈ X, there exists a geometrically irreducible curve C ⊆ X containing x0

and x1.
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Proof. Our main steps will be to apply Chow’s lemma to reduce to the case that X is

projective, and then apply a theorem of Bertini to supply a curve with the desired properties.

Theorem 11.2. (Chow’s lemma.) [Vak, 19.9.2] Let π : X → SpecA be a proper

map, with A a noetherian ring. Then there exists a surjective proper morphism

µ : X ′ → X such that π ◦ µ : X ′ → SpecA is projective and such that there exists

an open dense U ⊆ X with µ−1(U)→ U an isomorphism.

Theorem 11.3. (Bertini irreducibility theorem.) [Jou83], [Ben11] Let k be an infi-

nite field, and suppose X ↪→ PNk is a geometrically integral projective variety over k.

Then there exists a hyperplane H ⊆ PNk such that H ∩X is geometrically integral.

Moreover, the set of hyperplanes H for which this is true forms a Zariski open dense

subset in the family of all hyperplanes of PN .

Remark 11.4. The lemma still holds for finite fields if we replace “hyperplane” by

“hypersurface”; see [CP16, Theorem 1.1.1.8]. It usually also still works if we require

other properties of H ∩X, such as smoothness.

Given a proper variety X and a surjective morphism µ : X ′ → X as in Chow’s lemma,

one way to produce a geometrically irreducible curve containing given points x0, x1 ∈ X

are to take points x′0 ∈ µ−1(x0), x
′
1 ∈ µ−1(x1), find a geometrically irreducible curve in

X ′ through x′0 and x′1, and then take the image of this curve under µ. The image of a

geometrically irreducible variety is again geometrically irreducible, and the image of an

irreducible (complete) curve is either a point or another (complete) curve, but our image

contains x0 and x1. Since X ′ must be geometrically irreducible if X is, we reduce to the

case that X is projective.

We induct on the dimension of dimkX. If dimX = 1, we are done. Otherwise, take

the blowup Bl{x0,x1}X along the two points, which is also projective. The two exceptional

divisors have codimension 1, so applying Bertini’s irreducibility theorem we get a geomet-

rically irreducible subvariety of Bl{x0,x1}X that intersects both of these. Projecting back

down onto X yields a geometrically integral subvariety containing x0, x1 of strictly lesser

dimension, so we conclude by induction. ■

We return to proving the Theorem of the Cube. Given any closed x ∈ X, use Lemma

11.1 to produce a geometrically integral curve C ⊆ X containing x and the base point x0.

Let its normalization be C ′. We have an induced map πx : C ′ × Y × Z → X × Y × Z. The
pullback π∗L on C ′ × Y × Z satisfies the hypotheses of the Theorem of the Cube, except

with X replaced by C ′ and x0 replaced by some point in C ′ lying over x0 ∈ C. If π∗L is

trivial, then L |{x}×Y×{z} is trivial for all x ∈ X, z ∈ Z, as

π∗L |{x′}×Y×{z} = O|{x′}×Y×{z}

for any x′ ∈ C ′ lying over x and π|{x′}×Y×{z} : {x′} × Y × {z} → {x} × Y × {z} is an

isomorphism. If L |{x}×Y×{z} is trivial for all x ∈ X, z ∈ Z, then since we also know that

L |X×{y0}×Z is trivial, the Seesaw Principle via Corollary 10.8 tells us that L is also trivial,
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where X×Z takes the role of T and Y takes the role of X in the corollary (this is permissible

since Y is assumed proper).

Since we have shown that L is trivial if π∗L is trivial, it suffices to prove the theorem

in the case that X is a geometrically integral smooth curve.

11.2 End of proof

It suffices to prove the theorem after replacing Z by a dense open subset Z ′ ⊆ Z, since

if L |X×Y×{z} is trivial for all z ∈ Z ′, then by part (1) of the Seesaw Principle 10.7,

L |X×Y×{z} is trivial for all z ∈ Z. Then another application of the Seesaw Principle shows

that L is trivial. (We will select the appropriate Z ′ shortly.)

As justified in the previous section, we assume X is a smooth projective curve, say of

genus g. Then a generic divisor E ⊂ X of degree g has H0(X,ΩX(−E)) = 0. Choose one

such divisor and define M := pr∗1O(E) ⊗ L—a line bundle on X × Y × Z—and let W

be the support of R1 pr23,∗ M , which is a closed subset W ↪→ Y × Z. The assumptions

L |X×Y×{z0} ≃ OX×Y and L |X×{y0}×Z ≃ OX×Z imply

M |X×{y}×{z0} ≃M |X×{y0}×{z} ≃ O(E) (3)

for all y ∈ Y, z ∈ Z. Therefore, by Serre duality,

H1(X × {y} × {z0},M |X×{y}×{z0}) = H1(X,O(E))

= H0(X,ΩX(−E))

= 0.

Since Y is proper, prZ(W ) ⊆ Z is closed. Since H1(X ×{y}× {z0},M |X×{y}×{z0}) = 0

for all y ∈ Y , by Grauert’s theorem we conclude R1 pr23,∗ M |Y×{z0} = 0, hence R1 pr23,∗ M

is not supported anywhere above z0. This means z0 ̸∈ prZ(W ). Therefore there exists an

open neighborhood Z ′ ∋ z0 such that W ∩ (Y × Z ′) is empty. Since Z is connected, Z ′ is

dense, so by our previous remarks it suffices to prove the theorem over X × Y × Z ′.

On Y × Z ′, we have R1 pr23,∗ M = 0. We conclude that, for any y ∈ Y, z ∈ Z ′,

H0(X,M |X×{y}×{z}) = χ(M |X×{y}×{z}) = χ(M |X×{y}×{z0}) = χ(O(E)) = 1

where the last equality is given by the Riemann-Roch formula

χ(O(E)) = 1− g + deg(O(E)) = 1.

Hence one more application of Grauert’s theorem shows that N := pr23,∗ M is a locally

free rank 1 module on Y × Z ′, i.e. an invertible sheaf.

We construct a divisor D ⊆ X × Y × Z ′. Pick an open cover {Ui} of Y × Z ′ such that

N |Ui
is trivial, fixing specific isomorphisms αi : OUi

→ N |Ui
. Then

αi(1) ∈ Γ(Ui,N ) = Γ(X × Ui,M ).

Define Di to be the zero locus of αi(1) on X×Ui. Such Di glue to a divisor D ⊂ X×Y ×Z ′,
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because on overlaps Ui ∩ Uk the functions αi, αj differ by a unit. Then

O(D)|X×{y}×{z} ≃M |X×{y}×{z} (4)

for all y, z ∈ Y × Z ′ since for each y, z there is a neighborhood Ui ∋ {y} × {z} on which

D ∩ Ui is cut out by a section of M |Ui
.

We claim that D = E × Y × Z ′. The isomorphisms (3) and (4) show that

O(D)|X×{y0}×{z} = O(D)|X×{y}×{z0} = O(E). (5)

for any y ∈ Y, z ∈ Z ′. Therefore, if p ∈ X is not contained in the support of E, we have

D ∩ ({p} × Y × {z0}) = D ∩ ({p} × {y0} × Z ′) = ∅,

so the closed subset

T := prZ(D|{p}×Y×Z′) ⊆ Z ′

does not contain z0. The set D|{p}×Y×Z′ on Y × Z ′ is the divisor associated to the line

bundle N , so this has pure codimension 1 in {p} × Y × Z ′, and therefore its projection to

Z ′ has component all of codimension at most 1. But T ⊊ Z ′, ruling out the possibility of

codimension 0, so we conclude T also has pure of codimension 1 in Z ′. We clearly have

D ∩ ({p} × Y × Z ′) ⊆ {p} × Y × T. (6)

Any irreducible component of {p}×Y ×T must either equal a component ofD∩({p}×Y ×Z ′)

or not intersect, since components of both sides all have codimension 1. But it is impossible

for this intersection to be trivial since, by definition, any point of T must have some point

of D ∩ ({p} × Y × Z ′) in its preimage. We conclude that the inclusion in (6) is an equality.

Yet we also know that D does not meet {p} × {y0} × Z ′, so the only possibility is T = ∅.
We conclude that D is supported only over E. Conversely, Equation (5) shows that D

is supported everywhere on E ×X × Y , so we conclude that the support of D is precisely

E ×X × Y . Hence we can write these Weil divisors as

D =
∑
i

ni({pi} × Y × Z)

E =
∑
i

mi({pi} × Y × Z)

for positive integers mi. But then restricting to X × {y0} × {z} and applying Equation 5

shows that we must have allmi = ni, hence D = E as divisors. This equality, in conjunction

with Equation (4), finally lets us conclude

M |X×{y}×{z} ≃ O(E)

for any y ∈ Y, z ∈ Z ′, not just y0 or z0 as in Equation (3). Since X is a curve, this

means that D is of the form
∑
i ni({pi} × Y × Z ′) for some nonnegative integers ni and

points pi ∈ X. But M was defined so that M |X×{y}×{z} := O(E) ⊗ L |X×{y}×{z}, so
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L |X×{y}×{z} must be trivial. Thus, triviality of L |{x0}×{y}×{z} and Corollary 10.8 shows

that L is trivial.8 ■

12 Projectivity of abelian varieties (02/12/2024)

12.1 The homomorphisms ϕL

Recall the theorem of the square (Theorem 10.1) and the subsequent Remark 10.2: given any

line bundle L on an abelian variety A/k, we have a group homomorphism A(k)→ Pic(Ak)

defined by

ϕL (x) = t∗xL ⊗L −1.

Right now this is just a group homomorphism, but we will soon upgrade this to a homo-

morphism of group schemes.

The maps ϕL yield a group homomorphism ϕ : Pic(A) → Hom(A(k),Pic(Ak)) via

L 7→ ϕL .

Definition 12.1. Pic0(A) is the subgroup kerϕ ⊆ Pic(A), consisting of all translation-

invariant line bundles on A.

Example 12.1. If A is an elliptic curve, then we have an exact sequence

0 Pic0(A) Pic(A) Z 0
deg

where the last map is the degree map, i.e. Pic0(A) is just the group of degree zero

line bundles on A. To see this, let D =
∑
P nP [P ] be the divisor associated to a

given line bundle L . Another divisor E =
∑
Q nQ[Q] is linearly equivalent to D if

and only if degE = degD and
∑
P nP · P =

∑
Q nQ · Q, where the this sum is via

the group law on A ([Sil09, Cor. 3.5]). Given a point x ∈ A(k), we have

tx(D) =
∑
P

nP [x+ P ],

which is linearly equivalent to D if and only if∑
P

nP · P =
∑
P

nP · (x+ P ) = deg(D) · x+
∑
P

nP · P.

This shows that L is translation-invariant if deg(D) = deg(L ) = 0. Conversely, if

deg(D) is nonzero, choosing x ∈ A(k)\A[deg(D)](k) (a point without order dividing

deg(D)) shows that L is not translation-invariant.

Beware: it is not true in general that Pic0(A) is the subgroup of all degree 0 line

bundles; this is just a happy coincidence in the case of elliptic curves.

8I find this proof very unintuitive. The ultimate idea is to show that L is trivial by showing (O ⊗
L )X×{y}×{z} is trivial for any y, z and then apply Seesaw. But juggling around the pushforwards and
various divisors makes it very easy for the ideas to be lost. If anyone reading this has a good way to explain
the intuition behind the proof in more detail, I would greatly appreciate hearing it.
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Lemma 12.2. L ∈ Pic0(A) if and only if m∗L ≃ pr∗1 L ⊗pr∗2 L , where the pri are

the projection maps A×A→ A and m : A×A is the group law.

Proof. Suppose the second isomorphism holds. Choose a point x ∈ X(k), yielding an

embedding i : A ≃ {x} ×A ↪→ A×A. Then tx = m ◦ i, hence

t∗xL = i∗(m∗L ) ≃ i∗(pr∗1 L ⊗ pr∗2 L ) ≃ OA ⊗L ,

which means L ∈ Pic0(A).

Conversely, if L ∈ Pic0(A), let M := m∗L ⊗ pr∗1 L −1 ⊗ pr∗2 L −1. Then for all x ∈
A(k) we have M |A×{x} ≃ OA ≃ M |{x}×A. By the Seesaw Principle, we conclude that

M ≃ OA×A. ■

Definition 12.2. For L ∈ Pic(A), we set K(L ) := kerϕL, the subset of x ∈ A(k) for which
t∗xL = L .

Hence L ∈ Pic0(A) if and only if K(L ) = A(k).

Lemma 12.3. K(L ) is Zariski closed in A(k).

Hence we may view K(L ) as a subvariety of A via the reduced induced structure.

Proof. K(L ) is the locus consisting of x ∈ A(k) such that the following line bundle is trivial:

m∗L ⊗ pr∗2 L −1|A×{x}.

By the first part of the seesaw principle, this locus is closed. ■

Note also that K(L ) = K(L −1).

12.2 Ampleness and projectivity

Theorem 12.4. Let D be an effective divisor on A, and let L = O(D). Then the

following are equivalent:

1. L is ample.

2. K(L ) is a finite set.

3. H(D) := {x ∈ A closed pt : x+D = D}a is finite.

4. The linear system |2D| := (Γ(X,O(2D)) \ {0})/k×, which is also in bijection

with the set of all effective divisors rationally equivalent to 2D, is base point

free and defines a finite morphism A→ PN .

Additionally, for any ample line bundle L (not necessarily of the form O(D) for an

effective D), the set K(L ) is finite.

aWe require literal equality of divisors here, not just up to linear equivalence.
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We’ll prove this after the following corollary.

Corollary 12.5. Any abelian variety A/k is projective.

Proof. To show that a proper variety is projective, we need only exhibit a single ample line

bundle, since then some power of that line bundle is very ample. Hence we need to find

some effective D on A such that one of the conditions in Theorem 12.4 holds.

Pick an affine open neighborhood U of e in A. Then D = A \ U is an effective divisor.9

We observe:

1. H(D) ⊆ U , since if x ∈ H(D), then x+ U = U , hence x = x+ e ∈ U .

2. H(D) is closed in A, since it is prA(m|−1
A×D(D)).

Conditions (1) and (2) together imply that H(D) is simultaneously proper and affine, hence

finite, yielding condition (3) of Theorem 12.4. ■

We now prove Theorem 12.4.

Proof. • (1) =⇒ (2): The subvariety B := K(L )0 is an abelian variety. By definition,

t∗xL |B ≃ L |B for all x ∈ B. By Lemma 12.2, m∗L |B ≃ pr∗1 L |B⊗pr∗2 L |B on B×B.

We are assuming L , hence L |B , is ample, so this isomorphism implies

OB ≃ L |B ⊗ [−1]∗L |B

by pulling back along [1]× [−1] : B → B ×B. Both factors in this tensor product are

ample—the pullback of an ample line bundle by an isomorphism is again ample—so

OB is also ample. But the only way the trivial sheaf can be ample on a proper variety

is if that variety has dimension 0, so B is the single point {e} and K(L ) is finite.

Note that this argument is valid for any ample L , proving the final claim at the end

of the theorem.

• (2) =⇒ (3): Clear since H(D) is a subset of K(L ).

• (3) =⇒ (4):10 By the theorem of the square, t∗xL + t∗−xL ≃ L ⊗2, or in the notation

of divisors, t−x(D) + tx(D) ∼ 2D (sum taken in Div(A)). This supplies us with a

lot of divisors that are linearly equivalent to 2D, and maybe explains why 2D is the

divisor appearing in condition (4).

We need to show that for all y ∈ A(k), there exists a section of Γ(A,O(2D)) that

does not vanish at y. Up to nonzero scalars, such global sections are in bijection

with effective divisors linearly equivalent to 2D, with a global section s associated

to the effective divisor div(s). Therefore, we need to show that, for any y ∈ A(k),

there exists D′ ∼ 2D with y ̸∈ supp(D′). To do this, we find x ∈ X with y ̸∈
supp(t−x(D)) ∪ supp(tx(D)), setting D′ = t−x(D) + tx(D) ∼ 2D. Such x is supplied

by any point in the (dense) complement of the codimension 1 set ±t−y(D) (negation

taken in the group law of A).

9The claim here is that D has pure codimension 1, which follows from an argument using the normality
of A; we give the full argument in a handout on bCourses.

10We saved this part until the next lecture.
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To show that |2D| defines a finite morphism φ : A→ PN , it suffices to show that φ is

quasi-finite, since quasi-finite + proper = finite for noetherian schemes. So let y ∈ PN

be a closed point; we want to show that φ−1(y) is finite. Suppose this is false; then

φ−1(y) contains an irreducible projective curve C ⊆ A. This implies that if s is a global

section of 2D, then either the vanishing locus V (s) contains C, or V (s)∩C = ∅—that

is, the linear system does not separate any points in C. Equivalently, for any effective

E ∈ |2D|, we must either have supp(E) ⊇ C, or E ∩ C = ∅. Let x ∈ A be any

point such that (x + D) ∪ (−x + D) ∩ C = ∅. Then by Lemma 12.6 applied to the

divisor E′ = x+D, for any y ∈ C, we have x− y + E′ = E′ as divisors; equivalently,

D = x − y +D. Since H(D) is finite, we conclude that there are only finitely many

possibilities for x−y ∈ H(D). But since C is a curve, there are infinitely many choices

of y, contradiction.

Lemma 12.6. Let C ⊆ A be an irreducible projective curve, and let E′ ⊂ A

be an effective divisor with E′ ∩ C = ∅. Then for all x, y ∈ C, we have

x− y + E′ = E′.

Proof. Let L ′ = O(E′). The assumption E′ ∩ C = ∅ means L ′|C ≃ OC . Consider

m∗L ′ on C×L ′ (via the restriction of the group law m : C×A→ A). The morphism

C × A→ A is flat and proper, so the Hilbert polynomials of the fibers of m∗L ′|C×A

over any x ∈ A are constant; in particular, the degree is constant. This fiber is t∗xL
′|C ,

so we conclude that

deg(t∗xL
′|C) = deg(t∗eL |C) = deg(L ′|C) = deg(OC) = 0.

Since E′ is an effective divisor, this implies that either (x+E′) ⊇ C or (x+E′)∩C = ∅,
since any proper nonempty intersection would yield deg(t∗xL

′|C) ≥ #{(x+E′)∩C} >
0.

Finally, let x, y ∈ C and z ∈ E′. Then z ∈ (z−y+C)∩E′, hence z−y+C ⊆ E′, hence,

z − y + x ∈ E′. Since z is an arbitrary point in E′, we conclude E′ − y + x = E′. ■

• (4) =⇒ (1): We need only show that L ⊗2 = O(2D) is ample, since radicals of ample

sheaves are again ample. We claim that the pullback of an ample line bundle by a

finite morphism is ample. Serre’s criterion for ampleness states that a line bundle

L /X is ample if and only if

Hi(X,F ⊗L ⊗n) = 0

for all coherent F , all i > 0, and sufficiently large n (depending on F ).

Given (4), let φ : A→ PN be the finite morphism associated to the linear system |2D|.
Finite pushforward commutes with taking cohomology, so

Hi(X,F ⊗L ⊗n) = Hi(PN , ϕ∗(F ⊗L ⊗n)) = Hi(PN , ϕ∗F ⊗O(n)),
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which is zero for sufficiently large n since O(1) is ample on PN . (The isomorphism

ϕ∗(F ⊗L ⊗n) ≃ ϕ∗F ⊗O(n) follows from the projection formula.)

■

Definition 12.3. If L is a line bundle on A, we say that L is nondegenerate if K(L ) is

finite.

13 Multiplication by n (02/14/2024 ♡)
We began class by finishing the (3) =⇒ (4) part of Theorem 12.4; this argument has been

recorded in the previous section.

13.1 Multiplication by n is an isogeny

Corollary 13.1. On an abelian variety A, the map [n] : A→ A is an isogeny.

Proof. It turns out that being a self-isogeny is equivalent to being surjective, which is also

equivalent to having finite kernel. We won’t prove this; see [Mil86, Prop. 7.1].

So we only need to show that [n] has finite kernel.11 Since we now know that abelian

varieties are projective, pick an ample line bundle L . By Corollary 9.10, we have

[n]∗L ≃ L ⊗n(n+1)/2 ⊗ [−1]∗L ⊗n(n−1)/2.

The right hand side is a product of ample line bundles, so [n]∗L is also ample. Since

[n]∗L |ker[n] is a pullback of the trivial line bundle L |e, we have

[n]∗L |(ker[n])0red ≃ O(ker[n])0red
.

But restriction of line bundles preserves ampleness, so the trivial bundle on the proper

scheme (ker[n])0red is ample, hence very ample since it remains unchanged by taking tensor

powers of itself! Since O(ker[n])0red
is proper and geometrically irreducible (being a reduced

proper connected group scheme), the global sections of O(ker[n])0red
are just k, so we conclude

that (ker[n])0red consists only of the single point e ∈ A, since the global sections of a very

ample line bundle separate points. Since ker[n] has only finitely many components, and

(ker[n])0 must have finite length if its reduction is a point, we conclude ker[n] is a finite

subscheme of A. ■

Remark 13.2. This fact, as well as Corollary 13.5, does not depend on char(k).

However, many other properties of ker[n] depend on whether char(k) | n. For exam-

ple, [n] is inseparable iff ker[n] is nonreduced iff char(k) | n.

11The kernel of a morphism of group schemes f : X → Y is the fiber Xey , which is a group subscheme
of X. In positive characteristic, this might not be reduced even if f is a morphism of group varieties. The
kernel subscheme represents the kernel on the functor of points; that is, if f : X → Y is a morphism of
S-group schemes, then (ker f)(T ) = ker(fT : X(T ) → Y (T )) for S-schemes T .
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13.2 Degree

Definition 13.1. Let f : X → Y/k be a dominant morphism with dimX = dimY . We

define deg f := [k(X) : k(Y )] via the induced embedding of function fields.

We say f is separable if this k(X)/k(Y ) is a separable field extension. In general, letting

k(Y )s be the separable closure of k(Y ) in k(X), we define the inseparable degree of f to be

[k(X) : k(Y )s].

Definition 13.2. Let X/k be a proper variety with line bundle L . For a coherent sheaf F

on X, we define the Hilbert polynomial of F with respect to L as

pL (F , n) := χ(F ⊗L n).

where χ is the Euler characteristic. Fact: pL (F , n) is a numeric polynomial in n of degree

at most dimX, in fact of degree equal to the dimension of the support of F . This is easier

to show if L is ample, using Serre’s criterion for ampleness, but it is true for general L .

We define the degree dL (F ) of F with respect to L to be the number such that

pL (F , n) = dL (F )
ndimX

(dimX)!
+O(ndimX−1).

This is always an integer.

Finally, we define degL := dL (OX) to be the degree of L . If L is very ample, then we

also define this number to be the degree of X with respect to the corresponding embedding

into projective space.

See [Vak, §18.6] for more discussion on Hilbert polynomials and degree.

Proposition 13.3. Let f : X → Y/k dominant withX,Y proper of equal dimension.

Then

deg(f) · deg(L ) = deg(f∗L ).

Proof. See Proposition 14.1 from the next lecture. ■

Proposition 13.4. deg(L ⊗m) = mdimX deg(L )

Proof. Immediately from the definition, pL ⊗m(OX , n) = pL (OX ,mn). Therefore, the de-

gree dimX term of pL m(OX , n) is

deg(L ) · (mn)
dimX

(dimX)!
= mdimX deg(L ) · ndimX

(dimX)!
.

■

Corollary 13.5. [n] : A→ A has degree n2 dimA.

Proof. Take L /A ample. Then degL > 0. We may assume L is symmetric by replacing

it with L ⊗ [−1]∗L if needed. By 9.10, we have [n]∗L ≃ L ⊗n2

. Then by Propositions
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13.3 and 13.4, we have

deg([n]) · deg(L ) = deg([n]∗L ) = deg(L ⊗n2

) = n2 dimA deg(L ),

so dividing both sides by deg(L ) gives the formula. ■

14 Separability (02/16/2024)

14.1 Degree of a sheaf under pullback

Proposition 14.1. Let X be a geometrically integral variety.

1. Let F be a coherent sheaf on X, say with rank r at the generic point η ∈ X.

Then dL (F ) = r deg(L ).

2. Let f : X → Y be dominant with dimX = dimY , and let L /Y be a line

bundle. Then deg f · deg(L ) = deg(f∗L ).

Proof. 1. See [Mum08, Appendix to §II.6]. This is a standard dévissage argument; we

argue by induction on dim supp(F ). By the long exact sequence in cohomology, the

Euler characteristic χ is additive in exact sequences. Suppose that we can show that

there exists a coherent sheaf of ideals I such that

0 I ⊕r F T 0

where T is a torsion sheaf12 with support contained in some closed subscheme of X of

dimension < dimX, and such that OX/I also has support in a closed subscheme of

dimension < dimX. Then by additivity of χ we get dL (F ) = r ·dL (I ) = r ·deg(L ),

as desired, since pL (T ) has degree strictly less than dimX and therefore does not

contribute to the leading term in

dL (F ) = dL (I ⊕r) + dL (T ) = r · dL (I ) + dL (T ).

We also have the exact sequence

0 I OX OX/I 0

so by the same reasoning and the assumption on OX/I we conclude dL (I ) =

dL (OX) =: deg(L ). Combining these two formulae gives the desired formula for

dL (F ).

The fact that such a map I ⊕r → F exists is a standard fact, but takes some legwork

to prove (and Mumford omits the proof). For a full proof, we refer to [Sta24, Tag

01YE] and its prerequisites [Sta24, Tag 01YB] and [Sta24, Tag 01PQ], which give a

proof using the Artin-Rees lemma.

12A sheaf with stalk 0 at all generic points; see [Vak, Def. 6.1.5].
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2. In the case that f is finite, pushforward commutes with cohomology, hence

Hi(X, f∗L ⊗n) ≃ Hi(Y, f∗f
∗L ⊗n)

≃ Hi(Y, f∗OX ⊗L ⊗n),

using the projection formula, so deg(f∗L ) = dL (f∗OX) equals deg(f) deg(L ) by

part (1) with F = f∗OX .

More generally, if f : X → Y is dominant with dimX = dimY , then there is some

open V ⊆ Y such that f : f−1(V ) → V is finite, so that the higher pushforwards

Rif∗f
∗L ⊗n, i > 0, have support outside V . One can show using the Leray spectral

sequence that

χ(f∗L ⊗n) =
∑
i

(−1)iχ(Rif∗f∗L ⊗n),

and the only term on the right hand side contributing to the leading coefficient of the

Hilbert polynomial is the i = 0 term, i.e. the term χ(f∗f
∗L ⊗n) = χ(f∗OX ⊗L n), so

we conclude as in the finite case.

■

14.2 (In)separability of [n]

Theorem 14.2. Let A be an abelian variety over a field k of characteristic p > 0.

and let [n] : A→ A be multiplication by n.

1. [n] is a separable morphism if and only if p ∤ n.

2. degi([p]) ≥ pdimA (inseparable degree).

Proof. 1. By definition, [n] is separable if and only if [n] is smooth at the generic point,

if and only if [n] is smooth on some nonempty open set U since smoothness is an

open condition, if and only if [n] is smooth at e by homogeneity considerations. The

differential d[n]|e : Lie(A) → Lie(A) is multiplication by n, since one can check that

the differential of the group law

dm|e : Lie(A)⊕ Lie(A)→ Lie(A)

is just addition (see [Mum08, p.40]). Hence d[n]|e is the zero map if p | m and an

isomorphism otherwise. [n] is smooth at e if and only its differential is an isomorphism,

so we get separability if and only if p ∤ m.

2. As we just saw, the map d[p]e is the zero map, so [p]∗Ω1
A → Ω1

A is also the zero map,

i.e. for all f ∈ k(A), we have [p]∗df = d([p]∗f) = 0 as an element of Ω1
k(A)/k. Hence

[p]∗f ∈ (k(A))p · k, since these are the only elements whose differential is 0 (exercise).

Therefore, [p]∗ : k(A)→ k(A) has image contained in k(A)p·k. We know tr.deg(k(A)) =

dimA, so k(A)/(k(A)p · k) is a purely inseparable extension of at least pdimA (choose
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a transcendence basis for k(A)/k to see this). Therefore the inseparable degree of [p]

is at least pdimA.

■

Corollary 14.3. Let dimA = g, and let A(k)[n] be the kernel of [n] on points A(k).

Then as an abstract group,

A(k)[n] =

(Z/nZ)2g : p ∤ n

(Z/pmZ)2g−degi([p]) : n = pm

In the second case, 2g − degi([p]) ≤ g. For a prime ℓ ̸= p, the Tate module is

Tℓ(A) = Z2g
ℓ .

Proof. The separable degree of a finite morphism of varieties is the number of points in a

general fiber (working over k). For a group scheme, by homogeneity considerations all fibers

over k-valued points are isomorphic, so in particular #[n]−1({e}) = degs[n]. This gives the

correct order in the separable case. In the inseparable case, we deduce the separable degrees

of [pe] from [p]: we have an exact sequence

0 A(k)[p] A(k)[pe] A(k)[pe−1] 0

so by induction we conclude that degs([p
e]) = (degs([p])

e.

Then the group structure can be determined by the fact that

A(k)[n] =
∏
ℓ

A(k)[ℓvℓ(n)]

via the Chinese remainder theorem, and the structure theorem for finitely generated abelian

groups along with the fact that A(k)[ℓe] is ℓe-torsion determines the group structure in the

prime power case. ■

Remark 14.4. This tells us that the p-adic Tate module of A is not necessarily very

useful. Instead, the “correct” group would be the p-divisible group associated to A,

or its corresponding Dieudonné module. This is the start of the story of crystalline

cohomology—a p-adic Weil cohomology theory to remedy the failures of p-adic étale

cohomology—but we won’t discuss this further in this course.

14.3 Picard scheme

See also [Con15, Theorem 2.3.1] or [BLR90, §8]. Let X/k be a geometrically integral pro-

jective variety with a rational point x ∈ X(k).13

Definition 14.1. The Picard functor PicX/k : Schop
k → Set is defined on objects (k-

schemes T ) by

PicX/k(T ) := {iso. classes of line bundles on Pic(X ×k T )}/ ∼

13These assumptions are not strictly necessary but they make things a lot easier.
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where we define the equivalence relation L ∼ L ′ if these two line bundles differ by the

pullback of some line bundle on T (via X × T → T ).

Alternatively, this is

{(L , α) : L line bundles on X × T, α : L |{x}×T≃OT
}/ ∼

Here, the pair (L , α) is a rigidified line bundle: L is a line bundle on X × T that becomes

isomorphic to OT under restriction to {x} × T , and α is a specific choice of such an iso-

morphism α : L |{x}×T → OT . The relation ∼ is isomorphism of rigidified line bundles, i.e.

(L , α) ∼ (L ′, α′) if there exists an isomorphism ϕ : L → L ′ making the following diagram

commute:

L |{x}×T L ′|{x}×T

OT

ϕ|{x}×T

α
α′

Given a morphism of k-schemes f : S → T , we define PicX/k(f) : PicX/k(T ) →
PicX/k(S) via pullback of rigidified line bundles by f∗, i.e. sending (L , α) to ((idX ×
f∗)L , f∗(α)).

Remark 14.5. One upshot of rigidified line bundles is that any isomorphism of

rigidified line bundles is unique. It is necessary to define the Picard functor using

isomorphism classes rigidified line bundles instead of just isomorphism classes of line

bundles if we want it to be representable. In practice, this distinction is usually not

a big deal: when K/k is a field extension, we have a natural group isomorphism

PicX/k(K) = Pic(XK) : [(L , α)] 7→ [L ]. Surjectivity is just the fact that all line

bundles on Spec k are trivial, and injectivity is also easy to check by appropriately

adjusting trivialization.

We blackbox:

Theorem 14.6. (Grothendieck.) Let X/k be a smooth projective variety with

X(k) ̸= ∅.

1. PicX/k is representable by a separated k-scheme locally of finite type.

2. Pic0X/k (neutral component of the scheme PicX/k) is quasi-projective, and is

projective if X is smooth.

Corollary 14.7. PicX/k is a commutative group scheme.

Proof. For any k-scheme T , the set PicX/k(T ) of classes of rigidified line bundles on X × T
is a commutative group via tensor product, and pullback is compatible with this group

structure, so we conclude that the functor PicX/k factors naturally through the category of

abelian groups. By Yoneda, this is equivalent to being a commutative group scheme. ■
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We will deduce other properties of the scheme PicX/k from these facts. We will be

especially interested in the case that X is an abelian variety; this will be our construction

of the dual abelian variety.

15 Comparison of Pic0A/k and Pic0(A) (02/21/2024)

Let A/k be an abelian variety. We previously defined a group Pic0(A) ⊆ Pic(A) for an

abelian variety A back in Definition 12.1, and last lecture we defined the Picard scheme

Pic0A/k. To justify the suggestive similarity in notation:

Theorem 15.1. Pic0A/k(k) ≃ Pic0(A) naturally. Here, Pic0A/k(k) is the group of

k-valued points of neutral connected component of the Picard scheme, and Pic0(A)

is the group of translation-invariant line bundles L on A.

Definition 15.1. We notate A∨ = Pic0X/k, and call this the dual abelian variety to A. It

turns out that this is a smooth projective group scheme over k, hence also an abelian variety.

We will prove smoothness in Theorem 16.2 shortly.

Definition 15.2. Let T = PicX/k, and consider idT ∈ Hom(T, T ). By the Yoneda lemma,

idT corresponds to some “universal” rigidified line bundle (Puniv, αuniv), called the Poincaré

bundle, on X ×k PicX/k, where Puniv is a line bundle and αuniv : Puniv|{x}×PicX/k
≃ OPicX/k

is a trivialization.

Remark 15.2. This line bundle is universal in the sense that given any scheme

T/k and rigidified line bundle (L , α) over X × T , there exists a unique morphism

φ : T → PicX/k such that (L , α) = φ∗(Puniv, αuniv). This more or less the content

of the Yoneda lemma.

In particular, if λ ∈ PicX/k(k
′) for a field extension k′/k, the base change Puniv|X×{λ}

is the line bundle on Xk′ corresponding to λ. This is often the most concrete way to

think about the Poincaré bundle and is very useful in practice.

Definition 15.3. Let M ,N be line bundles on Xk. We say that these two line bundles are

algebraically equivalent if there exists a connected k-variety T , a line bundle L on Xk × T ,
and t1, t2 ∈ T (k) such that M ≃ L |k×{t1} and N ≃ L |Xk×{t2}.

Remark 15.3. A special case of algebraic equivalence is rational equivalence, which

is when T can be taken to be P1 in the definition of algebraic equivalence.

Lemma 15.4. Let L ′/X be a line bundle corresponding to λ ∈ PicX/k(k). Then

λ ∈ Pic0X/k(k) if and only if L ′
k
is algebraically equivalent to OXk

.

Proof. =⇒ : If λ ∈ Pic0X/k(k), then let T = ((Pic0X/k)k)red. Then, as we remarked above,

Puniv|X×{λ} ≃ L ′, and Puniv|X×{eA∨} ≃ OX , since by definition the identity element of

A∨(k) corresponds to the trivial line bundle on A.
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⇐= : If we have algebraic equivalence by some T , write T as a union of connected

open subschemes {Ui} trivializing L |X×Ui , with fixed choices of trivialization αi. Each of

these is the datum of a rigidified line bundle on X × Ui over Ui, so by the definition of

PicX/k, these data correspond to morphisms ψi : Ui → PicX/k for each Ui. These glue to a

map ψ : T → Pic0X/k, since the rigidified line bundles (L |X×Ui
, αi) become isomorphic on

overlaps Ui ∩ Uj .
With t1, t2 as in the definition of algebraic equivalence, by hypothesis we have L |Xk×{t1} ≃

Lk and L |Xk×{t2} ≃ OXk
. Since the Ui cover T , at least one of the Ui, say U2, contains

t2. The condition L |Xk×{t2} ≃ OXk
means that ψ2(t2) is the identity element in Pic0X/k

(apply functoriality of PicX/k to the morphism t2 ↪→ U2 and unravel the definitions; the

same reasoning shows that λ = ψ(t1)). Since we have taken U2 to be connected, this means

that ψ2(U2) ⊆ Pic0X/k. Since T is also connected, we conclude ψ(T ) ⊆ Pic0X/k too. In

particular ψ(t1) = λ ∈ Pic0X/k. ■

We can now prove Theorem 15.1.

Proof. We first show Pic0A/k(k) ↪→ Pic0(A) naturally. The desired map is given by sending a

point in Pic0A/k(k) to the corresponding line bundle in Pic(A), which is injective by Remark

14.5. Thus we need to show that the image of this map lies in Pic0(A); we will apply the

criterion from Lemma 12.2. We remark that Pic0A/k(k)→ Pic0(Ak) restricts to Pic0A/k(k)→
Pic0(A), and likewise the preimage of Pic0(A) is contained in Pic0A/k(k) ⊆ Pic0A/k(k), which

is immediate from the definitions. Therefore we may and do assume that k = k for the

remainder of this section.

Let P = Puniv|A×(A∨)red . Consider the three morphisms A×A×A∨
red → A×A∨

red given

by m× id,pr1×id,pr2×id (which we abbreviate to m,pr1, and pr2 in the sequel), and let

M := m∗P ⊗ pr∗1 P−1 ⊗ pr∗2 P−1.

Note that P|{e}×A∨
red
≃ OA∨

red
—by definition the Poincaré bundle has a trivialization

in this way—and also P|A×{eA∨} ≃ OA, again as a special case of Remark 15.2. Hence

M |{e}×A×A∨
red
≃ pr∗1(P|{e}×A∨

red
) ≃ O, likewise M |A×{e}×A∨

red
≃ O, and also M |A×A×{e} ≃

(m∗ ⊗ pr∗1⊗pr∗2)(P|A×{e}) ≃ O. By the Theorem of the Cube14 we conclude M is also

trivial.

Let L /A correspond to λ ∈ Pic0A/k(k), so that P|A×{λ} ≃ L . Then

m∗L ⊗ pr∗1 L −1 ⊗ pr∗2 L −1 = MA×{λ} = O.

Hence by Lemma 12.2 we conclude L ∈ Pic0(A), proving Pic0A/k(k) ↪→ Pic0(A).

Now we show Pic0A/k(k) ↪→ Pic0(A) is surjective. We will tackle this in the following

way:

Lemma 15.5. Given L ∈ Pic(A), the map ϕL : A(k) → Pic0(Ak) factors through

the map Pic0A/k(k) ↪→ Pic0(Ak) defined above; equivalently, t∗xL ⊗L −1 ∈ Pic0A/k(k)

for every x ∈ A(k).

14To apply the Theorem of the Cube, we need everything to be reduced, which is why we are using A∨
red.

Of course, we will soon show that A∨ is already reduced.
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Proof. We apply the criterion from Lemma 15.4; it suffices to show that t∗xL ⊗ L −1 is

algebraically equivalent to OA. Consider the line bundle m∗L on A×A; for any y ∈ A(k),
the translation map τy is the composition

A ≃ A× {y} A×A Am

so m∗L |A×{x} = τ∗xL . Additionally, pr∗1 L |X×{y} = L for any y. Therefore, letting

M = m∗L ⊗ pr∗1 L −1, we have

M |A×{x} ≃ τ∗xL ⊗L −1

M |A×{e} ≃ τ∗eL ⊗L −1 ≃ OA,

yielding the desired algebraic equivalence. ■

In particular, if ϕL is surjective for any line bundle L , so is Pic0A/k(k) ↪→ Pic0(Ak).

Since we know abelian varieties have ample line bundles, it therefore suffices to prove:

Theorem 15.6. ϕL : A(k)→ Pic0(k) is surjective when L /A is ample.

Lemma 15.7. Let L ′ ∈ Pic0(A) be nontrivial. Then Hi(A,L ′) = 0 for all i.

Proof. We first show H0(A,L ′) = 0. Otherwise, we can write O(D) ≃ L ′ for some effective

divisor D ⊂ A. We have

OA = e∗L = ((id× [−1])∗ ◦m∗)L ′ = L ′ ⊗ [−1]∗L ′,

where we again apply Lemma 12.2 for the last isomorphism. Hence the trivial divisor is

linearly equivalent to the effective divisor D+[−1]∗D, but this can only happen when D = 0

and L ′ ≃ OA.
In general, if the lemma is false, let k be the smallest integer such that Hk(A,L ′) ̸= 0.

We know k > 0. By functoriality of pullback on sheaf cohomology, the composition

Hk(A,L ′) Hk(A×A,m∗L ′) Hk(A,L ′)m∗ ({e}×id)∗

is the identity. Hence Hk(A×A,m∗L ′) ̸= 0.

Again by Lemma 12.2, we havem∗L = pr∗1 L ′⊗pr∗2 L ′. Hence by the Künneth formula,

Hk(A×A,m∗L ′) =
⊕
i+j=k

Hi(A,L ′)⊗Hj(A,L ′)

But the terms with i = 0 or j = 0 are zero by the base case proven previously, so nonzero-ness

of this direct sum contradicts minimality of k. ■

We finally prove Theorem 15.6. Recall the standing assumption k = k. We will need

the Leray spectral sequence:
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Lemma 15.8. (Leray Spectral Sequence, [Sta24, Tag 01EY]) For a morphism f :

X → Y of ringed spaces and an OX -module F , there is a spectral sequence Ep,q2 =

Hp(Y,Rqf∗F ) converging to Hp+q(X,F ).

We will not discuss spectral sequences in this course, so feel free to ignore the full

statement.15 Here are some consequences and reasons we care:

Corollary 15.9.

1. The cohomology group Hn(X,F ) has a filtration by subquotients of

the cohomology groups Hp(Y,Rqf∗F ) for various p, q. In particular, if

Hp(Y,Rqf∗F ) = 0 for all p, q, then Hn(X,F ) = 0 for all n, too.

2. If Hp(Y,Rqf∗F ) = 0 for all p > 0 and all q, then

Hp(X,F ) = H0(Y,Rpf∗F ) = Γ(Y,Rpf∗F ).

Suppose, for the sake of contradiction, that there exists a line bundle M ∈ Pic0(A) not

in the image of ϕL , i.e. such that

M ̸≃ t∗xL ⊗L −1

for all x ∈ A(k). Consider N := m∗L ⊗ pr∗1 L −1 ⊗ pr∗2(L
−1 ⊗M−1) on A × A. By the

Leray Spectral Sequence, Hi(A,Rj pr1,∗ N ) converges to Hi+j(A×A,N ). Note that

N{x}×A = t∗xL ⊗L −1 ⊗M−1 ̸= OA

by assumption, so Lemma 15.7 we haveHj(A,N |{x}×A) = 0 for all j. By Grauert’s theorem

we conclude Rj pr1,∗ N = 0, hence by Corollary 15.9 we have

Hn(A×A,N ) = 0 (7)

for all n.

Now consider Rj pr2,∗ N . Then

N |A×{x} = t∗xL ⊗L −1

which is trivial if and only if x ∈ K(L ), so Lemma 15.7 states that Hj(A,N |A×{x}) = 0 for

all x ∈ A \K(L ), so Rj pr2,∗ N |A\K(L ) = 0. Recall that K(L ) is finite since L is ample.

Therefore, Rj pr2,∗ N is a coherent sheaf supported on the finite set K(L ). Since this is

a zero dimensional set, we conclude Hi(A,Rj pr2,∗ N ) = 0 for all i > 0, so by Corollary

15.9 we have Hn(A×A,N ) = Γ(A,Rn pr2,∗ N ), so both of these groups are 0 by Equation

(7). Since Rn pr2,∗ N is a quasi-coherent sheaf supported on a zero dimensional (affine) set

without any nonzero global sections, we conclude Rn pr2,∗ N = 0 for all n.

15But if you haven’t studied spectral sequences before, Corollary 15.9 should be good motivation.
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In particular, pr2,∗ N = 0, so Grauert’s theorem tells us that

H0(A× {e},N |A×{e}) = 0.

However, N |A×{e} = OA since e ∈ K(L ) automatically. This implies

H0(A× {e},N |A×{e}) ̸= 0;

contradiction. Hence M as described cannot exist, so im(ϕL ) = Pic0(A), and so also

Pic0A/k(k) surjects onto Pic0(A).

■

16 Smoothness of the dual abelian variety (02/23/2024)

We started lecture by finishing the proof of Theorem 15.6, and hence Theorem 15.1. The

proof has been moved to the previous section.

Let L /A be a line bundle. From now on we will write ϕL : A → Pic0A/k using the

isomorphism we just gave.

Corollary 16.1. Let L /A be ample. Then ϕL is surjective and dimA = dimA∨.

(Hence an isogeny once we know that A∨ is indeed an abelian variety.)

Proof. Theorem 15.6 shows that ϕL is surjective, and the remark at the end of Theorem

12.4 shows that kerϕL = K(L ) is finite, so the dimensions of A and A∨ must be equal. ■

Theorem 16.2. A∨ = Pic0A/k is smooth.

Proof. We know from 16.1 that dimA∨ = g := dimA. Therefore, to show smoothness,

it suffices to prove that dimTeA
∨ ≤ dimA := g, since the tangent space at e always has

dimension at least that of the variety, with equality if and only if e is a smooth point,

equivalently A∨ smooth by translation. This fact follows immediately from Lemma 16.3

and Proposition 16.4 below.

Lemma 16.3. TeA
∨ ≃ H1(A,OA) canonically.

Proof. Let Λ = Spec k[ϵ]/(ϵ2) be the ring of dual numbers. One definition of the tangent

space is

TeA
∨ = ker(A∨(Λ)→ A∨(k)).

This turns out to have a natural k-vector space structure agreeing with the other standard

definitions of the tangent space. By the definition of A∨, we conclude:

TeA
∨ = ker(PicA/k(Λ)→ PicA/k(k))
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This kernel consists of triples (L , α, β) where L is a line bundle on A×kΛ, α : L |e×Λ ≃ OΛ

is a trivialization (part of the data of a rigidified line bundle), and β : LA↪→A×Λ ≃ OA is

another trivialization (corresponding to the fact that this element lies in the kernel). Fact:

for a scheme X, Pic(X) = H1(X,O×
X). We have a split exact sequence

0 OA O×
A×Λ) O×

A 1
f 7→1+ϵf

with the section O×
A → O

×
A×Λ given by a 7→ a+ ϵ · 0. This exact sequence induces an exact

sequence

0 H1(A,OA) H1(A× Λ,O×
A×Λ) H1(A,O×

A) 0

(fully exact since the original sequence splits) which we identify as

0→ H1(A,OA)→ Pic(A× Λ)→ Pic(A)→ 0.

But this description of H1(A,OA) is the same as our description of TeA
∨. ■

Proposition 16.4. Suppose k = k and dimA = g. Then dimH1(A,OA) = g and∧•
H1(A,OA) ≃ HA :=

⊕g
i=0H

i(A,OA) as Hopf algebras.

Proof to come next lecture after discussing Hopf algebras. ■

17 Hopf algebras (02/26/2024)

17.1 Hopf algebra structure of cohomology

In Proposition 16.4, we claimed that HA :=
⊕g

i=0H
i(A,OA) has a Hopf algebra structure.

The k-algebra structure is the graded-commutative k-algebra structure arising from the

cup product. This is defined by using the Künneth isomorphism HA ⊗k HA ≃ HA×A and

composing with ∆∗
A : HA×A → HA, where ∆A : A ↪→ A×A is the diagonal map. Meanwhile,

the coalgebra structure is defined via m∗ : HA → HA×A ≃ HA⊗HA, where m : A×A→ A

is the group law and we again use Künneth for the last isomorphism. Since the group law is

commutative, this is a cocommutative coalgebra. Finally, the antipode is induced by [−1]∗.
What do all these words mean?

Definition 17.1. Let H be a k-vector space equipped with (arbitrary) k-vector space ho-

momorphisms:

• Multiplication m : H ⊗H → H;

• Comultiplication ∆ : H → H ⊗H;

• Antipode s : H → H;

• Counit ϵ : H → k; and

• Unit δ : k → H.

We say that H is a Hopf algebra if:
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1. (m, δ) makes H into a (not necessarily commutative) k-algebra.

2. (∆, ϵ) makes H into a k-coalgebra, i.e. such that the following diagrams commute:

H H ⊗H

H ⊗H H ⊗H ⊗H

∆

∆ id⊗∆

∆⊗id

H H ⊗H

H ⊗H H ⊗H ⊗H

∆

id
∆ id×ϵ

ϵ⊗id

These diagrams encode dual versions of associativity and the axioms of the identity,

respectively.

3. ∆ : H → H ⊗ H is an algebra homomorphism and m : H ⊗ H → M is a coalgebra

homomorphism—note that A⊗A is itself an algebra viam⊗m, and likewise a coalgebra

via ∆⊗∆.

4. The antipode s satisfies a commuting hexagon:

H ⊗H H ⊗H

H k H

H ⊗H H ⊗H

s⊗id

m∆

∆

ϵ δ

id⊗s

m

This encodes the role of s as an inversion operator for both the algebra and the

coalgebra structures.

If we omit the antipode s but axioms (1)-(3) still hold, then H is instead called a bialgebra.

Definition 17.2. We say that a graded (non-commutative) ring H is graded-commutative

if for all homogeneous a, b we have ab = (−1)(deg a)(deg b)ba. We similarly define cocommu-

tativity for coalgebras.

The following lemma gives one reason why Hopf algebras are worthy objects of study. It

won’t apply directly to abelian varieties—which are never affine in the nontrivial case—but

it will apply to the finite subgroups given by the kernel of an isogeny.

Lemma 17.1. The category of commutative Hopf algebras over k is equivalent to

the category of affine group schemes via the essentially inverse functors Spec and

Γ(G,OG).

Proof. This follows by restricting the usual duality between affine schemes and rings—the

coalgebra axioms are dual to the axioms required of a group object. ■
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We return to the Hopf algebra we were discussing at the beginning of the section, with

the goal of proving Proposition 16.4 and thus our results on smoothness and the dimension

of A∨.

Lemma 17.2. Let A/k be an abelian variety, and let H =
⊕g

i=0H
i(A,OA). Then

(∆∗
A,m

∗, [−1]∗), along with the natural maps k → H,H → k, makes H into a finite

dimensional and cocommutative k-Hopf algebra over k such that H0 = k, and for all

h ∈ H we have m∗(h) = 1⊗ h+ h⊗ 1 plus higher degree terms.

Lemma 17.3. Let k be a perfect field and H a graded-commutative Hopf algebra

over k such that H0 = k,m∗(h) = 1⊗h+h⊗1 plus higher degree terms and Hr = 0

for all r > g. Then dimH1 ≤ g. Moreover, if dimH1 = g, then H ≃
∧•

H1 as

graded k-algebras.

Proof. See [Mil86, Lemma 15.2] and its reference to Borel’s paper. Borel gives a classification

of Hopf algebras satisfying these hypotheses: it turns out that H has a presentation as a

k-algebra with finitely many generators xi, all of positive degree, such that the only relations

among the xi are those imposed by graded-commutativity and nilpotence relations of the

form xni
i = 0. In particular, the product of the xi is nonzero.

So consider
∏
xi. Since this is nonzero, it has degree

∑
deg xi ≤ g by assumption, so in

particular there are at most g generators, hence dimH1 = #{xi : deg xi = 1} ≤ g (where

the first equality is = and not ≤ because the xi are linearly independent). This proves the

first claim.

If additionally dimH1 = g, then all of the xi must lie in H1—else the vector space

they span is not large enough—and there are g generators. We also conclude that all xi

are nilpotent of order 2: otherwise, if x2i ̸= 0, then x2i
∏
j ̸=i xj is nonzero of degree g + 1,

contradiction. Thus the algebra structure of H is uniquely determined, and it must be

H =
∧•

H1

since the right hand side is an example of a graded-commutative algebra satisfying all of

the properties we require. ■

We now prove Proposition 16.4.

Proof. Since Hr
A = 0 for all r > g = dimA by dimensional vanishing, by Lemma 17.3

dimH1(A,OA) ≤ g. Therefore A∨ is smooth and dimH1(A,OA) = g exactly. By Lemma

17.3,

HA =
∧•

H1(A,OA)

as graded k-algebras, which gets upgraded to an isomorphism of Hopf algebras by calculating

that the coalgebra structures match on both sides. ■

17.2 Polarizations

Definition 17.3. A polarization of A/k is an isogeny λ : A→ A∨ such that λk : Ak → A∨
k

is equal to ϕL for some ample line bundle L /Ak.
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We say that a polarization is principal if λ is an isomorphism (i.e. deg λ = 1).

Remark 17.4. For all L ′ ∈ Pic0(A), we have ϕL = ϕL⊗L ′—that is, line bundles

that differ by an element of Pic0(A) give rise to the same polarization. Hence we

may treat the set of polarizations as living in the quotient Pic(Ak)/Pic
0(Ak).

Definition 17.4. The Nerón-Severi group of A is

NS(A) = NS(Ak) :=
Pic(Ak)

Pic0(Ak)

=
PicA/k(k)

Pic0A/k(k)
.

Remark 17.5. If k = C, we have the exponential exact sequence (in the analytic

category)

0 Z OA O×
A 1.

exp

The induced long exact sequence yields an exact sequence

0 H1(A,OA)
H1(A,Z) = Pic0(A) Pic(A) NS(A),

viewing the Nerón-Severi group as the image of Pic(A) inside H2(A,Z).

Remark 17.6. The Nerón-Severi group is a finitely generated abelian group. We

have an inclusion

NS(A) ↪→ Homk(Ak, A
∨
k
),

and by Tate’s theorem we have, for ℓ ̸= char(p),

Homk(Ak, A
∨
k
)⊗ Zℓ ↪→ Hom(Tℓ(Ak), Tℓ(A

∨
k
)).

The latter is a finitely generated Zℓ-module, and it turns out that this is enough to

conclude that Homk(Ak, A
∨
k
) is a finitely generated abelian group. (We’ll prove the

required details when we get to proving Tate’s theorem.)
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Remark 17.7. If k is not algebraically closed, then there might not be any line

bundle L on A/k such that λ = ϕL . But if k is perfect, let G = Gal(k/k). (More

generally, for any k, let G = Gal(ksep/k).) The exact sequence of G-modules

0 A∨(k) PicA/k(k) NS(A) 0

induces a long exact sequence in Galois cohomology

0 A∨(k) Pic(A) NS(A)G H1(G,A∨(k)).

See also [Mil86, Remark 13.2].

Remark 17.8. Suppose that X is a projective curve over k with x0 ∈ X(k). We

define the Jacobian J(X) := Pic0X/k. It has dimension equal to the genus g of

X. For all positive integers d, we get a map Xd → J(X) defined on points by

(x1, . . . , xd) 7→ O(x1)⊗ · · · ⊗O(xd)⊗O(x0)−d. In the case Xg−1 → J(X), the Weil

divisor defined by the image corresponds to an ample line bundle L that yields a

principal polarization ϕL of J(X). See also [Mil86, III.1, III.6].

18 Duality and Descent (02/28/2024)

18.1 Cartier duality

Definition 18.1. Let A,B be abelian varieties over a field k, and let f ∈ Hom(A,B) (not

necessarily an isogeny). Then we define the dual morphism f∨ : B∨ → A∨ via the Yoneda

lemma as the morphism inducing the group homomorphisms

f∗ : Pic0B/k(T )→ Pic0A/k(T )

induced by pullback by f × idT : A× T → B × T , naturally for all k-schemes T ,

Theorem 18.1. [Mum08, §15, Thm. 1] Let f : A→ B be an isogeny between abelian

varieties over k. Then f∨ : B∨ → A∨ is also an isogeny and ker f∨ = (ker f)∨.

Here, (ker f)∨ denotes the Cartier dual of the finite commutative group scheme ker f .

To prove the theorem (which we will do next lecture), we need to define what this means

and set up some descent theory.

Definition 18.2. (See also [Mum08, §14].) Let G be a finite commutative group scheme

over k (hence affine). Then H := Γ(G,OG) is a finite dimensional commutative and co-

commutative Hopf algebra over k. We endow the k-vector space H∗ := Homk(H, k) with

the structure of a Hopf algebra by dualizing the Hopf algebra morphisms on H: comul-

tiplication on H∗ is the dual of multiplication on H, multiplication on H∗ is the dual of

comultiplication on H, and similarly for the counit, unit, and antipode.

Then the Cartier dual of G is the group scheme G∨ := SpecH∗, using the coalgebra

structure on H∗ to define the group law.
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Remark 18.2. We need G to be commutative for this to work, otherwise H∗ is not

a commutative algebra and we can’t use scheme theory. G∨ is always a commutative

group scheme since commutativity of H implies cocommutativity of H∗. We have a

canonical isomorphism (G∨)∨ = G coming from the canonical isomorphism with the

double dual for finite dimensional vector spaces.

Definition 18.3. For commutative group schemes G1, G2 over S, we define the functor

Hom(G1, G2) : SchS → Ab

on objects by sending T 7→ HomT−gp. sch(G1,T , G2,T ).

Proposition 18.3. Let G be a finite commutative group scheme over k, and let

Gm = Spec k[t, t−1] be the multiplicative group scheme. Then G∨ represents the

functor Hom(G,Gm).

Proof. Let R be a k-algebra. We want to show that G∨(R) = Hom(GR,Gm,R), where the

Hom is as R-group schemes.16 By our original definition of G∨, we have

G∨(R) = Homk−alg(H
∗, R)

= HomR−alg(H
∗
R, R)

⊆ HomR−lin(H
∗
R, R) = HR.

where the last Hom is merely as R-modules rather than R-algebras.

We observe that, for φ ∈ HR, we have φ ∈ HomR−alg(H
∗
R, R) if and only if ∆R(φ) = φ⊗φ

and ϵR(φ) = 1, where ∆ : H → H ⊗H is the comultiplication and ϵ : H → k is the counit.

This description characterizes the elements in HomR−lin(H
∗
R, R) = HR that correspond to

elements of G∨(R)—these are the grouplike elements that pull back to 1.

Meanwhile,

HomR−gp. sch(GR,Gm,R) = HomHopf alg(R[t, t
−1], HR)

= {φ ∈ HR : ∆R(φ) = φ⊗ φ,φ invertible in HR}.

But if ∆R(φ) = φ ⊗ φ, then ϵR(φ) = 1 if and only if φ is invertible in HR. For we have

(ϵ⊗ ϵ) ◦∆ = ϵ, so ∆R(φ) = φ⊗φ implies ϵR(φ)
2 = ϵR(φ). If φ is a unit in HR, then ϵR(φ)

is also a unit, so we conclude that ϵR(φ) = 1.

Thus we have—functorially in R—identified both groups with the same subgroup of HR,

so we conclude that these two functors are isomorphic. ■

16It turns out that it is sufficient to check that functors are isomorphic on the subcategory of affine
k-schemes, rather than arbitrary k-schemes, via a covering argument. See [Con15, Exercise 1.5.4].
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Example 18.4. Let G = Z/nZ (the étale constant group scheme with n elements).

We claim that G∨ = µn = ker([n] : Gm → Gm). Fact: the group algebra k[G] is

isomorphic to H∗ as k-algebras, by sending a point g to evaluation at g. This allow

us to identify the comultiplication structures of the two groups. For all f, g ∈ H =

Γ(G,OG), we have fg(1) = f(1)g(1) = (f ⊗ g)(1⊗ 1) on H ⊗H, where 1 ∈ Z/nZ is

the generator, so on H∗ comultiplication is x 7→ x⊗ x, as desired.

18.2 fpqc descent

See various sources for more discussion: [BLR90, §6.1-6.2], [Con15, §6], [Poo17, Ch.4, §5.2].

Definition 18.4. A morphism of schemes S0 → S is called fpqc if it is faithfully flat (flat

and surjective) and quasicompact.

Most of what we will say will also work in the fppf site, although we definitely cannot

work over the Zariski site.

Let f : S0 → S be fpqc. We define S1 := S0 ×S S0, and S2 := S0 ×S S0 × S0. Then we

have three maps p12, p13, p23 : S2 → S1 given by projection to two of the three components,

and also two maps p1, p2 : S1 → S0 via projection onto either factor.

Definition 18.5. Let F be a quasicoherent sheaf on S0. A descent datum on F is an

isomorphism

θ : p∗1F → p∗2F

in QCoh(S1) satisfying the cocycle conditions

p∗13θ = p∗23θ ◦ p∗12θ

in QCoh(S2). In more detail, we are requiring that the following diagram commutes:

p∗12p
∗
1F p∗12p

∗
2F = p∗23p

∗
1F p∗23p

∗
2F

p∗13p
∗
1F p∗13p

∗
2F

p∗12θ p∗23θ

p∗13θ

A morphism of descent data (F , θ)→ (G , ψ) is a sheaf homomorphism h : F → G such

that the following diagram commutes:

p∗1F p∗1G

p∗2F p∗2G

p∗1h

θ ψ

p∗2h
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Theorem 18.5. (Grothendieck.) For an fpqc morphism f : S0 → S, we have an

equivalence of categories

QCoh(S)→ {F ∈ QCoh(S0) with descent datum}

defined by the functor F ′ 7→ (f∗F ′, θF ′), where θF ′ is the natural isomorphism

p∗1f
∗F ′ = (f ◦ p1)∗F ′ = (f ◦ p2)∗ = p∗2f

∗F ′.

This means you can show that a quasicoherent sheaf F on S0 is the pullback of a sheaf

on S0 by writing down a descent datum for F . This is a very practical and useful condition;

for example, one might wish to check whether a line bundle on Xk comes from a line bundle

on X for a k-variety X.

We can also define descent data for schemes, rather than sheaves.

Definition 18.6. For an S0-scheme X, a descent datum is an S1-isomorphism

θ : X ×S0,p1 S1 ≃ X ×S0,p2 S1

such that p∗13θ = p∗23θ ◦ p∗12θ.

However, the scheme version of descent data turns out to be not quite as nice as the

sheaf version. For example, we don’t get an analogue of Theorem 18.5, in the sense that

given a descent datum (X, θ) we do not always get an S-scheme Y such that Y ×S S0 = X;

see [BLR90, §6.7] for a counterexample. We only get a weaker version descent
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Theorem 18.6. [Poo17, Thm. 4.3.5], [BLR90, §6.1, Thm.6] Let f : S0 → S be an

fpqc morphism of schemes.

1. In general, the functor Y 7→ (Y ×S S0, θY ) from the category of S-schemes to

the category of S0-schemes with descent data is fully faithful. Here, θY is the

the descent datum defined by the natural isomorphism

(Y ×S S0)×S0,p1 S1 ≃ Y ×S S1 ≃ (Y ×S S0)×S0,p2 S1.

In particular, this means that if X,Y are S-schemes and f0 : XS0 → YS0 is

an S0-morphism compatible with the descent data θX , θY , then fS0 the base

change of a unique S-morphism f : X → Y . That is, we can uniquely descend

morphisms with descent data, if not schemes.

2. If we restrict this functor to the subcategory of quasi-affinea S-schemes, then

it becomes an equivalence between the category of quasi-affine S-schemes and

the category of quasi-affine S0-schemes with descent data.

3. Suppose furthermore that S and S0 are affine. Then a descent datum θ on an

S0-scheme X is effectiveb if and only if X can be covered by quasi-affine open

subschemes that are stable under θ.

aA morphism such that the preimage of every affine open is quasi-affine, i.e. isomorphic to an
quasi-compact open subscheme of some affine scheme.

bWe say a descent datum is effective if it lies in the essential image of the functor defined in part
(1).

19 Duality and quotient schemes (03/01/2024)

19.1 Dual morphisms

We prove Theorem 18.1, citing some more results about quotient groups and descent theory.

Proof. Since f is an isogeny, we must have dimA = dimB = dimA∨ = dimB∨. Therefore,

once we show that ker f∨ is finite—which follows once we know (ker f)∨ = ker f∨—we can

conclude that f∨ is an isogeny.

For k-schemes T , the scheme ker f∨ has functor of points

(ker f∨)(T ) = {(L , α) : L /B × T, α|{e}×T ≃ OQ, f∗(L , α) = (OA×T , id)}

= {L : L /B × T, f∗L ≃ OA/T }/{iso. of line bundles}

because L must be trivializable on {eB} × T if it is trivial under pullback to A× T (write

down an appropriate commutating diagram). Here, the trivialization we are notating id :

e∗AOA×T ≃ OT is the unique isomorphism sending the section 1 ∈∗A OA×T to 1 ∈ OT ; we
have actually already been using this implicity to define the identity of the Picard scheme.

We are also using the fact that ker f∨ ⊆ Pic0 already; we’ll say more later.

We apply fpqc descent to S0 = A× T → S = B×. We claim that (ker f∨)(T ) is the set

of all descent data on θ on OA×T (up to isomorphism of descent data). Let G = ker f ⊆ A.
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We have

S1 = S0 ×S S0 = A× TB×T ×A× T ≃ A× T ×G

where the last isomorphism is define by (a, a+ g)← [ (a, g). We also have

S2 = S0 ×S S0 ×S S0 = A× T ×G×G

Fix, once and for all, an isomorphism α1 : OA×T×G ≃ p∗2OA×T and an isomorphism

α2 : OA×T×G ≃ p∗2OA×T . A descent datum θ is an isomorphism p∗1OA×T ≃ p∗2OA×T ; under

our fixed identifications with OA×T×G, such an isomorphism is equivalent to multiplication

by an element of

Γ(T ×G,O∗
T×G) = Γ(A× T ×G,O∗

A×T×G) = Aut(Γ×G,OT×G)

, since A is proper. The cocycle condition on θ translates to the condition that θ(a, g1+g2) =

θ(a, g2)θ(a+g1, g2), so ∆(θ) = O⊗O. But this is exactly the functor of points for G∨(T ). ■

Corollary 19.1. If f is an isogeny, then deg f = deg f∨.

Proof. deg f = dimk Γ(G,OG) = dimk Γ(G
∨,OG∨) = deg f∨. ■

Proposition 19.2. Let f, g : A → B be morphisms of abelian varieties (not neces-

sarily isogenies or even homomorphisms). Then (f + g)∨ = f∨ + g∨.

Proof. For all L ∈ Pic0B/k(k), we have (f + g)∗L ≃ f∗L ⊗ g∗L , using the fact that the

morphism f +g is the composition mB ◦ (f ×g) : A→ B×B → B and m∗L = p∗1L ⊗p∗2L
from Lemma 12.2. ■

Corollary 19.3. [n]A∨ = ([n]A)
∨, hence A∨[n] = (A[n])∨.

Proof. Apply the previous proposition inductively, adding copies of the identity morphism

to itself. ■
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19.2 Quotient group schemes

Theorem 19.4. [Gro62, 3.I, VI.A, 3.2] If A ↪→ B is a closed normala subgroup

scheme, where A and B are both fppf group schemes over a field k, then there exists

a unique fppf group scheme C fixing into an exact sequence

1 A B C 1,

in the sense that the functor of points associated to C is the fppf sheafification of

T 7→ B(T )/A(T ).

In particular, we may always form A/ ker f for an abelian variety A and a homomor-

phism f : A→ B.

aIn the group scheme-theoretic sense, which has a precise scheme-theoretic statement.

Remark 19.5. It is fairly straightforward how to proceed in the affine case B =

SpecR—the quotient group scheme C ought to the the spectrum of the subring of

elements of B that are invariant under translation by A. More technical is how to

glue all of this together in the non-affine case; uniqueness is a descent argument.

Remark 19.6. Given a group homomorphism, then we get G↠ G/ ker f ↪→ H.

Remark 19.7. An exact sequence of group schemes does not generally have an

exact functor of points—we need the fppf sheafification. For example, the following

sequence should be considered exact:

1 µ2 Gm Gm 1.x2

The map on the functor of points Gm(Q) → Gm(Q) given by squaring is certainly

not surjective—many rational numbers lack rational square roots. But when we pass

to the fppf extension SpecQ→ SpecQ, the functor of points does become exact.

Theorem 19.8. [BLR90, §8.2,Thm12] Let X be a group scheme. Assume X/k is

quasi-projective, and let R ⊆ X×X be a subgroup scheme such that both projections

R → X are proper and flat. Then the quotient X/R exists, is a quasi-projective

scheme, and X → X/R.

We also discussed more facts about descent. These have been incorporated into last

lecture’s notes.

20 More on the dual abelian variety (03/04/2024)

I was away at the Arizona Winter School for this lecture and the next. The notes for these

have been reconstructed from Prof. Tang’s written lecture notes.
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20.1 Sketch of Mumford’s construction of A∨

See also [Mil86, §10] or [Mum08, II.8, III.13]. Recall that for an ample line bundle on

an abelian variety A, we have a morphism ϕL : A → Pic0A/k defined on points by x 7→
τ∗xL ⊗ L −1. We set K(L ) = (kerϕL )(k), i.e. the set of k-points under which L is

translation-invariant.

The idea behind Mumford’s construction of Pic0A/k is to giveK(L ) the correct subscheme

structure and then define Pic0A/k = A/K(L ). We will use what we know about A∨ a

posteriori to give us a hint on what to do. For a given ample L we set M := m∗L ⊗
pr∗1 L −1 ⊗ pr∗2 L −1 on A×A. This line bundle has the property

M |{e}×A = L ⊗L −1 = OA
M |A×{x} = t∗xL ⊗L −1 = ϕL (x)

for any x ∈ A(k). This ought to remind you of the Poincaré bundle on A×A∨, the universal

bundle with

P|{e}×A∨ = OA∨

and, if λ is the point on A∨(k) associated to a given line bundle L ′ on A,

P|A×{λ} = L ′.

In fact, we claim that (idA × ϕL )∗P ≃ M. This is another typical seesaw argument. We

have

((idA × ϕL )∗P)|{e}×A = (ϕ∗LP|{e}×A∨) = OA
((idA × ϕL )∗P)|A×{x} = (id∗

AP|A×{ϕL (x)}) = ϕL (x),

abusing notation to consider ϕL (x) both as a line bundle and as a point of A∨(k). Setting

N := (idA × ϕL )∗P ⊗M−1, the line bundles N |{e}×A and N |A×{x} are trivial for all

x ∈ A(k). By the Seesaw Principle, triviality of N |A×{x} everywhere implies N = pr∗2N ′

for some N ′ on A. But then N |{e}×A = N ′ = OA, so N is trivial, whence the claim.

We can flip this relationship on its head: even if we don’t know anything about A∨,

we can still write down M (which lives on A × A) and hope to recover P from M . In

characteristic 0, all group schemes are reduced, so we may endow the finite closed subset

K(L ) ⊂ A with its reduced induced subscheme structure. In general, we can let K(L ) be

the maximal subscheme of A such that M |K(L )×A is trivial—for this, we need an upgraded

version of the Seesaw Principle, see [Mum08, II.10]. Then set A∨ := A/K(L ), which is a

smooth quotient group scheme since A is smooth.

The map idA×ϕL : A×A→ A×A∨ is fpqc: it is generically flat, which implies flatness

for a homomorphism of group schemes, and it is surjective by our new definition of A∨ as

a quotient. We use this map to define a fiber product

A×A×A×A∨ A×A = A×A×K(L ).

We define a descent datum on the sheaf M using the isomorphisms M ≃ (1× τx)∗M ) and
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hence conclude that M descends to a line bundle P on A×A∨. Then one checks that this

P plays the role of the universal line bundle, and thus conclude that A∨ really is the dual

abelian variety.

20.2 Symmetric definition of A∨

Definition 20.1. For abelian varieties A,B over k of equal dimension, a line bundle Q on

A×B is a divisorial correspondence if Q|{e}×B ≃ OB and Q|A×{e} ≃ OA.

Such Q induces a morphism κQ : B → A∨ sending e 7→ e via b 7→ Q|A×{e}—the

image is contained in A∨ = Pic0A/k because B is connected—so this morphism is in fact

a group homomorphism. Swapping the roles of A and B, we also get a homomorphism

κσ∗Q : A→ B∨, where σ : A×B → B ×A is the canonical switch morphism.

Example 20.1. For the Poincaré bundle P on A × A∨, the map κP : A∨ → A∨ is

the identity, and κσ∗P is some homomorphism A→ (A∨)∨.

Proposition 20.2. For any line bundle L /A, we have a commutative diagram

A (A∨)∨

A∨

κσ∗P

ϕL
(ϕL )∨

Proof. From our discussion of Mumford’s construction of the dual abelian variety in Section

20.1 that (idA×ϕL )∗P ≃ m∗L ⊗pr1 L −1⊗pr∗2 L −1. (Our proof of this via seesaw remains

true for general L , not just ample L .) For all x ∈ A(k), we have

ϕL (x) = t∗xL ⊗L −1

κσ∗P(x) = P|{x}×A∨

hence

ϕ∨L (κσ∗P(x)) = ϕ∗L (P|{x}×A∨)

= ((idA × ϕL )∗P)|{x}×A
= t∗xL ⊗L −1

= ϕL (x),

and this equality shows commutativity of the diagram because a morphism is determined

by its values on k-points. ■

Corollary 20.3. 1. κσ∗P is an isomorphism, hence A ≃ (A∨)∨ naturally.

2. The universal line bundle PA∨ on A∨ × (A∨)∨ ≃ A∨ ×A is σ∗PA.

Proof. 1. Take L ample. Then ϕL and ϕ∨L are isogenies of the same degree by Corollary
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19.1, so by Proposition 20.2 the homomorphism κσ∗P must be an isogeny of degree 1,

i.e. an isomorphism.

2. We have, for all x ∈ A(k),

PA∨ |{e}×A ≃ OA
PA∨ |A∨×{x} ≃ l.b. assoc. to κσ∗P(x)

≃ PA|{x}×A∨

σ∗PA|{e}×A ≃ OA
σ∗PA|A∨×{x} = κσ∗P(x)

so another typical seesaw argument shows σ∗PA∨ ≃ PA∨ .

■

Definition 20.2. We say that a homomorphism λ : A→ A∨ is symmetric if λ∨ = λ under

the identification κσ∗P : A→ (A∨)∨ (a notation we will abuse from now on).

From Proposition 20.2, we see that ϕL = (ϕL )∨; taking L ample, this shows that every

polarization is symmetric. In general, if L is a line bundle on B and f : A → B is a

homomorphism, then we have a commutative diagram

A B

A∨ B∨

f

ϕf∗L ϕL

f∨

In particular, when L is ample, f gives a morphism of (A, ϕf∗L ) to (B,ϕL ) is a homomor-

phism of polarized abelian varieties (this just means that the diagram above commutes.)

Corollary 20.4. Isogeny between abelian varieties is an equivalence relation. In

fact, if f : A → B is an isogeny, there exists an isogeny g : B → A such that

g ◦ f = [deg f ] on A (multiplication by deg f).

Proof. Reflexivity and transitivity are clear; the hard part is symmetry, which follows from

the existence of g.

Since f : A→ B is faithfully flat and quasi-compact, by fpqc descent, for all k-schemes

X we have an equalizer diagram

X(B) X(A) X(A×B A)
−◦f

The slogan here is “representable functors are fpqc sheaves of sets,” which is a special case

of the full faithfulness of the fpqc descent datum functor for schemes in Theorem 18.6. See

[Con15, Thm. 6.2.14] for more details.

By Yoneda, this means that we contravariantly have a coequalizer diagram

A×B A A B.
f

We know A ×B A ≃ A ×k ker f . The group scheme ker f is a finite group scheme with

order deg f . By Theorem 20.5 below, we know that deg f kills ker f . This implies that the

morphism [deg f ] : A → A also coequalizes the diagram above—under our identifications,
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the two morphisms A×k ker f → A appearing in the coequalizer diagram are (1) the action

map (a, k) 7→ ak and (2) the projection (a, k) 7→ a, and post-composing with multiplication

by deg f makes these two maps equal. Hence by the universal property of the coequalizer,

we conclude there is some morphism g : B → A with g ◦ f = [deg f ], and such g is evidently

surjective with finite kernel, i.e. an isogeny. ■

Theorem 20.5. (Deligne.) A commutative finite flat S-group scheme G of order m

is killed by m.

Proof. See [TO70, §1]. ■

21 Finite commutative group schemes (03/06/2024)

21.1 Poincaré complete reducibility (algebraic category)

We can finally reprove complete reducibility in the algebraic setting over an arbitrary field.

Theorem 21.1. (Poincaré complete reducibility.) [Mum08, §19, Thm. 1] If B ⊆ A

are abelian varieties over k, then there exists a sub-abelian variety B′ ⊆ such that

B ×B′ → A is an isogeny.

Proof. Pick an ample line bundle L on A; then we have a commutative diagram

B A

B∨ A∨

ι

ϕι∗L ϕL

ι∨

Set

B′ := (ker(ι∨ ◦ ϕL ))0red,

which is another sub-abelian variety of A. The kernel of B×B′ → A is the scheme-theoretic

intersection B ∩ B′ = kerϕι∗L , which is finite because ι∗L is ample on B. Therefore, to

show that B × B′ → A is an isogeny, we need only show that dimB + dimB′ ≥ dimA

(implying surjectivity). But since the polarization ϕL is finite, we have

dimB′ = dimker ι∨ ≥ dimA∨ − dimB∨ = dimA− dimB.

■

Qualitatively, this is the same proof as in the complex case from [Mil86]; we just had to

do a lot to set up the algebraic theory of duality.
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Corollary 21.2. Corollaries 3.5 and 3.9 remain valid in the algebraic setting over

an arbitrary field: we may always decompose abelian varieties into simple isogeny

factors, and End0(A) correspondingly decomposes into a product of matrix algebras

over division rings.

21.2 Étale and local finite group schemes

Definition 21.1. Let G be a finite group scheme over k, i.e. the spectrum of some finite-

dimensional k-Hopf algebra.

• We say G is local if G is connected.

• We say that G is étale if Γ(G,OG) is an étale k-algebra, i.e. a product of finite

separable extensions of k, equivalently Ω1
G/k = 0.

Example 21.3. µn = ker([n] : Gm → Gm) is étale if and only if n is coprime to

p = char k, and it is local if and only if n is a p-th power.

Proposition 21.4. (Étale-connected exact sequence.) For any finite k-group scheme

G, we have an exact sequence

1 Gloc G Gét 1,

where Gloc is local and Gét is étale.

Moreover, if k if perfect, then this sequence splits canonically: G ≃ Gloc ×Gét.

This roughly says that G may be group scheme-theoretically decomposed as a product

of its “points” and the “fuzz near the identity.”

Proof. The idea is to take Gloc = G0, which is certainly local, and show that G/G0 is étale.

We require some preparation.
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Lemma 21.5. Letting ks denote the separable closure of k, the following categories

are equivalent:

• The category of finite étale k-algebras.

• The category of finite étale k-schemes.

• The category of finite sets equipped with a Gal(ks/k)-action.

The last equivalence is given by sending X 7→ X(ks), with the Galois action induced

by the Galois action on ks.

This equivalence of categories restricts to an equivalence of:

• The category of finite étale k-Hopf algebras.

• The category of finite étale k-group schemes.

• The category of finite groups equipped with a Gal(ks/k)-action.

Proof. (Sketch.) Given a Gal(ks/k)-set T , its associated finite étale k-algebra is

(∏
t∈T

ks

)Gal(ks/k)

,

(i.e. the subalgebra of this product fixed by Gal(ks/k)). Here we let γ ∈ Gal(ks/k) act on

the tuple (st)t∈T by sending it to the tuple with γ(st) as its γ(t)-th component. ■

Example 21.6. Let char p ∤ n. Then the group µn corresponds to the subgroup of

n-th roots of unity in ks with their natural Gal(ks/k)-action.

Proposition 21.7. Let X/k be a scheme of finite type. Then there exists a finite

étale k-scheme π0(X) and a morphism q : X → π0(X) which is universal in the

sense that if q′ : X → Y is another morphism with Y finite étale, then there exists

a unique f : π0(X)→ Y with q′ = f ◦ q. Moreover, q is faithfully flat and the fibers

of q are connected components of X (justifying the notation π0(X)).

Proof. (Sketch.) Using Lemma 21.5, to define π0(X) we need only write down π0(X)(ks)

and endow this set with a Gal(ks/k)-action. So we simply take π0(X)(ks) to be the set

of connected components of Xks = X ×k Spec ks, which is equipped with a natural Galois

action via the action on ks.

We construct the desired q via Galois descent: we have a map upstairs qks : Xks →
π0(X)ks given by sending a connected component to its corresponding point in π0(X)ks(k

s).

This morphism is Gal(ks/k)-invariant, hence descends to a unique q : X → π0(X). The

properties of q can even be checked after the ks/k-faithfully flat base change. ■
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Corollary 21.8. For a k-group schemeG of finite type, π0(G) is a finite étale k-group

scheme and q : G→ π0(G) is a group homomorphism.

Returning to the proof of the connected-étale exact sequence, Proposition 21.7 and

Corollary 21.8 give us the exact sequence with Gét = π0(G). When k is perfect, Gred ⊆ G

is a k-subgroup scheme; the key point here is that Gred ×k Gred is again a reduced scheme

if k is perfect.17 Now note that the composition Gred ↪→ G → π0(G) is an isomorphism,

which can be checked on ks-points, yielding a section of the exact sequence. ■

Definition 21.2. We say that a finite commutative group schemeG is étale-local ifG is étale

and G∨ is local. We likewise define étale-étale, local-étale, and local-local group schemes

based on all possible combinations.

Corollary 21.9. If k is perfect and G is a finite commutative group scheme, then

we have a unique decomposition

G = Gét-ét ×Gét-loc ×Gloc-ét ×Gloc-loc

with the obvious notation.

Proof. Use the connected-étale exact sequence to first write G ≃ Gét ×Gloc. By repeating

this for for G∨
ét and G∨

loc and then (double) dualizing, we get our desired four-fold decom-

position.

Uniqueness follows from the fact that there is no non-trivial morphism between these

group types of groups:

• Étale→ local is trivial because this is a map from a reduced scheme to a scheme whose

reduced structure has one point;

• Local → étale is trivial because the neutral connected component of an étale group

scheme is {e} ≃ Spec k. (The neutral component cannot be Spec k′ for a finite sepa-

rable extension k′/k because the identity needs to be a k-valued point.)

The claim follows from these two cases and their duals. ■

Example 21.10. Let char k = p. Recall that, in general, Z/nZ and µn are Cartier

duals. If (n, p) = 1, then both of these are étale-étale, whereas if n = pe, then Z/nZ
is étale-local and µn is local-étale.

The kernel of Frobenius αp := kerF : Ga → Ga is local and self-dual, hence local-

local. (See Homework 3.)

17This is not true in general if k is not perfect. See [EvdGM24, Ex. 3.2] for a counterexample.
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Remark 21.11. When k = k, then there are not may possibilities for three out the

four types of finite group schemes we have defined:

• All étale-étale commutative finite k-groups schemes are products of µn, where

(n, p) ̸= 1. (Note that this is isomorphic to Z/nZ if we work over the algebraic

closure via a choice of primitive root of unity.)

• All étale-locals are of products of various Z/pnZ.

• All local-étales are products of various µpn .

However, there is a huge variety of local-local group schemes, even with the simpli-

fication k = k.

Remark 21.12. If char k = 0, then G is always étale-étale, since all group schemes

are reduced in characteristic 0.

We will investigate building blocks of local groups, which will also be useful when we

study Frobenius actions. See also [Mum08, §III.11, §III.14] for more theory.

The following may remind you of the Chinese remainder theorem:

Proposition 21.13. Let A/k be an abelian variety with char k = p. Let n be a

positive integer, and write n = n1p
m with p prime and p ∤ n1. Then the natural

morphism A[n1]×A[pm]→ A[n] : (a, b) 7→ a+ b us an isomorphism.

Proof. Since (n1, p) ̸= 1, [n1] is separable and so A[n1] is étale. Likewise, A[n1]
∨ ≃ A∨[n1]

is étale, so A[n1] is étale-étale. On the other hand, by Remark 21.11, since A[pm] has p-

th power order p2mg, it cannot have a nontrivial étale-étale component—all of those have

order coprime to p (after base change to k). So A[n1] ∩ A[pm] ⊆ A[n] (scheme theoretic

intersection) is trivial; equivalently, A[n1]×A[pm]→ A[n] has trivial kernel, so by comparing

orders we conclude this is an isomorphism. ■

With notation as in the proposition, we must have A[n1]k ≃ (Z/nZ)2g. But A[pm] has

many possible structures.

22 Lie algebras of local groups (03/08/2024)

22.1 p-rank

Let char k = p. Last time, we discussed how A[pn]k decomposes as a group scheme. It has

no étale-étale part, only étale-local, local-étale, and local-local components. The étale-local

part is always of the form (Z/pmZ)r, where Z/pmZ is a constant group scheme. The number

r is called the p-rank of A. Meanwhile, the local-étale part is always of the form (µpm)s,

and by duality s = r.

Proposition 22.1. The p-rank is an isogeny invariant.
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Proof. Let f : A→ B be an isogeny, say with kernel of order n, i.e. dimk Γ(ker f,Oker f ) = n.

To prove the claim, it suffices to look only at k-points, eschewing finer non-reduced structure.

Let rA, rB be the respective p-ranks of A and B. Then we get a map on points

f : A[pm](k)→ B[pm](k)

which has kernel of order at most n, so we conclude pmrA ≤ npmrB for all m. Since n is

fixed, taking m→∞ shows that rA ≤ rB .
Recall that isogeny is an equivalence relation: if an isogeny f : A → B exists, there

exists an isogeny g : A → B. So we may apply the same argument to show that rB ≤ rA,

whence rA = rB . ■

Corollary 22.2. The p-rank r of A is equal to the p-rank s of A∨.

Proof. Polarizations exist and are isogenies. ■

22.2 Digression on Lie algebras

Recall that in the general setting, where we have an S-group scheme G→ S of finite type,

an S-derivation of OG to a quasicoherent sheaf M on G is a map D : OG →M satisfying:

1. Additivity;

2. For all a ∈ im(f−1OS → OG), we have Da = 0 on sections; and

3. The Leibniz rule holds: D(ab) = aD(b) + bD(a) on sections.

One can show that there is a bijection HomOG
(Ω1

G/S ,M ) = DerS(OG,M ), where the latter

denotes the set of S-derivations and Ω1
G/S is the sheaf of relative differentials.

We justify the identification LieG = TeG when S = Spec k. We define LieG as the set of

left-invariant derivations in DerS(OG,OG) = HomOG
(Ω1

G/S ,OG), i.e. such that D : OG →
OG satisfies D ◦ L∗

x = L∗
x ◦D for all x ∈ G(k), with Lx denoting left-translation.

Proposition 22.3. LieG ≃ TeG via D 7→ D|e (recall we define TeG =

Hom(me/m
2
e, k), and that Ω1

G/S |e ≃ m/m2).

Proof. See [Mum08, p. 92-94] for the case over C, which generalizes. He constructs D using

right-translations. ■

Here are some more facts about LieG:

1. It is a Lie algebra in the algebraic sense: the Lie bracket is given by the commutator

[D1, D2] := D1 ◦D2 −D2 ◦D1.

2. If char k = p, then D(p) = D ◦D ◦ · · · ◦D (p iterations of D) is also in LieG for any

D ∈ G. In general, iterating a derivation is not a derivation, but in characteristic p

one can show that the bad terms in the Leibniz rule all die.

That is, LieG is a p-Lie algebra:
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Definition 22.1. A p-Lie algebra g over k is a Lie algebra (a k-vector space with a bracket

operator [·, ·]) equipped with a unary operator (−)(p) : g→ g such that

1. (λx)(p) = λpx(p) for all λ ∈ k, x ∈ g;

2. Letting adx be Lie algebra endomorphism sending y 7→ [x, y], we have adx(p) = (adx)
p

(where the right hand side denotes iteration as an endomorphism).

3. (x + y)p = x(p) + y(p) + Fp(adx, ady)y, where Fp is some universal noncommutative

polynomial defined solely by the characteristic p. You can look up what this is explic-

itly, although we won’t write it down here.

22.3 Height 1 local groups

Definition 22.2. A finite commutative local k-group scheme G is height 1 if xp = 0 when-

ever x ∈ m = me (the maximal ideal at e ∈ G).

Lemma 22.4. For a finite local k-group scheme G of height 1, the coordinate ring

R = Γ(G,OG) is isomorphic to k[x1, . . . , xn]/(x
p
1, . . . , x

p
n). In particular, dimk R is a

p-th power.

Proof. Let x1, . . . , xn ∈ me such that x1, . . . , xm form a k-basis in the cotangent space

me/m
2
e. Since G is local, by Nakayama we must have k[x1, . . . , xn] ↠ R. By the height 1

assumption, this surjection descends to k[x1, . . . , xn]/(x
p
1, . . . , x

p
n)↠ R.

Let D1, . . . , Dn ∈ LieG be a dual basis of x1, . . . , xn ∈ me/m
2
e, i.e. so that Di(xj) ≡

δij mod me (Kronecker delta). Let α denote an n-tuple of integers in the range 0, . . . , p− 1,

and let xα denote the corresponding monomial in the xi and Dα := Dα1
1 ◦ · · · ◦Dαn

n , and let

|α| :=
∑
i αi. Here are some important facts that ensure the derivations Di behave roughly

as expected:

1. The Leibniz rule implies that Dim
r
e ⊆ mr−1

e , so these derivations induce well-defined

derivations D̃i of degree −1 the graded ring R̃ :=
⊕∞

r=0 m
r
e/m

r+1
e .

2. We have Dα(xα′) ≡
∏n
i=1 αi(αi−1) · · · (αi−α′

i+1) mod m if |α| ≥ |α′|, and otherwise

this is 0 mod m. The second statement follows from (1), and the first statement follows

from the Leibniz rule by induction via

Di(x
α′
) ≡

n∑
j=1

Di(x
α′

j

j )
∏
s ̸=j

x
α′

s
s ≡ α′

ix
α′

i−1
i

∏
j ̸=i

x
α′

j

j mod m|α|
e .

In particular, Dα(xα′) ≡ 0 mod me if α ̸= α′.

Now suppose we have a relation of k-linear dependence among the monomials in R, say

of the form

∑
α

cα

n∏
i=1

xα = 0,

with each cα ∈ k. Then applying Dα′ and reducing modulo me leaves only the term

cα′α′! mod me, where α
′! = α′

1! · · · · · α′
n! denotes the multinomial. But Dα must respect
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the linear dependence, so we conclude cα′α′! = 0. Since all of the αi are less than p, the

only way this can happen is if cα = 0. Hence the original linear combination is trivial.

This shows that the map k[x1, . . . , xn]/(x
p
1, . . . , x

p
n) ↠ R is injective, hence a k-algebra

isomorphism. ■

See also [Tat97, Lemma 3.7.1].

Remark 22.5. Note that this lemma does not say anything about the group/Hopf al-

gebra structure; there are many possible group structures on height 1 group schemes,

despite the fact that their k-algebras all look similar.

Theorem 22.6. The category of finite local k-group scheme of height 1 is equivalent

to the category of p-Lie algebras over k via G 7→ Lie(G).

Proof. See [Mum08, III.14, p.130-131]. ■

Definition 22.3. Let G be a k-group scheme of finite type. The absolute Frobenius map

FG, defined on sections by f 7→ fp, is not a morphism of k-schemes. Instead, we define the

relative Frobenius F (1) (also denoted FG/k) to be the map induced by the fiber product

G

G(1) G

Spec k Spec k

FG

F (1)

FSpec k

where FG, FSpec k are absolute Frobenii, G(1) is the group scheme making the square Carte-

sian, and F (1) is the morphism induced by the universal property of the fiber product.

Intuitively, the relative Frobenius morphism acts by p-th powers on the coordinate func-

tions, but also acts trivially on the base field.

Example 22.7. If G = Ga, then we may identify the relative Frobenius map with

the k-algebra homomorphism k[x] → k[x] : x 7→ xp. Its kernel is denoted αp =

Spec k[x]/(xp), with comultiplication x 7→ 1⊗ x+ x⊗ 1.

F (1) is a group homomorphism, and kerF (1) is always a finite local k-group scheme of

height 1. Indeed, F (1) is always purely inseparable and Γ(kerF (1),OkerF (1)) = OG,e/{xp, x ∈
mG,e}, as we have a diagram

SpecOG,e SpecOG(1),e

G G(1)F (1)

Corollary 22.8. Let p = char k. On a commutative finite local k-group scheme G

of height 1, multiplication by p is the zero map.
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Proof. Apply functoriality from Theorem 22.6 and the fact that [p] = 0 on LieG. Alterna-

tively, without appealing to this equivalence of categories, one can argue along the lines of

our proof of Theorem 14.2 that [p] factors through Frobenius, which already kills the group

scheme. One final way to do this is to define the Verschiebung map V (1) and then show

directly that [p] = V (1) ◦ F (1) = F (1) ◦ V (1) and similarly conclude. ■

We can now prove Theorem 20.5 for ourselves:

Corollary 22.9. If G has order m, then [m] = 0.

Proof. By base change to k, this statement is clearly true for the étale part, so WLOG

G is local. In this case, the order m is always a p-th power, say pn. We have inclusions

kerF (1) ↪→ F (2) ↪→ · · · ↪→ kerF (n) = G. Each quotient is a group of height 1, so by applying

Corollary 22.8 repeatedly we conclude that [pn] = 0. ■

23 Riemann-Roch for abelian varieties (03/11/2024)

23.1 Homogeneity of the degree map

Definition 23.1. Let k,K be field sand V/k a (not necessarily finite-dimensional) vector

space. A function f : V → K is a homogeneous polynomial of degree n if f |W is a ho-

mogeneous polynomial of degree n, where W is any finite dimensional subspace of V and

the polynomial variables are given by the coordinates associated to some (equivalently, ev-

ery) basis of W . Equivalently, for any fixed v1, v2 ∈ V , the function f(λ1v1 + λ2v2) is a

homogeneous polynomial in λ1, λ2.

Let A/k be a simple abelian variety of dimension g.

Definition 23.2. The degree map deg : End(A)→ Z is defined by

f 7→

deg f : f is an isogeny

0 : f = 0

These are the only two cases if A is simple, and deg is a ring homomorphism since deg(f ◦
g) = deg(f) deg(g) for finite morphisms f, g. We extend the degree map linearly to a

map End0(A) → Q: for any f ∈ End0(A), there exists some nonzero n ∈ Z such that

nf ∈ End(A), and we define

deg f =
deg(nf)

n2g
.

which is well-defined and independent of the choice of n since [n] has degree n2g.

Theorem 23.1. For simple A/k, the degree map deg : End0(A) → Q is a homoge-

neous polynomial of degree 2g.
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Proof. See also [Mum08, IV.19, Thm. 2]. It suffices to show that, for any fixed f1, f2 ∈
End(A) and all integers n,

deg(nf1 + f2)

is a polynomial in n. We know already that deg(nf) = n2g deg(f), i.e. deg satisfies the

homogeneity criterion for integer scalars, so if deg is a polynomial function then it must be

homogeneous of degree 2g.

Pick a (very) ample line bundle L /A, so that χ(L ) ̸= 0. Then by Lemma 23.2 below,

deg(nf1 + f2) =
χ((nf1 + f2)

∗L )

χ(L )
.

Set Ln = (nf1 + f2)
∗L . Applying the Theorem of the Cube to the map f × g × h :

A×A×A→ A with f = nf1 + f2, g = h = f1 yields

Ln+2 ≃ Ln+1 ⊗Ln+1 ⊗ (2f1)
∗L ⊗L −1

n ⊗ f∗1L −2

≃M⊗n(n−1)/2 ⊗N ⊗n ⊗Q,

where M ,N ,Q are line bundles independent of n (Exercise: write down these line bundles

explicitly).

The Snapper theorem states that for any projective variety X and any collection of line

bundles L1, . . . ,Lr on X, the Euler characteristic χ(L ⊗n1
1 ⊗ · · · ⊗ L nr

r ) is a numerical

polynomial in n1, . . . , nr of degree dimX. (See [Kle66, §I.1] for a proof of the Snapper

theorem in somewhat greater generality.) Hence χ(Ln), and therefore also deg(nf1 + f2),

is indeed a polynomial in n. ■

Lemma 23.2. If f : A → B is an isogeny, then for all line bundles L /B we have

χ(f∗L ) = (deg f) · χ(L ).

Proof. See [Mum08, §12, Thm 2, p. 113] ■

Remark 23.3. Observe the similarity to Proposition 13.3, but N.B. that Lemma

23.2 is false for general varieties, even in nice cases. For example, if g is a morphism

of smooth curves A→ B and L = OB , then the lemma is true only if g is unramified,

since in this case the correct statement is given by the Riemann-Hurwitz formula

χ(OA) = (deg g) · χ(OB)− degR

where R is the ramification divisor.
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23.2 Riemann-Roch for abelian varieties

Theorem 23.4. (Riemann-Roch for abelian varieties.) [Mum08, III.16] Let L be a

line bundle on A (not necessarily ample).

1. χ(L ⊗n) is a homogeneous polynomial of degree g. More precisely,

χ(L ⊗n) =
deg(L )ng

g!
.

2. If L = O(D) for a Weil divisor D, then χ(L ) = (Dg)
g! , where (Dg) denotes the

g-fold self-intersection number D.D. · · · .D (g copies of D).

3. ϕL : A→ A∨ has degree χ(L )2. In particular, χ(L ) ̸= 0 if and only if K(L )

is finite.

Proof. All of the formulas above remain unchanged if we base change to k, so we might as

well assume k = k.

1. • Claim 1: Let L1,L2 be line bundles on A with L1 ⊗ L −1
2 ∈ Pic0(A). Then

we claim χ(L1) = χ(L2). The condition on L1,L2 shows that L1 and L2 are

algebraically equivalent—recall Lemma 15.4—so we have a connected scheme T

and a line bundle L /A× T with L |t1 ≃ L1 and L |t2 ≃ L2. Connectedness of

A×T and constancy of the Euler characteristic in flat families implies the desired

equality.

• Claim 2: We claim that for any line bundle L /A there exist line bundles L1,L2

on A such that L = L1 ⊗ L2, L1 is symmetric (i.e. [−1]∗L1 = L1), and

L2 ∈ Pic0. To show this, we show L ⊗ [−1]∗L −1 lies in Pic0. We have

τ∗x (L ⊗ [−1]∗L −1)⊗L −1 ⊗ [−1]∗L = τ∗xL ⊗L −1 ⊗ [−1]∗(τ∗−xL −1 ⊗L ).

(8)

τ∗−xL
−1 ⊗L lies in Pic0 by the theorem of the square. We change perspective:

we can view τ∗−xL
−1 ⊗ L as a point on A∨ and pullback by [−1] as the map

[−1]A∨ . This is the morphism defined on points by sending a line bundle to its

inverse, so 8 may be rewritten as

τ∗xL ⊗L −1 ⊗ τ∗−xL ⊗L −1

which is trivial—again by by the theorem of the square—proving translation-

invariance of L ⊗ [−1]∗L −1, i.e. membership in Pic0(A) = A∨(k).

Since A∨(k) is a divisible group (here is where we use the assumption k = k!),

there exists a line bundle L2/A in Pic0(A) such that L ⊗2
2 = L ⊗ [−1]∗L −1. We

set L1 := L ⊗L −1
2 ; then

[−1]∗L1 = [−1]∗L ⊗ [−1]∗L −1
2 = [−1]∗L ⊗L2 = L ⊗L −1

2 = L1

so L1 is symmetric, proving our claim. Again we use the fact that L2 ∈ Pic0(A)
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to conclude [−1]∗L2 = L −1
2 .

• Claim 3: We claim that it suffices to prove (1) in the case L is symmetric. If

L1 ⊗ L −1
2 ∈ Pic0(A), then χ(L ⊗n

1 ) = χ(L ⊗n
2 ). For L1 and L2 lie in the

same component of the full Picard scheme PicA/k, so a slightly modified version

of Lemma 15.4 shows that they are algebraically equivalent and we may apply

the same argument as in Claim 1. The degree of a line bundle is determined

by its Hilbert polynomial, so we conclude both sides of the desired formula (1)

are the same for L1 and L2. By Claim 2, we can find a symmetric L1 with

L ⊗L −1
1 ∈ Pic0(A), so it suffices to prove the formula for L1 instead.

So we may assume L is symmetric. Then

χ(L ⊗n2

) = χ([n]∗L ) = deg[n] · χ(L ) = n2gχ(L ).

where the middle equality is by Lemma 23.2. This is true for any square n2, but

χ(L ⊗m) is a polynomial in m that agrees with n2gχ(L ) whenever m = n2 is a

square. If two integer polynomials agree infinitely often, they are equal, so we conclude

χ(L ⊗n) = ngχ(L ) even when n is not a square.

Homogeneity means that the only term in the Hilbert polynomial χ(L ⊗n) is the

leading term, which, by the definition of degree, is deg(L )
g! ng, giving the formula for

(1).

2. (Sketch.) If L is very ample, then by intersection theory

deg(L ) = (Dg).

In more detail, since L is very ample, we can pick σ0, σ1, . . . , σg ∈ Γ(A,L ) with no

common zeros such that divisors of zeros div(σ1), . . . ,div(σg) intersect transversely.

Then (Dg) = (div σ1). · · · .(div σg) is the number of points in the intersection. The

sections σi define a finite morphism ϕ : A → Pg, and (Dg) is the (multiplicity-free)

preimage of [1 : 0 : · · · : 0], so we conclude (Dg) = deg ϕ and

deg(L ) = deg ϕ · deg(OPg (1)) = deg ϕ.

by Proposition 13.3.18 This lets us conclude (2) from (1).

In general, we can reduce to the very ample case by writing an arbitrary line bundle

as L = L1 ⊗L −1
2 with L1,L2 very ample.

3. We first prove the claim when K(L ) is finite (this is implied by, but not equivalent

to, ampleness). Recall the Mumford line bundle

M = m∗L ⊗ pr∗1 L −1 ⊗ pr2 L −1 = (id× ϕL )∗P.

The map id× ϕL is an isogeny from A×A to A×A∨, so Lemma 23.2 is applicable,

18But note that Lemma 23.2 is not applicable because Pg is not an abelian variety.
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yielding

χ(M ) = deg(ϕL )χ(P).

Recall from the proof of Theorem 15.6 thatRi pr1,∗ M is supported on the 0-dimensional

subscheme K(L ) when L is ample. Using the Leray spectral sequence, we also had

Hi(A×A,M ) = Γ(A,Ri pr1,∗ M ).

By the projection formula,

Ri pr1,∗(m
∗L ⊗ pr∗1 L −1 ⊗ pr∗2 L −1) = Ri pr1,∗(m

∗L ⊗ pr∗2 L −1)⊗L −1

= Ri pr1,∗(m
∗L ⊗ pr∗2 L −1)

where we use the fact that this sheaf is supported on a finite set to conclude that

tensoring with a line bundle does nothing. Hence

Hi(A×A,M ) = Γ(A,Ri pr1,∗(m
∗L ⊗ pr∗2 L −1)) = Hi(A×A,m∗L ⊗ pr∗2 L −1).

Note that (m,pr2) : A×A→ A×A is an isomorphism. By Künneth, we have

χ(M ) = χ(m∗L ⊗ pr∗2 L −1) = χ(L ) · χ(L −1),

and by (1) this last expression is (−1)gχ(L )2. Mumford shows that χ(P) = (−1)g

([Mum08, III]), so plugging this into our formula for χ(M ) shows that deg ϕL =

χ(L )2.

If instead K(L ) is infinite, then ϕL has infinite kernel, hence degree 0. Moreover,

K(L ) contains an abelian variety of positive dimension, hence also contains a finite

subgroup F of arbitrarily large order. The map idA × ϕL : A× A→ A× A∨ factors

through the isogeny idA × q : A×A→ A× (A/F ). We know that m∗L ⊗ p∗2L −1 =

(idA × q)∗)(P ⊗ pr∗1 L ). The fact that m∗L ⊗ p∗2L −1 is the pullback of some line

bundle on A×A∨ implies that it is also the pullback of a line bundle on A× (A/F ), so

we conclude by Proposition 23.2 that χ(m∗L ⊗ p∗2L −1) is a multiple of |F |. Since we
can choose |F | to be arbitrarily large, we conclude χ(m∗L ⊗ p∗2L −1) = 0. The same

argument as before, using the isomorphism (m,pr2) : A × A → A × A and Künneth,

shows that χ(m∗L ⊗ p∗2L −1) = (−1)gχ(L )2, hence χ(L ) = 0 too.

■

Corollary 23.5. The degree of any polarization is a perfect square.

Proposition 23.6. If K(L ) is ample, then Hi(A,L ) = 0 for all i > 0 and

Hi(A,L ) ̸= 0.

Proof. (Sketch, assuming two major results from Mumford.) The Vanishing Theorem

[Mum08, §16, p. 140] states that if K(L ) is finite, then that Hp(A,L ) = 0 for all but
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one p, but that the remaining cohomology group, whose degree we define to be the index

i(L ) of L , is nonzero. [Mum08, Cor. on p.148] tells us that i(L ) = i(L ⊗n) for any positive

integer n. If L is ample, take n large enough so that L ⊗n is very ample. Very ample line

bundles always have global sections, so we conclude i(L ⊗n) = i(L ) = 0. ■

24 Tate’s theorem: injectivity (03/13/2024)

Next week’s RTG seminar will be on purity for abelian 3-folds; it might be worth going to.

We started lecture by finishing part (3) of the Riemann-Roch theorem; this has been

moved to the previous section.

Theorem 24.1. (Injectivity part of Tate’s theorem) [Mum08, IV.19, Thm. 3, p. 164]

Let A,B be abelian varieties over k. Then Hom(A,B) is a finitely generated free

abelian group, and

Tℓ : Hom(A,B)⊗Z Zℓ → HomGal(ks/k)(Tℓ(A), Tℓ(B)) ⊆ Hom(Tℓ(A), Tℓ(B))

is injective for all prime ℓ ̸= char k.

Proof. We can reduce to the case A = B and with A simple. Via Poincaré complete

reducibility, A is isogenous to
∏
iAi and B is isogenous to

∏
j Bj with Ai, Bj simple, and

Hom(A,B) ↪→
∏
i,j

Hom(Ai, Bj)

Hom(A,B)⊗ Zℓ ↪→
∏
i,j

Hom(Ai, Bj)⊗ Zℓ

so it suffices to prove the claim for each of the Hom(Ai, Bj), i.e. we can reduce to the case

A and B are simple.

If A and B are simple and isogenous, then we (noncanonically) get Hom(A,B) ↪→ End(A)

by choosing an isogeny g : B → A and sending ψ 7→ g ◦ ψ for ψ ∈ Hom(A,B), so it suffices

to prove the claim for A = B in this case. If A and B are simple and nonisogenous, then

Hom(A,B) = 0, so we can ignore this case.

Therefore let A be simple. The fact that the degree map is a homogeneous polynomial

of degree 2 dimA shows that End(A) is torsion-free. We claim that for all finitely generated

Z-submodules M ⊆ End(A), we have

QM ∩ End(A) := {f ∈ End(A) : ∃n ∈ Z, nf ∈M},

i.e. with the intersection occurring in End0(A), is a finitely generated Z-module; this shows

that End(A) is not “infinitely divisible.” QM is a finite-dimensional Q-vector space, so

the homogeneous polynomial function deg |QM extends to RM . The open neighborhood of

0 ∈ RM given by

U := {x ∈ RM : |deg(x)| < 1}

satisfies U ∩ End(A) = {0} because all nonzero endomorphisms of A have positive integer

degree. Therefore, QM ∩End(A) ↪→ RM is discrete, i.e. a (not-necessarily full rank) lattice
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in a Euclidean space, hence of finite Z-rank, proving the claim.

To prove injectivity of Tℓ, it suffices to show that, for all finitely generated Z-modules

M ⊆ End(A), the map M ⊗ Zℓ → End(TℓA) is injective, since End(A) is a direct limit of

its finitely generated submodules. By the previous claim, we may even enlarge M so that

M = QM ∩ End(A). For such M , which is always free, pick a Z-basis f1, . . . , fr. Suppose

we have a linear dependence

Tℓ

(∑
aifi

)
= 0

where ai ∈ Zℓ. If this relation is nontrivial, by multiplying by an appropriate power of ℓ we

may assume that at least one of the ai lies in Z×
ℓ . For each i, pick a rational integer a′i ≡

ai mod ℓ. Then the endomorphism Tℓ(
∑
a′ifi) maps Tℓ(A) into ℓTℓ(A). By the definition of

Tℓ(A), this means that ker
∑
a′ifi ⊇ A[ℓ], so there exists f ′ ∈ QM ∩End(A) =M such that∑

a′ifi = f ′ ◦ ℓ. Hence ℓ | a′i for all a′i, hence ℓ | ai for all i, contradicting our assumption.

Hence Tℓ is injective.

Injectivity of any particular Tℓ shows that End
0(A) is a finite-dimensionalQ-vector space.

Therefore, there exists a finitely generated M ⊆ End(A) with QM = End0(A). Then we

have QM ∩ End(A) = End(A), and this is finitely generated by our first claim. ■

Remark 24.2. Theorem 24.1 immediately gives a bound rkZ(A,B) ≤ 4 dimA dimB,

since the Tate module has Zℓ-rank 2g. This is usually not an equality, but sometimes

is, for example in the case of supersingular elliptic curves.

Remark 24.3. If k is finitely generated over its prime field, then in fact the injection

in Theorem 24.1 is an isomorphism. The positive characteristic case was proven by

Zarhin, and the characteristic 0 case was proven by Faltings.

Corollary 24.4. The Néron-Severi group NS(A) ⊆ Hom(Ak, A
∨
k
) is a finitely gen-

erated free Z-module.

Proof. By Remark 17.6. ■

Corollary 24.5. End0(A) is a finite dimensional semisimple algebra.

Definition 24.1. Let B/Q be a finite dimensional simple algebra. A map T : B → Q is said

to be a trace form if T is Q-linear and symmetric, i.e. T (ab) = T (ba) for all a, b ∈ B. A map

N : B → Q is said to be a norm form if N is a polynomial function and N(ab) = N(a)N(b)

for all a, b ∈ Q.

88



Proposition 24.6. [Mum08, IV.19, Lem. on p. 165] Let B/k be a finite dimensional

simple algebra with center K. Then there exists a canonical norm form Nm0
B/K :

B → K such that any norm form on B/k may be written as

(NmK/k ◦Nm0
B/K)k

for some integer k ≥ 0, where NmK/k is the field-theoretic norm map. We likewise

have a canonical trace Tr0B/K : B → K such that any trace form on B/k may be

written as

ϕ ◦ Tr0B/K

for some k-linear map ϕ : K → k.

Definition 24.2. NmK/k ◦Nm0
B/K is called the reduced norm form ofB/k and TrK/k ◦Tr0B/K

is called the reduced trace form of B/k (where TrK/k is the field-theoretic trace map).

Remark 24.7. When D is central simple, so that K = k, the reduced norm form

and the reduced trace form are descended from the determinant and trace map,

respectively, on D ⊗k k ≃Mn(k).

25 Weil pairing (03/15/2024)

25.1 Computations on the Tate module

Theorem 25.1. [Mum08, IV.19, Thm. 4]

1. deg(f) = det(Tℓ(f)) for f ∈ End0(A). (Determinant via treating Tℓ(f) as a

2g × 2g matrix.)

2. The characteristic polynomial P (x) of Tℓ(f), i.e. P (x) = det(x−Tℓ(f)) ∈ Qℓ[x],
actually has Z-coefficients. By (1), P (n) = deg([n]A − f) for integers n.

We will first need:

Lemma 25.2. For an isogeny f : A → B, we have an exact sequence of

Zℓ[Gal(ks/k)]-modules

0 Tℓ(A) Tℓ(B) (ker f(ks))ℓ 0.
Tℓ(f)

Here, (ker f(ks))ℓ denotes the ℓ-primary part of ker f(ks).
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Proof. (Sketch; see also [EvdGM24, §10.5-6].) By definition,

Tℓ(A) = lim←−
n

A[ℓn](ks)

= lim←−
n

Hom(Z/ℓnZ, A(ks))

= Hom(Qℓ/Zℓ, A(ks)).

Given an exact sequence 0 → N → A → B → 0 of fppf group schemes, we get an exact

sequence 0→ N(ks)→ A(ks)→ B(ks)→ 0. Applying the functor Hom(Qℓ/Zℓ,−), we get

a long exact sequence

0 Tℓ(A) Tℓ(B) Ext1(Qℓ/Zℓ, N(ks)) Ext1(Qℓ/Zℓ, A(ks))

The last Ext group is 0 if ks = k, i.e. k is perfect, since in this case A(ks) is divisible, hence

an injective object in the category of abelian groups. (Additional arguments need to be made

in the imperfect case.) We may also write Ext1(Qℓ/Zℓ, N(ks)) = Ext1(Qℓ/Zℓ, N(ks)ℓ), since

any homomorphism from Qℓ/Zℓ must land in the ℓ-primary part.

We also consider the exact sequence 0→ Zℓ → Qℓ → Qℓ/Zℓ → 0. Applying Hom(−, N(ks)ℓ)

to this exact sequence, all of the Exti(Qℓ, N(ks)ℓ) terms vanish because Qℓ is ℓ-divisible, so
we get Ext1(Qℓ/Zℓ, Nℓ(ks)) = Hom(Zℓ, N(ks)ℓ) = N(ks)ℓ, yielding the lemma. ■

We prove Theorem 25.1:

Proof. 1. Let f ∈ End(A), and let |deg(f)|ℓ be the ℓ-adic valuation of deg(f) on Qℓ
(normalized so that |ℓ|ℓ = 1/ℓ). If f is not any isogeny, then deg(f) = 0, and Tℓ(T )

cannot be invertible19, so det(Tℓ(f)) = 0 too. Otherwise, if f is an isogeny, then

|deg(f)|ℓ = |#(ker(f))ℓ(k
s)|ℓ

since the ℓ-torsion part of ker(f) is étale. By Lemma 25.2, the right hand side is

|detTℓ(f))|ℓ—the determinant of a lattice endomorphism measures how large the cok-

ernel is. Therefore, for all f ∈ End0(A)⊗Qℓ, we have |degQℓ
(f)|ℓ = |det(Tℓ(f))|ℓ.

But we want more than this: we want actual equality, not just equality of ℓ-adic

norms. To get this, we may write Qℓ ⊗Z End(A) =
∏
iDi a a product of finite

dimensional simple algebras over Qℓ; let Ki be the center of Di. The maps degQℓ
,det :

End(A) ⊗ Qℓ → Qℓ both define norm forms, so by Proposition 24.6 they are each of

the form

degQℓ
(α1, . . . , αn) =

∏
i

(NmKi/Qℓ
◦Nm0

Di/Ki
)vi(αi)

det(α1, . . . , αn) =
∏
i

(NmKi/Qℓ
◦Nm0

Di/Ki
)wi(αi)

for some vi, wi ∈ Z>0. We already proved that

|degQℓ
(1, . . . , ℓ, . . . , 1)|ℓ = |det(1, . . . , ℓ, . . . , 1)|ℓ

19Taking a decomposition of A into simple factors, f must kill one of the factors, hence Tℓ(f) kills the
corresponding factor in the corresponding decomposition of Tℓ(A).
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(taking the endomorphism to be the identity on all components except one, where it

is multiplication by ℓ), so

|(NmKi/Qℓ
◦Nm0

Di/Ki
)vi(ℓ)|ℓ = |(NmKi/Qℓ

◦Nm0
Di/Ki

)wi(ℓ)|ℓ

for all i. so that vi = wi for all i, hence det = degQℓ. Since NmKi/Qℓ
◦Nm0

Di/Ki
is

homogeneous of positive degree, (NmKi/Qℓ
◦Nm0

Di/Ki
)(ℓ) has positive ℓ-adic valuation,

so we conclude that vi = wi for all i, yielding equality of degQℓ
and det.

2. Since P (n) = deg([n]A − f) ∈ Z for all n, we conclude that P (x) is a numerical

polynomial, so in particular P (x) ∈ Q[x]. End(A) is finitely generated over Z, f
is satisfies some monic integer polynomial, so Tℓ(f) also satisfies an integer monic

polynomial. We conclude that all eigenvalues of Tℓ(f) are algebraic integers. This

means that P (x) is a monic polynomial with Q-coefficients and algebraic integer roots.

Therefore the coefficients of P (x) must actually lie in Z, since P (x) is a product of

powers of the integral minimal polynomials of its roots.

■

25.2 Weil pairing

Definition 25.1. We let Zℓ(1) denote the Tate module of the multiplicative group:

Zℓ(1) := Tℓ(Gm) = lim←−
n

µℓn .

This is a rank 1 free Zℓ-module with Galois action by the cyclotomic character.

Definition 25.2. Let M be a finitely generated free Zℓ-module with a Gal(ks/k)-action.

The Tate twists of M are

M(n) :=M ⊗Zℓ
Zℓ(1)⊗n

for n ∈ Z≥0, and M(n) := M ⊗Zℓ
(Zℓ(1)∨)⊗−n for n < 0. (Here Zℓ(1)∨ is the rank 1 free

Zℓ-module with Galois action by the inverse of the cyclotomic character.)

We want to construct the Weil pairing, which we want to be a pairing Tℓ(A)×Tℓ(A∨)→
Zℓ(1) that is nondegenerate, Zℓ-bilinear, and such that if ϕL is a polarization, then com-

posing (id, ϕℓ) : Tℓ(A) × Tℓ(A) → Tℓ(A) × Tℓ(A
∨) with the Weil pairing gives a sym-

plectic form Tℓ(A) × Tℓ(A) → Zℓ(1). In particular, the pairing defines an isomorphism

Tℓ(A
∨) ≃ (Tℓ(A))

∨(1).

Recall that A∨[ℓn] ≃ (A[ℓn])∨, so we already get a nondegenerate pairing A[ℓn] ×
A∨[ℓn]→ µℓn for each power of ℓ. We need to verify that this pairing is compatible with the

inverse limit defining the Tate module. That is, we want the following diagram to commute:

A[ℓn]×A∨[ℓn] µℓn

A[ℓn+1]×A∨[ℓn+1] µℓn+1

ℓ×ℓ ℓ

To do this, we will give a more explicit description of Cartier duality.
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Let f : A→ A be any isogeny, let x ∈ (ker f)(k), and let L ∈ (ker f∨)(k), which means

that there exists a trivialization β : f∗L ≃ OA (choose one arbitrarily). There is a natural

isomorphism t∗xOA → OA sending 1 7→ 1;20 we denote this with equality. Recall from the

proof of (ker f)∨ ≃ ker(f∨) that we have

t∗xf
∗L t∗xOA

f∗t∗f(x)L OA

f∗L

t∗xβ

β

Note that f(x) = e ∈ A, so we obtain a certain automorphism τ∗β ◦β−1 : OA → OA, which
must be an element of k

×
. Note that this morphism is independent of the choice of β, since

any different choice β′ : f∗L → OA differs from β by another constant. We claim that the

pairing from Cartier duality is given by

ef (x,L ) = t∗xβ ◦ β−1 ∈ k×

Verifying that this indeed the pairing we got from the proof of Theorem 18.1 amount to

unwinding the descent datum we defined there; we omit these checks, but it is a good

exercise in descent theory to work this out.

The Weil pairing concerns the case f = [n]. With the explicit description in hand, we

can show compatibility with the inverse limit in the Tate module:

Lemma 25.3. Let L ∈ A∨[m](k) ⊆ A∨[mn](k) and x ∈ A[mn](k). Then we have

emn(x,L ) = em(nx,L ). In particular,

eℓn(ℓx, ℓL ) = eℓn+1(x, ℓL ) = eℓn+1(x,L )ℓ

when x ∈ A[ℓn+1](k),L ∈ A∨[ℓn+1](k).

Proof. Pick an isomorphism β : [m]∗L → OA. Then we also get an isomorphism [n]∗β :

[mn]∗L = [n]∗[m]∗L → OA, so using the explicit description we may write

emn(x,L ) = t∗x([n]
∗β) ◦ ([n]∗β)−1

= [n]∗(t∗nxβ ◦ β−1)

= [n]∗em(nx,L )

= em(nx,L ).

(Here we are treating em(nx,L ) ∈ k
×

as an automorphism of OAk
for this notation to

make sense.) ■

20In general, if f : X → Y is a morphism and F is a sheaf on Y , then we get a natural map

Γ(Y,F ) → Γ(X, f∗F ) defined affine-locally by s 7→ s ⊗ 1, using the identification f∗M̃ = M̃ ⊗A B when
X = SpecB, Y = SpecA. The canonical isomorphism τ∗xOA = OA we are using is the one induced by this
map on global sections.
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On the homework, you will show that if f : A → B is any homomorphism, then

eℓ∞(Tℓ(f)x, y) = eℓ∞(x, Tℓ(f
∨)y). That is, the dual (in the abelian variety sense) is the

adjoint for the Weil pairing.

26 Weil pairing continued (03/18/2024)

26.1 Alternative description of the Weil pairing

Let L ∈ A∨[n](k). Because abelian varieties are smooth, we may write L = O(D) for some

Weil divisor D on A, and we get a corresponding embedding i : L ↪→ KA into the constant

sheaf of rational functions on A. (We think of sections of L as meromorphic functions

having poles “at worst of order D.”)

For x ∈ A[n](k), we get

KA ≃ [n]∗KA [n]∗L OA
[n]∗i

β

where β : [n]∗xL → OX is a choice of trivialization. Then g := [n]∗i ◦ β−1(1) is a ra-

tional function on A. By definition, div(g−1) = [n]−1D (preimage of the divisor D with

multiplicity).

Recall from the previous lecture that en(x,L ) may be computed as τ∗xβ ◦β−1 ∈ k×. We

claim that this constant is g(z+x)
g(z) for all z ∈ A, independently of the choice of z ∈ A; this is

the generalization of how [Sil09, §3.8] defines the Weil pairing in the case of elliptic curves.

Indeed, we can pin down the constant en(x,L ) by evaluating the action of τ∗xβ ◦ β−1 on

any nonzero test function in K (this endomorphism of OA yields an action K(A) at the

generic point). We test on the constant function 1:

τ∗xβ ◦ β−1(1) =

26.2 (Anti)symmetry of the Weil pairing

We notate eℓ∞ = lim←−n eℓn . This is a Z-linear nondegenerate pairing. We will notate the

group law on Zℓ(1) = µp∞ additively for the rest of this section.

Theorem 26.1. [Mum08, IV.20, Thm. 1] For all line bundles L /A, the pairing

EL : Tℓ(A)× Tℓ(A) Tℓ(A)× Tℓ(A∨) Zℓ(1)
id×Tℓ(ϕL ) eℓ∞

is alternating. In particular, if ϕL is an isogeny, e.g. if L is ample, then EL is a

symplectic form (alternating and nondegenerate).

Proof. We want to show that EL (x, x) = eℓ∞(x, Tℓ(ϕL )x) = 0 ∈ Zℓ(1) for all x ∈ A[ℓn]—it

suffices to prove this for all finite n. Write L = O(D). Then

ϕL (x) = t∗xL ⊗L −1 = O(t∗xD −D) = O(t−x(D)−D)

Let g be as in the explicit description of theWeil pairing above. Then div(g−1) = [ℓn]−1(t−xD−
D). We need to show t∗xg = g, i.e. g(z + x) = g(z).
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Pick y ∈ A(k) such that ℓny = x. Then div(g−1) = t−y([ℓ
n]−1D − [ℓn]−1D), and

div

(
ℓn−1∏
i=1

t∗iy(g
−1)

)
= t−x(ℓ

n]−1D)− [ℓn]−1D

= 0

because x ∈ A[ℓn](k). We conclude that h(z) := div(
∏ℓn−1
i=1 t∗iy(g

−1)) is some constant

function, so in particular h(z + y) = h(z), so g(x+ z) = g(z). ■

For all ϕ : A → A∨, we get a Zℓ-bilinear form Eϕ = eℓ∞(−, Tℓ(ϕ)(−)). Then Eϕ is

skew-symmetric if ϕ is a polarization.

Theorem 26.2. [Mum08, IV.20, Thm. 2 + IV.23] Let ϕ : A → A∨ be a homomor-

phism. The following are equivalent:

1. ϕ is symmetric (recall Definition 20.2).

2. Eϕ is skew-symmetric.

3. 2ϕ = ϕL for some line bundle L /A.

4. Over k, ϕ = ϕL ′ for some L ′/Ak.

Proof. We will only do some of these. For (3) =⇒ (4), see [Mum08, IV.23, Thm. 3, p.214].

We already did (4) =⇒ (1) in Proposition 20.2 and (4) =⇒ (2) in Theorem 26.1. We will

prove (1) =⇒ (3) and (2) =⇒ (3).

On your homework, you will show that if f : A → B is a homomorphism, then

eℓ∞(Tℓ(f)x, y) = eℓ∞(x, Tℓ(f
∨)y). If L /B is a line bundle, then there is a commutative

diagram

A B

A∨ B

f

ϕf∗L ϕL

f∨

so Ef
∗L (x, y) = EL (Tℓ(f)(x), Tℓ(f)(y)). We also know that (A × B)∨ = A∨ × B∨, so in

particular (A × A∨)∨ = A∨ × A, and Tℓ(A × B) = Tℓ(A) × Tℓ(B). Let P be the Poincaré

line bundle on A×A∨.

Lemma 26.3. EP((x, x∨), (y, y∨)) = eℓ∞(x, y∨) − eℓ∞(y, x∨) for all x, y ∈ Tℓ(A)

and x∨, y∨ ∈ Tℓ(A∨).

Proof. It suffices to show EP((x, 0), (y, 0)) = 0 = EP((0, x∨), (0, y∨)) and EP((x, 0), (0, y∨)) =

eℓ∞(x, y∨).

For the first claim, we have

A A×A∨id×eA∨
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so EP((x, 0), (y, 0)) = EOA(x, y) = eℓ∞(x, 0) = 0; for the other part, use (e × id) : A∨ →
A×A∨.

For the second claim, we have

ϕP : A×A∨ → (A×A∨)∨ = A∨ ×A

given by (x, x∨) 7→ t(x,x∨)P⊗P−1 7→ (t∗xLx∨ , x) via the restrictions A×eA∨ , eA×A∨. Then

EP(x, 0), (0, y∨)) = eℓ∞((x, 0), (y∨, 0))

= eℓ∞(x, y∨)

on A. ■

(1) =⇒ (3): Given ϕ : A→ A∨, set L := (id× ϕ)∗P. For x ∈ A, we have

ϕL (x) = (1× ϕ)∨ ◦ ϕP ◦ (1× ϕ)(x)

= (1× ϕ)∨(ϕ(x), x)

= ϕ(x) + ϕ(x) = 2ϕ(x).

so L is the line bundle desired by (3).

(2) =⇒ (3):

EL (x, y) = EP(Tℓ(1× ϕ)(x), Tℓ(1× ϕ)(y))

= eℓ∞(x, Tℓ(ϕ)y)− eℓ∞(y, Tℓ(ϕ)(x))

= Eϕ(x, y)− Eϕ(y, x) = 2Eϕ(x, y)

where the last step uses the fact that Eϕ is skew-symmetric. Since eℓ∞ is nondegenerate,

we conclude that ϕL = 2ϕ. ■

Remark 26.4. The image of NS(A) = NS(Ak) ↪→ Hom(Ak, A
∨
k
) is exactly the

sub-Z-module of symmetric homomorphisms. Recall that this embedding is given

by sending a class [L ] in NS(A) = Pic(A)
Pic0(A)

to the homomorphism ϕL : A → A∨.

Theorem 26.2 shows that the ϕL are precisely the symmetric homomorphisms A→
A∨.

26.3 Rosati involution revisited

Definition 26.1. Given a polarization λ : A → A∨, we define the Rosati involution (−)†

on End0(A) by

ϕ∨ = λ−1 ◦ ϕ ◦ λ

for ϕ ∈ End0(A).
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Remark 26.5. In this definition, λ−1 and ϕ are quasi-isogenies; multiplying by a

sufficiently large integer makes these into genuine isogenies. However, if λ is a princi-

pal polarization, then the Rosati involution restricts to a well-defined endomorphism

on End(A).

Remark 26.6. The Rosati involution depends on the choice of λ. However, if λ1 =

λ2 ◦ f for some nonzero f ∈ End0(A) with corresponding Rosatis †1, †2 (so f ∈
End0(A)×), then

ϕ†1 = f−1 ◦ ϕ†2 ◦ f

so the two Rosatis differ by conjugacy.

27 Albert’s classification (03/20/2024)

27.1 Facts about the Rosati involution

For any choice of polarization with associated Rosati involution, and any φ,ψ ∈ End0(A):

• (φ+ ψ)† = φ† + ψ†

• (φ ◦ ψ)† = ψ† ◦ φ† (for this reason the Rosati involution is sometimes called an anti-

involution)

• (φ†)† = φ

• Eλ(Tℓ(φ)x, y) = Eλ(x, Tℓ(φ
†))

Theorem 27.1. (Positivity of the Rosati involution.) For all nonzero φ ∈ End0(A),

we have

Tr(φ ◦ φ†) = Tr(φ† ◦ φ) > 0.

Here the trace is the usual trace on endomorphisms of the Qℓ-vector space Tℓ(A)⊗Qℓ.
When A is simple, so that D = End0(A) is a division algebra, then this trace is the

reduced trace map Tr = TrK/Q ◦Tr0D/K , where K is the center.

Proof. WLOG k = k, and let λ be the choice of polarization. Then λ = ϕL for some ample

L . Replacing L with a power of itself gives ϕL ⊗n = [n] ◦ϕL , and this factor of [n] cancels

itself out in the Rosati involution. Therefore we may assume L is very ample and write

L = O(D) for an effective divisor D.21

We claim that

Tr(φ ◦ φ†) =
2g

(Dg)
(Dg−1.φ−1(D)),

21It turns out that all ample line bundles are already of this form, i.e. Theorem 12.4 actually accounts
for all ample line bundles, but we never proved this.
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expressing the trace as an intersection product. This claim gives the theorem because

φ−1(D) is also effective and D comes from a very ample line bundle, so the intersections

Dg−1.φ−1(D) and (Dg) are positive integers. (This is more or less point counting when we

cut down an effective divisor by hyperplanes.)

To prove the claim, we extract the trace from the characteristic polynomial of φ† ◦ φ.
We have

deg([n] ◦ ϕL − ϕφ∗L ) = deg([n] ◦ φL − φ∨ ◦ φL ◦ φ)

= deg(ϕL ◦ ([n]− ϕ−1
L ◦ φ

∨ ◦ ϕL ◦ φ))

= deg ϕL · deg([n]− ϕ−1
L ◦ φ

∨ ◦ ϕL ◦ φ)

= deg ϕL · deg([n]− φ† ◦ φ)

The term deg([n] − φ† ◦ φ) is the characteristic polynomial P (n) of φ† ◦ φ on Tℓ(A) by

Theorem 25.1. By the Riemann-Roch Theorem, we may rewrite the above as

P (n) =
deg([n] ◦ ϕL − ϕφ∗L )

deg ϕL

=
χ(ϕ∗L −1 ⊗L ⊗n)2

χ(L )2

=

(
(nD − φ−1(D))g

(Dg)

)2

=
1

(Dg)2
(ngDg − gng−1Dg−1φ−1(D) + . . . )2

=
n2g

(Dg)
− n2g−1 2g ·Dg−1φ−1(D)

(Dg)
+ . . .

We use part (3) of Theorem 23.4 to get from the first line to the second line, and we use

part (2) to get from the second line to the third; note that in the third line, the additive

notation refers to addition in the group of Weil divisors, over which the intersection product

distributes. We extract the trace from the n2g−1-term in the last line: it is 2g·Dg−1φ−1(D)
(Dg) ,

as desired. ■

27.2 Endomorphism algebras of simple abelian varieties

Let A/k be a simple polarized abelian variety, let K be the center of D, and let K0 := {x ∈
K : x† = x†} be the fixed subfield of the Rosati involution.

Lemma 27.2. K0 is totally real and either K = K0 or K is a quadratic totally

imaginary extension of K0. (In the latter case, this means K is CM.)

Proof. (Sketch.) Split K0⊗R = R×· · ·×R×C×· · ·×C into the product of the archimedean

places of K0. Total reality of K0 is equivalent to having all terms in this product be R.
Since x† = x on K0, we get Tr(xx†) = Tr(x2) =: q(x) is a quadratic form, where we view

K0 as a Q-vector space. By continuity on K0 ⊗ R and positivity of the Rosati involution

restricted to K0, qR is positive semidefinite. The kernel of q(x) is trivial and defined over

Q, so the kernel of qR is also trivial, so qR is nondegenerate. Hence qR is positive definite.
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If there are any factors of C in the decomposition of K0 ⊗R, then taking x = (0, 0, . . . , 0, i)

yields qR(x) = −1, so we conclude that there are no copies of C in K0 ⊗ R.
Since K0 is a subfield of K fixed by an involution, we either have [K : K0] = 1 or 2. If

this extension is of degree 2, then write K = K0(
√
α) for some α ∈ K0,

√
α ̸∈ K0. Then

(
√
α)† = −

√
α. Suppose embeddings i1, i2 : K ↪→ R exist with i1(

√
α) = −i2(

√
α) (iff K is

totally real). Then, restricting to the factors R×R of K ⊗R corresponding to i1, i2, we get

Tr((x, y) · (x, y)†)) = Tr((x, y) · (y, x)) = 2xy.

But this is certainly not always positive, so we conclude K has no real embeddings if

[K : K0] = 2. ■

Definition 27.1. Let D be a non split quaternion algebra over a totally real field K = K0.

The standard involution on D is x∗ = Tr0D/K x− x.

Example 27.3. If we write D as H(a, b), so that D has K-basis 1, i, j, k with i2 =

a, j2 = b, ij = −ji = k, then the standard involution is x+ yi+ zj +wk 7→ x− yi−
zj − wk.

Theorem 27.4. (Albert’s classification.) [Mum08, IV.21, Thm 2], [EvdGM24, §12.4]
Let D be a division algebra of Q with center K equipped with a positive involution

(−)†, and let K0 be the totally real subfield of K fixed by K0.

• Type I: D = K = K0 is a totally real field and (−)† is the identity map.

• Type II: K = K0, and D is a quaternion algebra over K with D ⊗Q R ≃∏
K↪→RM2(R) (we say D is totally indefinite over R). Under an appropriate

choice of such an isomorphism, (−)† is given by transposition of matrices:

(X1, . . . , Xe) 7→ (Xt
1, . . . , X

t
e). Letting x 7→ x∗ be the standard involution

on D, there is an element a ∈ D with a2 ∈ K totally negative such that

x† = ax∗a−1 for all x ∈ D.

• Type III : K = K0 and D is quaternion algebra over K with D ⊗Q R ≃
H (Hamilton quaternions; we say D is totally definite over R). The Rosati

involution x† = x∗ is exactly the standard involution.

• Type IV: K is CM with totally real subfield K0. For all finite places v of

K, we have invv(D) + invc(v)(D) = 0, and moreover invv(D) = invcv(D) =

0 if v = c(v), where invv is the Hasse invariant of the class of D in

Br(Kv) = Q/Z and c denotes complex conjugation. There exists an isomor-

phismD⊗QR ≃K↪→C/ conjugation Md(C) such that the Rosati is (X1, . . . , Xe0) 7→
(X

t

1, . . . , X
t

e0), where e0 = [K0 : Q].

Unfortunately, we will not have time to prove Albert’s classification in this course; see

Mumford for a full proof. We will see next time that the subspace of End0(A) fixed by

Rosati (denoted End0(A)†) is related to the Néron-Severi group.
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28 Applications of Albert’s classification (03/22/2024)

28.1 Restrictions on End0(A)

Let A/k be simple of dimension g. With notation as in Albert’s classification, write e =

[K : Q], e0 = [K0 : Q] (so that either e = 2e0 or e = e0), and d =
√
[D : K] (always an

integer). We will show that the types in Albert’s classification impose various restrictions,

listed in Figure 1. (We only consider the last column when k = k.)

Type e d char 0 char > 0 dimQ NS⊗ZQ
dimQ End(A)

I e0 1 e | g e | g 1
II e0 2 2e | g 2e | g 3/4
III e0 2 2e | g e | g 1/4
IV 2e0 d e0d

2 | g e0d | g 1/2

Figure 1: Numerical restrictions on End0(A)

Remark 28.1. If k = k, pick a polarization λ : A → A∨. Then NS(A) ⊗ Q em-

beds into Hom(A,A∨) ⊗ Q ≃ End0(A)—using λ to get this isomorphism—as the

submodule of symmetric homomorphisms; see Remark 26.4.

Let λ′ ∈ NS(A) ⊗ Q ↪→ End0(A). Write λ′ = λ ◦ f for some f ∈ End0(A). Since

λ′ : A → A∨ is symmetric, i.e. (λ′)∨ = λ′, we obtain λ ◦ f = f∨ ◦ λ, i.e. f =

f† (taking the Rosati with respect to λ). This logic is reversible, so we identify

NS(A)⊗Q = End0(A)† (submodule fixed by †).

Remark 28.2. In general, we do not know whether all (D, †) with the dimension

restrictions required by Figure 1 show up as the endomorphism algebra of some

simple abelian variety. However, in characteristic 0, we do have a full answer: we

always get every possibility of type I and II, and we get all possibilities for type III

when g/2e ≥ 3, and for type IV with g/e0d
2 ≥ 3. For type III with g/2e ≤ 2 or type

IV with g/e0d
2 ≤ 2, Shimura gives a more precise answer.

Recall that in characteristic 0, WLOG k ⊆ C, we know End0(A) ⊆ End0(AC). Under

this embedding, End0(A) is a Q-simple division algebra with d2e | 2g that acts faithfully on

the singular cohomology group H1
sing(A(C),Q) ≃ Q2g.

We deduce some of the restrictions in Figure 1 from the following three results.

Lemma 28.3. Let k be any field and let A/k be a simple abelian variety. Then,

with notation as before, we have de | 2g.

Proof. Write D = End0(A) with center K. Recall that the degree function deg : D → Q is

a homogeneous polynomial function of degree 2g, and it is a norm form. Any norm form on

D is of the form (NmK/Q ◦Nm0
D/K)m for some m ∈ Z≥0. The homogeneous form Nm0

D/K ,

which is descended from a determinant map on a d-dimensional vector space, has degree d,
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and the form NmK/Q has degree e, since the norm form on a degree e field extension always

has homogeneous degree e. Hence med = 2g. ■

Proposition 28.4. Let L be a subfield of D fixed by Rosati. Then [L : Q] | g.
Hence, with notation as before, e0 | g.

Proof. Let L ⊆ NS(Ak) = End0(Ak)
†. Write the chosen polarization λ : A → A∨ as

λk = ϕL for a line bundle L /Ak. By Theorem 26.2, under this identification every element

of NS(Ak) is of the form ϕM for some line bundle M , so it makes sense to define f :

NS(A) ⊗ Q → Q by ϕM 7→ χ(M )
χ(L ) (extend by Q-linearity). Recall by Riemann-Roch that

χ(M )2/χ(L )2 = deg(ϕM )
deg(ϕL ) . Since χ is a homogeneous polynomial function of degree g, we

deduce f = χ(M )/χ(L ) is a norm form. (The sign ambiguity is resolved by testing the

case M = L .) Using the reduced norm form on L in NmL/Q, we have [L : Q] = g. ■

Lemma 28.5. If char(k) = 0 and A/k is simple, then ed2 | 2g.

Proof. (Sketch.) By finite generation shenanigans and the fact that dimQ End0(X) divides

dimQ End0(X/k), without loss of generality we may assume k = C. Then End0(A/C) acts
on H1(X(C),Q), and this action must be free since End0(A/C) is a division algebra, so

dimQ End0(A) = ed2 divides dimQH1(X(C),Q) = 2g. ■

We assemble these results to get the divisibility requirements in Figure 1. First, we note

that the last column of Figure 1 can be deduced by identifying NS(A) ⊗ Q with End0(A)†

and using the explicit descriptions of † on D ⊗Q R in Albert’s classification.

• For type I, we have e = e0, so Proposition 28.4 gives e | g.

• For type II and III, we again have e = e0. In any case, Lemma 28.3 gives 2e | 2g,
hence e | g. In characteristic 0, we moreover get ed2 = 4e | 2g by Lemma 28.5, hence

2e | g. Finally, to deduce 2e | g also in the type II case of positive characteristic, we

have

NS(A)⊗Q
dimQ End0(A)

=
dimQ End0(A)†

dimQ End0(A)
=

3

4
.

Since [D : K] = 4, we conclude there exists α ∈ End0(A)† \K. For such α, the field

L := K(α) satisfies the hypotheses in Proposition 28.4. Since by the tower law we

must have [L : K] = 2, Proposition 28.4 gives 2e | g.

• For type IV we have e = 2e0, so in characteristic 0 Lemma 28.5 gives 2ed2 | 2g, hence
ed2 | 2g. In positive characteristic, we only get 2ed | 2g =⇒ ed | g by Lemma 28.3.
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28.2 Examples in dimensions 1 and 2

Example 28.6. Let E be an elliptic curve. In characteristic 0, the endomorphism

algebra of an elliptic curve is commutative, so the only possibilities are:

• Type I with e = 1 and End0(E) = Q

• Type IV when E has complex multiplication, with d = e0 = 1 and End0(E) a

quadratic imaginary field.

In positive characteristic:

• Type I cannot happen if E is defined over Fp (equivalently, over a finite field),

since we get a Frobenius morphism. But it can occur when E is defined over,

say, Fp(t).

• If E is ordinary and defined over Fp, then it is type IV with e0 = d = 1, since an

appropriate power of the Frobenius morphism π does not lie in Z ⊆ End0(E).

• Type II never occurs, since we cannot have 2e | g if g = 1.

• Type III occurs with e = e0 = 1 and End0(E) a quaternion algebra ramified

only at ∞ and p. This is the case of a supersingular curve (necessarily defined

over Fp2). To see the ramification conditions, we have for ℓ ̸= p

D ⊗Q Qℓ ↪→ EndGal(k/k)(Tℓ(A)⊗Qℓ)

is actually an isomorphism, since the left side has Qℓ-dimension 4 and the

right side has Qℓ dimension at most 4, hence exactly 4. This also implies that

the Galois action is by scalars, since these are the only endomorphism that

commute with everything. This gives D ⊗Q Qℓ ≃ End(Tℓ(A) ⊗ Q) = M2(Qℓ).
Since we are assuming that D is ramified at ∞, it must also be ramified at

p, since the sum of the Hasse invariants must be 0 by the exact sequence of

Brauer groups from class field theory.
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Example 28.7. Let A/k be a simple abelian surface. In characteristic 0:

• Type I: Then either

– e = 1 and End0(A) = Q. In the moduli space of polarized abelian sur-

faces A2, this is the “open piece” away from a countable union of loci of

dimension ≤ 2.

– e = 2 and End0(A) is a real quadratic field, and the moduli locus for a

fixed order in a field has dimension 2.

• Type II: e = 1 and End0(A) is a quaternion algebra split at ∞, with moduli

locus of dimension 1.

• Type III would require e = 1, but this case never occurs by a result of Shimura.

• Type IV:

– e0 = 2: This is the case of CM abelian surfaces, where End0(A) is a degree

4 CM field.

– e0 = 1: This case cannot occur if k = k. If it did, then WLOG k = C and

End0(A) would contain a product of quadratic imaginary fields, which

implies that A = E2 for an elliptic curve E, contradicting simplicity. But

it can occur for non-algebraically closed fields. For example, over Q, we

can take the Jacobian of y8 = x(x− 1) modulo a copy of the Jacobian of

y4 = x(x− 1); this has an action by Q(ζ8).

Part III

The Main Theorem of Complex

Multiplication

29 Néron models (04/01/2024)

Let R be a discrete valuation ring, e.g. Zp, let K := Frac(R), and let k be the residue field

of R. Let A/K be an abelian variety.

Definition 29.1. A Néron model A of A over R is a smooth separated R-scheme of finite

type such that:

1. AK ≃ A;

2. (Néron mapping property) For every smooth R-scheme X and a K-morphism uK :

X := XK → A, there exists a unique map u : X → A extending uK .
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Remark 29.1. The Néron mapping property is a universal property, which implies

that Néron models are unique up to unique isomorphism if they exist.

Remark 29.2. The formation of Néron models commutes with étale base change,

i.e. if A is a Néron model of A and SpecR′ → SpecR is an étale morphism of DVRs

(e.g. an unramified extension of p-adic rings of integers), then AR′ is the Néron

model of AFrac(R). Unramifiedness is important for preserving smoothness.

Proposition 29.3. Let A /R be an abelian scheme. Then A is the Néron model of

A = AK .

Proof. We need only verify the Néron mapping property. Let X be a smooth R-scheme with

X := XK , and let X → A be a K-morphism. It suffices to demonstrate the Néron mapping

property for a finite-type connected open subscheme of X, since then the uniqueness of the

Néron mapping property and separatedness of A implies that the morphisms agree and

glue, so we may assume X is finite type. Because everything is finite type, we may spread

out to obtain an R-scheme Y ⊆X such that YK = X and Y ⊆X is open dense and such

that there exists a unique morphism Y → A that base changes to X → A.

We would like to extend the map Y → A to a rational map X 99K A defined in

codimension 2. Let η be a generic point of Xk (which is possibly reducible). Then OX ,η is

a DVR. Since A → SpecR is proper, by the valuative criterion applied to Frac(OX,η)→ A,

there exists a unique morphism SpecOX ,η → A . This glues with our previously defined

morphism Y → A to yield a rational map X 99K A defined in codimension 2.

Theorem 29.4. (Weil, [BLR90, §4.4., Thm. 1], [Mil10, Lem. 6.5]) Let R be a DVR,

let G be a smooth separated R-group scheme, and let Z be a smooth R-scheme with

a rational map f : Z 99K G defined in codimension 1 (i.e. the locus where f is not

defined has codimension at least 2). Then f : Z → G is actually defined everywhere.

Proof. (Sketch.) Consider F : Z ×R Z 99K G : (x, y) 7→ f(x)f(y)−1. The f being defined at

a point x is equivalent to F being defined at (x, x)—the reverse implication holds because

if F is defined on (x, U), then there exists U0 ⊆ U such that f is defined on U0, so that we

may set f(x) = F (x, y)f(y) for any u ∈ U0.

Theorem 29.5. (Algebraic Hartog Theorem.) If SpecA is a normal scheme, then

A =
⋂

p ht. 1Ap, where the intersection is taken inside Frac(A) over all height 1 prime

ideals of A.

We have F is defined at (x, x) if OG,e → K(Z × Z) factors through OZ×Z,(x,x). This

gives the theorem because F is defined on codimension 1. ■

From Weil’s theorem, we conclude that X 99K A extends uniquely to a map X →
A . ■
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Corollary 29.6. Let A ,B be abelian schemes over R, with A := AK , B := BK .

Then HomR-gp(A ,B) ≃ Hom(A,B) via f 7→ fK .

Proof. Since B is the Néron model of B and A is smooth, the Néron mapping property

supplies a unique extension F : A → B to any homomorphism f : A→ B. To see that this

is again a homomorphism, we again apply the Néron mapping property to the morphism

A× A→ B : (a1, a2) 7→ f(a1 + a2)− f(a1)− f(a2), which simultaneously lifts uniquely to

the trivial map A ×A → B but also to F (x1 + x2)− F (x1)− F (x2). ■

Theorem 29.7. [BLR90, §1.3, Thm. 1+§1.2 Prop. 6] Any abelian variety A/K ad-

mits a Néron model A . Moreover, A is a smooth R-group scheme, and ([BLR90,

§7.4, Thm. 1]) there exists a finite extension L/K such that the Néron model of AL

has semiabelian neutral component (an extension of an abelian variety by copies of

Gm).

104



30 Proof of the Shimura-Taniyama formula (04/03/2024)

We began this at the end of lecture on 4/01, but most of the proof was done today.

Theorem 30.1. Let K be a number field, and let A/K be a CMAV with CM by

(E,Φ). Let p be a prime of K and let k = OK/P. Assume that:

• K contains the Galois closure of E

• P is a prime of good reduction for A, i.e. the Néron model A /OKP
is an

abelian scheme.a

• KP/Qp is unramified, so that End(A) ∩ E = OE .

Recall the Frobenius mapb Frob : Ak → Ak sending a function f 7→ fq, where

q = #k. Then:

1. There exists π ∈ OE such that Frob = π, i.e. under the embedding OE ⊆
End(A) ≃ End(A ) ↪→ End(Ak).

2. For a place v | p of E and a fixed algebraic closureQp, writeHv = Hom(Ev,Qp),
so that Hom(E,Qp) =

∐
v|pHv. A fixed embedding Qp ↪→ C induces a bijec-

tion Hom(E,Qp) = Hom(E,C), yielding an identification Hom(E,C) =
∐
Hv.

Therefore it makes sense to define Φv := Φ ∩Hv ⊆ Hom(E,C).

Then with π as in part (1), we have

(π) =
∏
φ∈Φ

φ−1(NmK/φ(E) P)

where ordv is the normalized discrete valuation on Ev.

aWe know a Néron model always exists. We showed previously that if A /R is an abelian scheme,
then it is the Néron model of A/K, but the converse does not hold: it is possible for the Néron
model of A/K to fail to be an abelian scheme, and this is what bad reduction captures.

bThis is simultaneously the absolute and relative Frobenius.

We will soon see that CMAVs have everywhere potentially good reduction. We may

always pass to a finite extensionK ′/K that yields good reduction, so the restrictions imposed

in our version of the formula are easily sidestepped.

Proof. For (1), we show that the reduction map End(A )→ End(Ak) is injective.

Lemma 30.2. For (m, p) = 1, we have A(K)[m] = A(Kur
P )[m] = Ak(k)[m]. In

particular, the reduction map induces a natural isomorphism Tℓ(A) ≃ Tℓ(Ak) when

ℓ ̸= p, and this identification is compatible with the Galois action of the decom-

position group DP of P. Here, we identify DP/IP ⊆ Gal(k/k), where IP is the

inertia subgroup, noting that the action of DP/IP on Tℓ(A) is well-defined because

the ℓ∞-torsion subgroups are defined over Kur.

Proof. By the Néron mapping property, A(Kur
P ) = A (OKur

P
), and we have a reduction map
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A (OKur
P
) → Ak(k). The map A(Kur

P ) → Ak(k)[m] is bijective by Hensel’s lemma and the

fact that [m] is étale on A (since [m] is given by multiplication by m on the Lie algebra).

Therefore, we have #A(Kur
P )[m] = Ak(k)[m] = m2 dimA = #A(K)[m], so all of the

m-torsion points are unramified. ■

Corollary 30.3. If A/K has good reduction at P, then End(A) = End(A ) →
End(Ak) is injective.

Proof. If an endomorphism φ on End(A ) has image contained in the kernel of the reduction

map A → Ak, then by Lemma 30.2 the image of φ has trivial intersection with A (K)[m]

when (m, p) = 1. This means that φ kills the Tate module Tℓ(A ) for ℓ ̸= p, hence the

corresponding endomorphism of A also kills Tℓ(A). But we already know that the map

Tℓ : End(A)→ End(Tℓ(A)) is injective from Theorem 24.1. ■

We prove (1) in Theorem 30.1. We have End(A) = End(A ) ↪→ End(Ak), so we obtain

an embedding E ⊆ End0(Ak) and

E ⊗Qℓ ⊆ End0(Ak)⊗Qℓ ↪→ EndGal(k/k)(Tℓ(Ak)⊗Zℓ
Qℓ).

Tℓ(Ak)⊗Zℓ
Qℓ has Qℓ-dimension 2 dimA, but E ⊗Qℓ is also a Qℓ-algebra of Qℓ-dimension

2 dimA. We conclude Tℓ(Ak) ⊗Zℓ
Qℓ =: Vℓ(Ak) is a free rank 1 E ⊗ Qℓ-module. Hence

Frobenius is an E ⊗ Qℓ-linear endomorphism on a free rank 1 E ⊗ Qℓ-module, so it must

be scalar multiplication by some element of E ⊗ Qℓ. Frobenius also lies in End(Ak), so it

must lie in (E ⊗Qℓ) ∩ End(Ak) ⊆ OE . Therefore we may identify it with some π ∈ OE .
For part (2), since [q] factors through Frobenius on Ak (see Proposition 30.6), we may

write (π) =
∏
v|p p

mv
v as a product of prime ideals dividing p. Let h = #Cl(E) be the

class number, so that pmvh
v is always principal, say equal to the ideal (γv) with γv ∈ OE .

Consider γv : Ak → Ak, using OE ↪→ E ↪→ End(Ak). We want to compute deg γv.

Lemma 30.4. For all α ∈ OE , the morphism α : Ak → Ak has degree NmE/Q(α).

Proof. Consider α acting on Vℓ(Ak) ≃ E ⊗ Qℓ. Then degα = det(α|Vℓ(Ak)) = NmE/Q(α).

Here, we use that the determinant of multiplication by α on the field extension E, treated

as a Q-linear endomorphism, is by definition the norm of α. ■

By the lemma, we conclude that deg γv = NmE/Q pmvh
v , since the ideal norm is compat-

ible with the field norm.

Lemma 30.5. Let k = k have characteristic p, let q = pm, and let f : A → B be

an isogeny of AVs over k such that α∗(k(B)) ⊃ k(A)q (fields of fractions). Then

deg f ≤ qd, where d = dimker(f : LieA→ LieB).

Proof. Sketch; see also [Mil15, Thm. 11.29] and [Mil10, §7]. The proof idea is that ker f is

a local finite group scheme over k. Such a scheme always has coordinate ring of the form

k[x1, . . . , xn]/(x
pr1

1 , . . . , xp
rn

n ) with ri ≤ m (we saw something similar in the height 1 case in
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Lemma 22.4; the general case follows by induction). Then deg(f) =
∏n
i=1 p

ri ≤ pmn = qn

for n = dimker(Tℓf) = dimker(α : LieA→ LieB) = d. ■

By what we know from the analytic setting, LieA admits a K-basis (eφ)φ∈Φ such that

any a ∈ E act by a · (eφ)φ∈Φ = (φ(a)eφ)φ∈Φ. Since KP/Qp is unramified, LieA also admits

such an OKP
-basis (eφ)φ∈Φ, since unramifiedness gives

OE ⊗Z OKP
=

⊕
σ:E↪→KP

OKP
,

hence LieAk = LieAOKP
⊗ k has k-basis (eφ)φ∈Φ and

ker(γv : LieAk → LieAk) = Span{eφ : φ(γv) ∈ P}.

We have assumed that K contains all Galois conjugates of E, so choices of embeddings

KP ↪→ Qp ↪→ C identify Hom(E,K) = Hom(E,Qp) = Hom(E,C). Under this identifica-

tion, we get

Hv = Hom(Ev,Qp) = Hom(Ev,KP) = {τ ∈ Hom(E,K) | τ−1(P) = pv}

Φv = Φ ∩Hv = {φ ∈ Φ | φ−1(P) = pv},

where pv denotes the prime ofOE associated to the finite place v. We claim that eφ ∈ ker(γv)

if and only if φ ∈ Φv. The element γv ∈ OE lies in pv, but it cannot lie in any other pv′ ,

since that would imply phmv
v ⊆ pv′ , contradicting unique factorization. Hence, γv ∈ φ−1(P)

means that φ−1(P) = pv—this preimage must be one of the pv′ , and the presence of γv

rules out all the other possibilities. By our identification of Φv, this gives eφ ∈ ker(γv) if

and only if φ ∈ Φv. Hence dimker(γv|LieAk
) = |Φv|, and this is the critical observation that

lets us access the numerator in the Shimura-Taniyama formula.

We apply Lemma 30.5 to γv. By construction, the qh-th power Frobenius πhA factors

through γv, i.e. πhA = a ◦ γv as endomorphisms of Ak for some other a ∈ OE . Since

(πhA)
∗(k(Ak)) = k(Ak)

qh , essentially by the definition of Frobenius, we conclude that

γ∗v(k(Ak)) ⊇ k(Ak)
qh . Therefore Lemma 30.5 yields deg(γv) ≤ qh·|Φv|. Taking h-th roots,

NmE/Q pmv
v ≤ q|Φv|

for all v | p. We wish to show that this is an equality. The degree of Frobenius is

deg(Frob) = NmE/Q(π) = NmE/Q

∏
v|p

pmv
v

 ≤∏
v|p

q|Φv| = q|Φ| = qdimA,

noting that
∐

Φv = Φ. But we also know a priori that Frobenius has degree at least qdimA

by considering its effect on a transcendence basis of k(Ak), so the above inequality must

actually be an equality. We conclude

NmE/Q pmv
v = q|Φv| = (NmK/Q P)|Φv|,

107



which equals

NmE/Q

 ∏
φ∈Φv

φ−1(NmK/φ(E) P)

 =
∏
φ∈Φ

(NmK/Q P)

so in fact pmv
v =

∏
φ∈Φv

φ−1(NmK/φ(E) P). Then finally (2) follows by taking
∏
v|p. ■

Proposition 30.6. Frob ◦Frob† = Frob† ◦Frob = [q].

Proof. Let λ : A → A∨ be a polarization defined over Fq inducing a Rosati involution †.
Then

Frob†A ◦FrobA = λ−1 ◦ Frob∨A ◦λ ◦ FrobA = λ−1 ◦ Frob∨A ◦FrobA∨ ◦λ,

noting that λ is Frobenius-equivariant. So it is equivalent to show that Frob∨A ◦FrobA∨ =

[q]A∨ .

We will show this equality on the functor of points. Let T be a scheme and L a line

bundle on A× T such that [L] ∈ A∨. Write q = pm. Then

FrobA∨([L ]) = [(id× F (m)
T )∗L ]

so

Frob∨A ◦FrobA∨([L ]) = [(FrobA×id)∗ ◦ (id× F (m)
T )∗L ]

= [(FrobA×F (m)
T )∗L ].

We claim that this is [L ⊗q].

The endomorphism FrobA×F (m)
T on A × T is its q-th power (absolute and relative)

Frobenius endomorphism over k. In general, a line bundle L on a scheme X is defined

by a collection of trivializing charts Ui and cocycles φij describing the transition functions

between charts. If f : Y → X is a morphism, the line bundle f∗L is the line bundle on Y

with trivializing charts f−1(Ui) and cocycles f∗(φij). In the case where f is the Frobenius

morphism F
(m)
X , we have F

(m),∗
X (σij) = σqij . After all, cocycles are just sections of the struc-

ture sheaf, and Frobenius sends a section to its q-th power. The cocycles σqij are precisely

the cocycles of the line bundle L ⊗q, essentially by the definition of the tensor product.

Hence, we conclude [(FrobA×F (m)
T )∗L ] = [L ⊗q]. This means that Frob∨A ◦FrobA∨ acts

by multiplication by q in the group law on the functor of points, hence it also acts so as a

morphism on A∨ by the Yoneda lemma. ■

31 Main Theorem of Complex Multiplication (04/05/2024)

31.1 Reflex norm

Let (E,Φ) be a CM type (E not necessarily a field). We let E∗ denote the reflex field, which

is always a CM field. We will think of Φ ⊆ Hom(E,Q)—recall that we have shown that all

CMAVs are already defined over Q. Let K be a field containing all images of E ↪→ Q, so
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that E∗ ⊆ K by Lemma 7.4; if E is a field, then we may take K to be the Galois closure

of E in Q. Then we may write E ⊗Q K ≃
∏
σ∈Hom(E,K)Kσ. By Galois descent for vector

spaces, there exists a unique E ⊗Q E
∗-module VΦ such that VΦ ⊗E∗ K ≃

∏
φ∈ΦKφ.

Definition 31.1. The reflex norm NΦ : (E∗)× → E× is defined by a 7→ det(a|VΦ
), viewing

VΦ as a free E-module and a|VΦ
as a linear transformation on this space.

More generally, for any K ⊇ E∗, we have NK,Φ : K× → E× via a 7→ det(a|VΦ⊗E∗K),

and we have the compatibility NK,Φ = NΦ ◦NmK/E∗ .

Proposition 31.1. If K contains all images of homomorphisms E → Q, then for all

a ∈ K×, we have NK,Φ(a) =
∏
φ∈Φ φ

−1(NmK/φ(E) a).

Proof. See [Mil10, Prop. 1.26]. ■

Remark 31.2. Proposition 31.1 gives a more concrete way to think about the reflex

norm. It is similar to the usual norm map, except that instead of taking into account

all embeddings, it only uses the embeddings from the CM type Φ, giving us only one

half of the usual norm.

Corollary 31.3. For any a ∈ E∗, NΦ(a)NΦ(a) = NmE∗/Q(a). In particular, this

element lies in Q. (Here the notation of complex conjugation is unambiguous since

E ∋ NΦ(a) is CM.)

Proof. Norms are transitive, so NmE∗/Q(a) = NmE/Q(NmE∗/E(a)). We may expand this

as

NmE∗/Q(a) =
∏

φ∈Hom(E,C)

φ−1(NmE∗/φ(E)(a))

=
∏
φ∈Φ

φ−1(NmE∗/φ(E)(a))
∏
φ∈Φ

φ−1(NmE∗/φ(E)(a))

= NΦ(a)NΦ(a)

since Hom(E,C) = Φ
∐

Φ. ■

By tensoring NΦ and NK,Φ with Qℓ and R, we get an induced map on idèles

NK,Φ : A×
K → A×

E ,

which also induces a similar map on fractional ideals.

31.2 Statement of the Main Theorem

Now let A/Q be a CMAV with CM by (E,Φ) and reflex field E∗. Consider σ ∈ Gal(E∗/E∗).

Let σA := A ×SpecQ,σ SpecQ, which is again a CMAV with CM by σΦ = Φ since σ fixes

E∗. (Recall that the reflex field is precisely the fixed field of all σ ∈ Gal(Q/Q) such that

σΦ = Φ.) We have a map x 7→ σ(x) giving an isomorphism σ : A → σA compatible with
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the E-action. Since we have two CMAVs with the same CM type, by our classification of

CMAVs (Proposition 4.2) there exists an isogeny α : A→ σA compatible with the E-action

that is unique up to multiplication by E×.

The content of the main theorem of complex multiplication is to compare the the two

maps σ : A → σA and α : A → σA. The first of these maps arises arithmetically, from the

Galois action, and the latter arises geometrically, from an isogeny of abelian varieties.

To make our comparison, we “adèlicize” the Tate module: write T̂ (A) :=
∏
ℓ Tℓ(A) and

V̂ (A) = T̂ (A)⊗Z Q. Then the two maps σ, α : A→ σA induce maps σ, α : V̂ (A)→ V̂ (σA),

which are both E ⊗ Af = AE,f -linear, where Af =
∏
p Zp denotes the finite adèles over Q

and AE,f denotes the finite adèles over E. We have seen previously that each Vℓ(A) is a rank

1 free E⊗QQℓ-module, and from this it follows that V̂ (A) and V̂ (σA) are rank 1 free AE,f -
modules. Therefore there exists some η(σ) ∈ A×

E,f such that α(η(σ)x) = σ(x) for all x ∈
V̂ (A), yielding a well-defined group homomorphism η : Gal(Q/E∗)→ A×

E,f/E
×, necessarily

factoring through Gal(E∗,ab/E∗) since the image is abelian. (This homomorphism is only

well-defined as a homomorphism to the quotient A×
E,f/E

×, rather than A×
E,f , because α

itself is only well-defined up to a multiple in E×.)

From global class field theory, we have the global Artin map

AE∗,f/(E
∗)× → Gal(Eab/E∗),

and we claim that the map η : Gal(Q/E∗)→ A×
E,f/E

× we have just defined corresponds to

the reflex norm

NΦ : A×
E∗,f/(E

∗)× → A×
E,f/E

×,

in the sense that the following diagram commutes:

Gal(Q/E∗) A×
E,f/E

×

Gal(E∗,ab/E∗) AE∗,f/(E
∗)×

η

Art

NΦ

Commutativity of this diagram is the Main Theorem of Complex Multiplication.

Theorem 31.4. (Shimura-Taniyama Main Theorem of Complex Multiplication.)

The well-defined map η is given by η(σ) = NΦ(s), where s ∈ A×
E∗,f/(E

∗)× is such

that ArtE∗(s) = σ|E∗,ab .

Equivalently, for any σ ∈ Gal(Q/E∗), and any s ∈ A×
f,E∗ with Art(s) = σ|E∗,ab , there

exist a unique E-isogeny α : A→ σA such that α(NΦ(s) ·x) = σ(x) for all x ∈ V̂ (A).
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Remark 31.5. Such an s always exists. In contrast to the global function field case,

the Artin map for number fields ArtK : A×
K → Gal(Kab/K) is always surjective.

Its kernel contains K× ·
∏
v|∞K+

v , where v ranges over the infinite places and K+
v

denotes the connected component of K×
v containing 1. The field E∗ is CM, so it has

no real places and the the Artin map kills all of the infinite places in AE∗ . Therefore

it descends to a surjective homomorphism A×
E∗,f/(E

∗)× → Gal(E∗,ab, E∗).

In the second statement of 31.4, the isogeny α depends on the exact choice of s ∈
A×
E∗,f .
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Remark 31.6. Let λ : A → A∨ be a polarization that is compatible with the

E-action in the sense that the associated Rosati involution † induces complex con-

jugation on E. Using the Weil pairing/Riemann form and this polarization, we have

a symplectic map ψ : V̂ (A) × V̂ (A) → Af (1) obtained by amalgamating all of the

Weil pairings Tℓ(A) × Tℓ(A∨) → Zℓ(1). This pairing is Af -bilinear, and the Rosati

involution again acts as an adjoint for the pairing.

We state one consequence of the main theorem. We choose α so that α(η(σ)x) = σ(x)

exactly, i.e. adjusting α by a constant in E× so that these two things agree exactly,

not just up to E×. Define another pairing

σψ : V̂ (σA)× V̂ (σA)→ Af (1)

(x, y) 7→ σψ(σ−1, σ−1y).

Equivalently, since σ acts on the target of the Weil pairing by the cyclotomic character

χ, we write
σψ(σx, σy) = χ(σ) · ψ(σx, σy).

The main theorem lets us substitute: if ArtK(s) = σ, then

σψ(σx, σy) = σψ(α(NΦ(s)x), α(NΦ(s)y))

= σψ(NΦ(s)NΦ(s)α(x), α(y))

= σψ(NmE∗/Q(s)α(x), α(y))

= NmE∗/Q(s) · σψ(α(x), α(y)).

Here we use Corollary 31.3 to get NΦ(s)NΦ(s) = NmE/Q(s)—since this lies in A×
f ,

we may use the Af -bilinearity of the Weil pairing. We conclude that ψ(x, y) and
σψ(α(x), α(y)) differ by the factor c := χ(σ)

NE∗/Q(s)
:

χ(σ)

NE∗/Q(s)
ψ(x, y) = σψ(α(x), α(y))

It turns out that the ratio c lies in Q×
>0. The kernel of the Artin map Art : A×

f →
Gal(Qab/Q) is Q>0, since the kernel of “full” Artin map A× → Gal(Qab/Q) (includ-

ing the real place) is the closure of Q× ·R>0. By class field theory, Art(NmE/Q(s)) =

σ|Qab—this follows from functoriality of the Artin map, which is commutativity of

the diagram

A×
E∗/(E∗)× Gal((E∗)ab/E∗)

A×/Q× Gal(Qab/Q).

ArtE∗

NmE∗/Q res

ArtQ

Another property of Art : A×
f → Gal(Qab/Q) is that it sends χ(σ), treated as an

element of Ẑ ⊆ A×
f , to σ|Qab . Therefore, since χ(σ) and NmE∗/Q(s) map to the same

element under the Artin map, they must differ by a factor in Q×
>0. See also [Mil10,

Rmk. 9.11].
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We will postpone the proof of the main theorem until the end of the semester. Before

doing this, we will discuss another important application of the main theorem. Whereas

much is unknown about L-functions of general abelian varieties, the main theorem lets us

say quite a lot about L-functions of CMAVs. In particular, we get the existence of an

analytic continuation and functional equation by expressing this L-function as a product of

Hecke L-functions; see Theorem 33.5.

31.3 Review of the Artin map

See [Ked21, §6.4] or [Mil20, §I.1, §V.5] for more on the statements of class field theory.

Let K be a number field with maximal abelian extension Kab. There exists a map Art :

A×
K/K

× → Gal(Kab/K) known as the Artin map which is a continuous homomorphism

such that, for all finite abelian extensions L/K and all places v of K, the following diagram

commutes:

Kv Gal(Lw/Kv)

A×/K× Gal(Kab/K) Gal(L/K),

ArtLw/Kv

ArtK

where ArtLw/Kv
is the local Artin map, which is the unique continuous homomorphism

satisfying the following properties.

• If v is finite, then

– If πv is a uniformizer of OKv
and Lw/Kv is unramified, we have ArtLw/Kv

(πv) =

Frob−1
Lw/Kv

∈ Gal(Lw/Kv).

– The kernel of ArtLw/Kv
is NmLw/Kv

(L×
w), inducing an isomorphismK×

v /NmLw/Kv
(L×

w)→
Gal(Lw/Kv).

• If v is real, then the composition R× → Gal(C/R) = {±1} is the sign map.

• If v is complex, C× → Gal(C/C) = {1} is the trivial map.

Moreover, for any finite extension L/K, the Artin map descends to an isomorphism ArtL/K :

A×
K/(K

× ·Nm(AL))→ Gal(L/K).

Remark 31.7. Beware that there are two common conventions for the local, hence

also global, Artin map: one can require it to either send πv to FrobLw/Kv
(“arithmetic

Frobenius”) or to Frob−1
Lw/Kv

(“geometric Frobenius”). We use the latter convention,

which agrees with [Mil10] but disagrees with [Con05], so make note of which conven-

tion holds if you are looking at the references, since it changes some of the formulas

slightly.

32 The homomorphism λs (10/08/2024)

We will discuss L-functions of CM abelian varieties and their relationship with Hecke L-

functions. We will make some simplifying assumptions. Let K be a number field, A/K

113



an abelian variety with CM by E ⊆ End0(A), and let E∗ ⊆ K ⊆ Q. We have a Galois

representation

ρ : Gal(Q/K)→ AutAE,f
(V̂ (A))

and the image of this commutes with E since E ⊆ End0(A/K). We also know that V̂ (A)

is a rank 1 free AE,f -module, hence AutAE,f
(V̂ (A)) ≃ A×

E,f . This is an abelian group, so ρ

factors through Gal(Kab/K). From the main theorem of CM, for all s ∈ A×
K,f there exists

a unique λs ∈ E× such that

ρ(ArtK(s)) = NΦ(NK/E∗(s)) · λ−1
s .

That is, the homomorphism λ : A×
K,f → E×, s 7→ λs measures how far the Galois represen-

tation ρ differs from the reflex norm, where we identify the two domains using the Artin

map, and the main theorem tells us that this difference lies in E×.

By the functoriality of the Artin map, the following diagram commutes:

A×
K/K

× Gal(Kab/K)

A×
E∗/E∗,× Gal(E∗,ab/E)

ArtK

NmK/E∗

ArtE∗

where the map on the right is induced by abelianization of the inclusion Gal(Q/K) →
Gal(Q/E∗).

Our goal for this section is to prove that λ is a continuous homomorphism, which will

be Proposition 32.7.

Proposition 32.1. [Mum08, §21, Prop. on p. 188] Let A be a polarized abelian

variety, and let α ∈ End(A) satisfy α† ◦ α = a ∈ Z. Then Q[α] ⊆ End0(A) is

semisimple and α acts semisimply on Tℓ(A). Letting {ωi} denote the roots of the

characteristic polynomial of α acting on Tℓ(A), we have |ωi|2 = a for all i, and

moreover these roots satisfy the symmetry {ωi} = {a/ωi} as multisets.

Proof. Setting α† = a · α−1 ∈ Q[α], the Rosati involution restricts to Q[α] ⊆ End0(A). The

space Q[α] carries a positive definite quadratic form Tr(x ◦ x†). If a ⊆ Q[α] is an ideal, let

a⊥ be its orthogonal complement with respect to this quadratic form. Then a⊕ a⊥ = Q[α]

and a ∩ a⊥ = {0}, so Q[α] satisfies complete reducibility into ideals, so we may write

Q[α] = K1 × · · · ×Kn as a product of fields. Again using positivity of †, we have † acting
on each Ki, so each Ki is either totally real or CM by Albert’s classification, with † acting
by the identity or complex conjugation accordingly.

The statement about semisimplicity of the action of α follows from the fact that if A is a

semisimple algebra (i.e. a direct sum of simple algebras), then any A-module is semisimple,

and semisimplicity of a Q[α]-representation implies that the element α acts semisimply; see

[Mil20, §IV.1] for more details.

The ωi are the images of α via all homomorphisms φj : Q[α] → Ki → C. But for all
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such homomorphisms, since a ∈ Q we have

a = φj(a) = φj(α
† ◦ α) = φj(α) · φj(α) = |ωj |2.

■

Corollary 32.2. (Riemann hypothesis for abelian varieties.) Let A/k be an abelian

variety over a finite field k of order q. Then Frobenius acts semisimply on the Tate

modules Tℓ(A), ℓ ∤ q, and all the roots of the characteristic polynomial of Frobenius

have absolute value
√
q.

Proof. Apply Proposition 32.1 to the Frobenius morphism, which satisfies Frob† ◦Frob = [q]

by Proposition 30.6, where q = #k. ■

Remark 32.3. Corollary 32.2 is the starting point for Honda-Tate theory, which we

will discuss later.

Remark 32.4. Abelian varieties are essentially the only case where we know how to

show that Frobenius acts semisimply on étale cohomology. The Grothendieck-Serre

conjecture states that Frobenius action is semisimple on the étale cohomology of any

smooth projective variety.

Definition 32.1. Let A be an abelian variety with polarization ϕ = ϕL for ample L .

Then the group of automorphisms preserving the polarization Aut(A, ϕ), also written as

Aut(A,L ), is the set of automorphisms α of A such that α∨ ◦ ϕ ◦ α = ϕ. Equivalently,

α† ◦ α = 1.

Proposition 32.5. If A/k is any abelian variety with polarization ϕ : A→ A∨ and

M ≥ 3 is an integer, then Aut(A, ϕ) ↪→ Aut(A[M ]).

Remark 32.6. This a theorem attributed to Serre; see [Mum08, IV.21, Thm 5]. This

means that, although Aut(A) may be infinite, Aut(A, ϕ) is finite and more easily

controlled, which makes it much better suited for moduli problems. In particular,

the moduli space of polarized abelian varieties of a given degree is representable as

a scheme, whereas the moduli space of all abelian varieties is not.

Proof. All of the eigenvalues ωi of α are algebraic integers, and by Proposition 32.1, α†◦α = 1

means that all |ωi| = 1. If all conjugates of an algebraic integer have absolute value 1, then

that algebraic integer is a root of unity, so the ωi are roots of unity.

Suppose that α lies in the kernel of Aut(A, ϕ)→ Aut(A[M ]). This means that α−1 kills

A[M ], so we may write α − 1 = [M ] ◦ β for some β ∈ End(X), so that each ωi − 1 = Mηi

for some algebraic integer ηi arising as a root of the characteristic polynomial of β.

To finish the proof, it therefore suffices to show that if η is an algebraic integer and

ω = 1 +Mη is a root of unity, then in fact ω = 1. This would imply that all of the ωi are
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1, hence α is the identity map (recall that α acts semisimply on the Tate module). For any

n > 0, the expression (1+Mη)n is again of the form 1+Mη′ for an algebraic integer η′, so

if ω ̸= 1 then by raising to an appropriate power we may assume that ω is a primitive p-th

root of unity. Then 1− ω =Mη has norm

p−1∏
i=1

(1− ωi) = ±Mp−1 Nm(η).

The expression on the left is Φp(1), where Φp is the p-th cyclotomic polynomial
∑p−1
i=0 X

i,

which evaluates to p. We conclude that p is divisible over the integers by Mp−1, which can

only happen if p = 2, but that would implyM | 2, contradicting the assumptionM ≥ 3. ■

Proposition 32.7. [Con05, Thm. 3.2] The group homomorphism λ : A×
K,f → E× is

continuous for the discrete topology on E×.

Proof. We want to show that that for s ∈ A×
K,f sufficiently close to 1, we have λs = 1—

equivalently, the kernel of λ is open. Since ρ,ArtK , the norm maps, and inversion are all

continuous, we do at least know that λ is continuous as a homomorphism A×
K,f → A×

E,f ,

or equivalently as a homomorphism A×
K,f → E× where E× is endowed with its subspace

topology in A×
E,f .

22 Therefore we take s sufficiently close to 1 such that λs ∈ O×
E , λs ≡

1 modM for a fixed integer M ≥ 3, and λ±s ∈ OE ∩ End(AQ), since all of these conditions

are open in the subspace topology for E× ↪→ A×
E,f .

Our assumptions mean that λs ∈ OE ∩ Aut(AQ), so we may and do treat λs as an

automorphism of AQ. The assumption λs ≡ 1 modM means that λs acts trivially on

A(Q)[M ]. By Proposition 32.5, we are done if we can find a polarization ϕ : A→ A∨ such

that λs ∈ Aut(A, ϕ) is an open condition on s ∈ A×
K,f .

We take ϕ to be an E-linear polarization ϕ : AQ → A∨
Q, i.e. compatible with the action of

E ↪→ End0 on both sides.23We may take s ∈ A×
K,f sufficiently close to 1 such that ArtK(s)

fixes the number field of definition L/K of ϕ. More precisely, we can take s such that

ArtK(s) ∈ Gal(Kab/(Kab ∩ L)), so that there exists a lift of ArtK(s) to Gal(Q/L).
Let ArtK(s) = σ. By the definition of λs, σ acts on V̂ (A) by the scalar NΦ(NK/E∗(s)) ·

λ−1
s . Using the results from Remark 31.6, there exists c = χ(σ)

NmE∗/Q(s)
∈ Q× such that

cψ(x, y) = σψ(λ−1
s x, λ−1

s y).

Since σ acts trivially on the field of definition for ϕ, unwinding definitions shows that
σψ(x, y) = ψ(x, y), hence rearranging the above gives

c−1ψ(x, y) = ψ(λsx, λsy) = ψ(λsλsx, y).

Since the Weil pairing is nondegenerate, this means that in fact λsλs = c ∈ Q×. We’ve

chosen λs to lie in OE , so by positivity of the Rosati involution λsλs must be a positive

integer. However, we have also ensured that λs is invertible (as an element of OE ∩AutAQ),

22This subspace topology is not discrete since we’ve removed the archimedean places, so we have more to
prove.

23Such a polarization exists by the complex analytic theory—the Riemann form trE/Q(ξc(x)y) works.
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which forces λsλs = c = 1. That is, λs ∈ Aut(A, ϕ). Yet we have chosen s such that λs acts

trivially on A[M ], so by Proposition 32.5 we conclude λs = idA. ■

33 L-functions (04/10/2024)

33.1 Hecke L-functions

Definition 33.1. A Hecke character is a continuous homomorphism χ : A×
K/K

× → C×,

where K is a number field.

Remark 33.1. Some authors require Hecke characters to be unitary, i.e. with the

image of χ contained in the unit circle. These two definitions are essentially the same,

since there is a unique factorization of χ = χ0 ⊗ ∥ · ∥σ, where χ0 : A×
K/K

× → S1 is

unitary, σ ∈ R, and ∥ ·∥ : A×/K× → K× is the norm map x 7→
∏
v |x|v, where {| · |v}

is a compatible collection of v-adic norms such that the product formula holds. This

factorization comes from the decomposition A×/K× = A×,1
K /K× × R×

+, where A×,1
K

denotes the norm 1 idèles.

Definition 33.2. Let A/K be an abelian variety with CM by E ⊆ End0(A), and let τ :

E ↪→ C denote the various embeddings of E into C. Let NΦ,K,∞ : A×
L → E×

∞ denote the

composition of the maps NΦ,K : A×
K → A×

E and the projection A×
E ↠

∏
v|∞E×

v := E×
∞

(projection onto the product of all archimedean places, all of which are complex since E is

CM). Recall the continuous homomorphism λ : A×
K,f → E×; by projecting onto the finite

places, we abuse notation and extend λ to A×
K . The Hecke characters associated to A are

ατ : A×
K E×

∞ E×
τ C×.

N−1
Φ,K,∞·λ τ

That is, we get one Hecke character per τ . The recipe N−1
Φ,K,∞ · λ should be thought of

as incorporating information from both the archimedean and nonarchimedean places. We

prove that ατ is indeed a Hecke character, i.e. it satisfies:

Lemma 33.2. ατ is continuous and ατ |K× = 1.

Proof. For s ∈ A×
K write sf ∈ A×

K,f for the finite part of s. From the definition of λs we

have have λs ·N−1
Φ (NmK/E∗(sf )) = ρ(Art−1

K (s)). (Recall that NK,ϕ = NΦ ◦NmK/E∗ .) For

s ∈ K×, we have Art−1
K (s) = 1—the Artin map kills K×. We also have

(NΦ ◦ (NmK/E∗(sf ))
−1 = NK,Φ(sf )

−1 = N−1
K,Φ,∞(s),

hence NK,Φ,∞(s)−1 · λs = 1.

Continuity of ατ is clear from continuity of λ, the reflex norm, and the various projection

maps. ■

If χ is a Hecke character, write χ∞ := χ|K×
∞

for its restriction to the archimedean places.

Definition 33.3. AHecke character χ is algebraic if χ∞(x∞) =
∏
v real x

nv
v

∏
v complex x

nτv
v x

nτv
v

for some nv, nτ , nτv ∈ Z. Another way to state this is that this is a group scheme homo-

morphism ResK/Q Gm → Gm over Q.
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We can check that the ατ are algebraic. We will not need this fact, or even the definition

of an algebraic Hecke character, but we mention it because this is a common feature of all

Hecke characters associated to motives (whatever that means). More interestingly, it turns

out that the converse is true: all algebraic Hecke characters arise from motives! See [Sch88],

especially Theorem 4.1, for more discussion.

Definition 33.4. The (incomplete) L-function associated to a Hecke character χ is

L(χ, s) :=
∏
p∤m

(1− χp(ϖp)NmK/Q(p)
−1)−1

the product ranges over (finite) primes p ⊂ OK (uniformizer ϖp ∈ OKp
) not dividing the

conductor m of χ. This is the smallest integral ideal m =
∏

p p
mp such that

χ|∏
p(1+pmp ) = 1,

where all the mp are finite and almost always zero by the continuity of χ and the topology

on A×
K . In particular, if p ∤ m, then χp(ϖp) is independent of the choice of uniformizer ϖp

of Kp.

Theorem 33.3. (Hecke, Tate’s Thesis.) After completing L(χ, s) to a function

Λ(χ, s) by adding a suitable factor L∞(χ, s), L(χ, s) admits a meromorphic continu-

ation to C, satisfying a functional equation, and it is an entire analytic function if χ0

(the norm 1 part of χ) is nontrivial, analogous to how a Dirichlet L-function L(χ, s)

is holomorphic if χ is not the trivial Dirichlet character.

Proof. See [Neu99, §VII.8], or [Bum97, §3.1] ■

Definition 33.5. Assume for simplicity that an abelian variety A/K has good reduction

everywhere. The (Hasse-Weil) L-function of A is

L(A, s) :=
∏

p⊂OK

det(1− Frobp(NmK/Q p)−s|Vℓ(A))
−1.

We can make a similar definition using H1
ét(AQ,Qℓ) instead of Vℓ when A has good

reduction at p, but for this we need to use the geometric Frobenius rather than the arithmetic

Frobenius, since H1
ét(AQ,Qℓ) is dual to Vℓ. More generally, geometric Frobenius acts on

Hét(AQ,Qℓ)
Ip , where Ip is the inertia subgroup, which already acts trivially if we have good

reduction.

Proposition 33.4. Let A/K have CM, and let p be a prime of K.

1. If A has good reduction at p, then λp := λ|K×
p

is trivial on O×
Kp

.

2. λp(ϖp) ∈ OE acts on Ak(p) as Frobp, where Ak(p) is the special fiber of the

Néron model of A over OKp
.

Proof. 1. Recall from local class field theory that Ip ⊆ Gal(Kab/K) is the image of

O×
Kp

under the local Artin map. Choose any prime ℓ not equal to the residue char-
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acteristic of p. By the criterion of Néron-Ogg-Shafarevich (Theorem 34.3), good

reduction means that Ip acts trivially on Tℓ(A), so for s ∈ O×
Kp
⊆ A×

K we get

ρ(ArtK(s)) = NK,Φ(s)λ
−1
s = 1 acting on V̂ (A). But NK,Φ(s) also acts trivially be-

cause sℓ = 1, so λs acts trivially.

2. We have ϖp ∈ K×
p ⊆ A×

K . Again choose ℓ as in part (1), so that NK,Φ(s) again acts

trivially on Tℓ(A). Then λp(ϖp) = ρ(ArtK(ϖ−1
p )) = ρ(Frobp), acting on Tℓ(A) ≃

Tℓ(Ak(p))—recall that ArtK(ϖ−1
p ) = Frobp is part of the unique characterization of

Artin map.

■

Theorem 33.5. If A/K has CM, then for Re(s) > 3
2 we have L(A, s) =∏

τ :E→C L(α
τ , s). In particular, L(A, s) has an analytic continuation and functional

equation via Tate’s thesis.

Intuitively, we expect the L-function of A to decompose into a product of Hecke L-

functions because the Galois representation on the Tate modules is abelian. Indeed, one

could argue that the fact that the Galois representation attached to a CMAV is one of the

main reasons why they are the easiest case to work with, since number theorists know a lot

about abelian extensions by now...

We won’t prove the fact about the half-plane of convergence, but the reason that it is

Re(s) > 3
2 is that the eigenvalues of Frobenius all have absolute value q1/2 = NmK/Q(p)

1/2.

Proof. To simplify notation, write X = (NmK/Q p)−s. Since Vℓ(A) is a rank 1 free E ×Qℓ-
module, we have

det(1− FrobpX | Vℓ(A)) = NmE/Q(1− FrobpX),

where on the RHS we treat Frobp as an element of E ↪→ Vℓ(A). By Proposition 33.4, this

equals

= NmE/Q(1− λp(ϖp)X)

=
∏

τ :E→C
(1− ατp(ϖp)X).

Hence the Euler product for L(A, s) matches that of
∏
τ :E→C L(α

τ , s). ■

34 Criterion of Néron-Ogg-Shafarevich (04/12/2024)

34.1 Potentially good reduction of CMAVs

We have frequently been using the assumption that a CMAV has everywhere good reduction.

It turns out that this is not overly restrictive.

Definition 34.1. Let A/K be an abelian variety over a number fieldK, and let p be a prime

of K. We say that A has potentially good reduction at p if there exists a finite extension

L/Kp such that AL has good reduction at p. That is, we have a good integral model after

passing to a finite extension.
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Remark 34.1. If K is a number field, then A always has good reduction at all but

finitely many primes p. Therefore, if A has potentially good reduction at all primes,

then there is a finite extension L/K such that A has good reduction everywhere—

take the compositum of all of the individual extensions giving good reduction for

each prime, since good reduction is stable under field extension.

Proposition 34.2. If A/K is a CMAV over a number fieldK, then A has potentially

good reduction everywhere.

Proof. See also [Mil10, Prop. 7.12]. We use the criterion of Néron-Ogg-Shafarevich:

Theorem 34.3. (Criterion of Néron-Ogg-Shafarevich.) [Mil10, Thm. 6.12] Let R

be a DVR with fraction field K and residue field k. Let ℓ ̸= char(k) be a prime, and

let A/K be an abelian variety. Then A has good reduction if and only if the inertia

group I ⊆ Gal(K/K) acts trivially on Tℓ(A).

Proof. (Sketch.) We have already seen that good reduction means inertia acts trivially

from Lemma 30.2. This is the fact that all ℓ-torsion points are defined over an unramified

extension of K.

For the reverse direction, we use Néron models. Let A /R be the Néron model of A/K.

We have isomorphisms

A (Kur)[ℓn] ≃ A (OKur)[ℓn] ≃ A (k)[ℓn]

using the Néron mapping property for the first isomorphism and Hensel’s lemma for the

second condition. We may also write

A (Kur)[ℓn] =
(
A (K)[ℓn]

)I
,

so inertia acting trivially means that this is just A(K)[ℓn]. So all of these groups have order

ℓ2n dimA.

Ak is a smooth finite type commutative group scheme, although not a priori an abelian

variety. There is a classification of such groups (see also [Mil15]): Ak/A 0
k is a finite group,

and we have exact sequences

1→ U → A 0
k → G→ 1,

where U is unipotent and G is semiabelian, i.e. an extension of an algebraic torus by an

abelian variety:

1→ T → G→ B → 1

for some torus T and abelian variety B. Then

dimA = dimAk = dimU + dimT + dimB.
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We have

#B[ℓn](k) = ℓ2n dimB

#T [ℓn](k) = ℓn dimT

#U [ℓn](k) = 0,

using the fact that Tk = GdimT
m,k

and a general result about lack of torsion in unipotent

groups. Since we must have

#Ak[ℓ
n](k) = #B[ℓn](k) ·#T [ℓn](k) ·#T [ℓn](k)

letting n→∞ and comparing asymptotics shows that

2 dimA = 2dimB + dimT.

Comparing this with our previous dimension formula, we get 2 dimU = −dimT , so since

dimension is nonnegative we conclude that U = T = {1} are both trivial. This means that

A 0
k = G = B is an abelian variety, so A is an abelian scheme. ■

Applying this in the case of CM, we have #k(p) <∞ and the image of ρℓ : Gal(K/L)→
Aut(Tℓ(A)) is an abelian, where L/K is a finite extension such that all CM endomorphisms

are defined; WLOG L = K for ease of notation. This Galois representation restricts to

ρℓ : Gal(Kab
p /Kp)→ Aut(Tℓ(A)). We have a diagram

Ip Aut(Tℓ(A)) 1 + ℓEnd(Tℓ(A))

O×
K 1 + pOKp

ρℓ

Art

where the left upwards arrow is the local Artin map, both inclusions are finite index, and

all arrows are continuous homomorphisms. The group 1 + ℓEnd(Tℓ(A)) is a pro-ℓ group,

but the group 1 + pOKp
is a pro-p group.

Definition 34.2. For a prime p, a pro-p group is a topological group that is the inverse

limit of finite p-groups, equipped with the Krull topology.

Lemma 34.4. For distinct primes ℓ, p, there are no nontrivial continuous homomor-

phisms from a pro-p group to a pro-ℓ group.

Proof. Suppose we have a continuous homomorphism ρ : G → H for a pro-p group G and

a pro-ℓ group G. Let K an open normal subgroup in H such that H/K is a finite ℓ-group,

which always exists by the construction of H as an inverse limit. By continuity, ρ−1(K) is

open, hence a normal open subgroup of G. Open subgroups are finite index, and one can

show that the quotient of a finite index normal subgroup of a pro-p group is a p-group (this

is an alternative definition of a pro-p group). Therefore the homomorphism ρ descends to

a well-defined homomorphism G/ρ−1(K) → H/K between a p-group and an ℓ-group—but

the only such homomorphism is the trivial one by finite group theory. We conclude that the

image of ρ is contained inside K. But this is true for an arbitrary normal open subgroup of
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H, and such subgroups form a basis of open neighborhoods of the identity, so we conclude

that ρ(G) = {1} ⊆ H since profinite groups are Hausdorff. ■

Therefore the image of 1 + pOKp
in Aut(Tℓ(A)) must have trivial intersection with

1 + ℓEnd(Tℓ(A)), so that this image is finite in Aut(Tℓ(A)), since it descends injectively to

the finite quotient Aut(Tℓ(A))/(1 + ℓEnd(Tℓ(A)). Since 1 + pOKp
has finite index in O×

K ,

we conclude that the image ρ(Ip) ⊆ Aut(Tℓ(A)) is also finite. Therefore, there exists a finite

extension Kp such that the inertia group of that field acts trivially on Tℓ(A), so the criterion

of Néron-Ogg-Shafarevich tells us that A has potentially good reduction. ■

34.2 Honda-Tate theory

Let q be a p-th power. We wish to classify isogeny classes of simple AVs over Fq.

Definition 34.3. A Weil q-number is an algebraic integer π such that for every embedding

Q(π) → C, we have |τ(π)| = q1/2. We will also refer to these as Weil numbers when q is

fixed.

Given two Weil numbers π, π′, define an equivalence relation π ∼ π′ (π is conjugate to

π′) if π and π′ are Galois conjugates over Q, i.e. they have the same minimal polynomial

over Q.

Recall that for an abelian variety over A/Fq, we have the q-th power Frobenius auto-

morphism πA := FrobA and Q[πA] is semisimple (from Proposition 32.1), hence a field when

A is simple. We also previously showed that πA is a Weil q-number (this is the Riemann

Hypothesis for Abelian Varieties, Corollary 32.2).

Theorem 34.5. (Honda-Tate theorem.) Taking eigenvalues of Frobenius induces a

bijection

{isogeny classes of simple AVs/Fq} ↔ {conj. classes of Weil q-numbers}

A 7→ πA

This is a great tool for classifying abelian varieties over a finite field, since in general

working with integer polynomials is easier than trying to wrangle unknown geometric ob-

jects, and the characteristic polynomial of Frobenius is already an important invariant.

Injectivity of the map in the Honda-Tate theorem follows from Tate’s isogeny theorem:

Theorem 34.6. (Tate’s isogeny theorem.) Let ℓ ̸= p, and let A,B/Fq be abelian

varieties. Then

Hom(A,B)⊗Z Zℓ ≃ HomGal(Fq/Fq)
(Tℓ(A), Tℓ(B)).

This is often just called Tate’s theorem.24 We already showed that this map is injective

(Theorem 24.1). Unfortunately, we omit the proof of surjectivity.

24Not to be confused with Tate’s theorem on Tate cohomology.
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Remark 34.7. When we deal with L-functions or other similar objects, the Galois

representation is easier to work with than the geometric objects. Tate’s theorem

allows us to work abstractly with Tate modules rather than abelian varieties, where

constructing homomorphisms is easier.

Corollary 34.8. For A,B/Fq, the following are equivalent:

1. A ∼ B over Fq.

2. For at least one ℓ ̸= p, we have Vℓ(A) ≃ Vℓ(B) as Galois representations.

3. For all ℓ ̸= p, we have Vℓ(A) ≃ Aℓ(B) as Galois representations.

4. PA(t) = PB(t), where PA, PB are the respective characteristic polynomials of

Frobenius.

Proof. (1) =⇒ (2) =⇒ (3) =⇒ (4) are on your homework. For (4) =⇒ (3),

we know Frobenius acts semisimply, so PA = PB implies we have a Frobenius-equivariant

isomorphism Vℓ(A) ≃ Vℓ(B) by standard linear algebra. In more detail, we know that the

Frobenius actions are at least conjugate over Qℓ, so by a descent argument and Hilbert

Theorem 90 we find that this is actually already defined over Qℓ. This is in fact a Galois-

equivariant map because Frobenius topologically generates the Galois group. (3) =⇒ (2) is

trivial, and (2) =⇒ (1) is immediate from Tate’s isogeny theorem 34.6—an isogeny A→ B

exists if and only if there is an isomorphism Vℓ(A) ≃ Vℓ(B). ■

Injectivity of the map in the Honda-Tate theorem is then immediate from (4) =⇒ (1)

in Corollary 34.8.

35 Honda-Tate theorem: surjectivity part I (04/15/2024)

Somewhat more is true than Corollary 34.8:

Corollary 35.1. : For A,B/Fq, the following are equivalent:

1. There exists a morphism A→ B that is an isogeny onto its image.

2. For all/at least one ℓ ̸= p, Vℓ(A) is a Galois subrepresentation of Vℓ(B).

3. PA(t) divides PB(t), where PA, PB are the respective characteristic polynomials

of Frobenius.

Remark 35.2. We can conclude that isogenous abelian varieties have the same

characteristic polynomial by looking at the local invariants of End0.

Given A0/Fq, there exists a CMAV A over some number field (constructed using πA0)

such that A mod p lies in the isogeny class of A0,k for a finite extension k/Fq. See [CCO14,

§1.7.6] for some more information without passing to the isogeny class. We can also have
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CM liftings with extra endomorphisms and algebraic cycles, originally done by Kisin ‘17

and Kisin-Mudapusi-Shin. To get the CM field associated to the lifting, we will use local

invariants of the endomorphism algebra, and to get the CM type we will apply the Shimura-

Taniyama formula “in reverse.”

Lemma 35.3. Let π be a Weil q-number. There are three possibilities for Q[π]:

1. (Even case) q = p2m, π = ±pm, Q(π) = Q.

2. (Odd case) q = p2m+1, π = ±
√
p2m+1, Q(π) = Q(

√
p).

3. Q(π) is a CM field.

Note that in the first two cases Q(π) is totally real and the last case is totally

imaginary.

Proof. Suppose neither (1) nor (2) holds. Then every embedding τ : Q(π) ↪→ C is complex,

since ±√q are the only real numbers with absolute value q1/2, i.e. Q(π) is a totally imaginary

field. Since |τ(π)| = √q for any embedding τ , we conclude τ(π) = q/τ(π), so that π + q/π

is totally real. Then Q(π)/Q(π + q/π) is a quadratic extension of a totally imaginary field

over a totally real field, so Q(π) is CM. ■

Theorem 35.4. Let A/Fq be simple, and let D := End0(A),K the center of D,

d = [D : K]1/2, e = [K : Q]. Then:

1. K = Q(πA)

2. de = 2dimA.

3. For a place v of K, we may compute invv(D) = ordv(πA)
ordv(q)

[Kv : Qp] if v | p,
invv(D) = 1/2 if v is real, and 0 otherwise.

Remark 35.5. We will have PA = (min. poly of π)d, where the order d is the lcm

of all denominators of all invariants. This comes from class field theory.

Proof. 1. By Tate’s isogeny theorem, for ℓ ̸= p, we have D ⊗Q Qℓ = EndQ(πA)(Vℓ(A)).

We apply the Double Centralizer Theorem (see [Mil20, §IV, Thm. 1.14] for this, and

also for other results on central simple algebras):

Theorem 35.6. (Double Centralizer.) Let k be a field. If B is a k-algebra and

V is a faithful semisimple B-module, then C(C(B)) = B, where C(−) denotes
the centralizer of (−) in Endk(V ).

We take k = Qℓ, B = Q(πA) ⊗Q Qℓ, V = Vℓ(A). The statement D ⊗Q Qℓ =

EndQ(πA)(Vℓ(A)) is the same as saying C(B) = D⊗Qℓ so C(D⊗Qℓ) = Q(π)⊗QQℓ by
the Double Centralizer Theorem. Meanwhile, the center of D is C(D⊗Qℓ)∩D = K,

so since Q(π)⊗Q Qℓ is already contained in D ⊗Qℓ we conclude that K = Q(πA).
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2. Write K ⊗ Qℓ = Kv1 × · · · × Kvr , where the vi are the places of K above ℓ. The

ring Kv1 × · · · ×Kvr acts faithfully on Vℓ(A), which we may decompose as Vℓ(A) =

V1 ⊕ · · · ⊕ Vr with Kvi acting on Vi.

Writing D ⊗Qℓ = EndK(Vℓ(A)) =
∏
i EndKvi

(Vi), we can compute its Qℓ-dimension

as

d2e =
∑
i

eid
2
i

where ei = [Kvi : Qℓ] and di = dimKvi
Vi. However, we have e =

∑r
i=1 ei from

K ⊗ Qℓ =
∏
iKvi , and we also have 2g := 2 dimA = dimQℓ

Vℓ(A) =
∑
eidi as a

general fact about Tate modules. Hence,

(2g)2 ≥ (de)2 =

(∑
i

eid
2
i

)(∑
i

ei

)
≥

(
r∑
i=1

eidi

)2

= (2g)2

where the first inequality comes from ed | 2g in Albert’s classification, the second

inequality is an application of Cauchy-Schwarz. Therefore all of the inequalities are

in fact equalities, so taking square roots gives 2g = de. (Also note that the equality

condition on the Cauchy-Schwarz inequality implies that all of the di are equal to d.)

3. For v | ℓ ̸= p, the proof of (2) shows that D⊗vi Kvi = EndKvi
(Vi) =Md(Kvi). Hence

invv(D) = 0. For v | ∞, Albert’s classification gives, by type:

I : e | g, d = 1

II : 2e | g, d = 2

III : e | g, d = 2

IV : e | g, d = 2

The first three cases are totally real. The first two cases contradict (2), so they do

not occur, and Type III gives the correct invariant 1/2 for real places, since D ⊗ R
is nonsplit in this case. Type IV means that K is CM, so there are no real places to

worry about.

We will only be able to prove the formula for the invariant at v | p later, using

Dieudonné theory, so we omit this for now.

■

Lemma 35.7. Given a Weil number π, let F = Q(π). Then there exists a division

algebra D/F satisfying all of the local invariant conditions in the conclusions (1),

(2), (3) of Theorem 35.4.

Proof. See also [Mil20]. Such D exists and is unique up to isomorphism iff
∑
v invv = 0,

using the exact sequence from global class field theory. To check this condition, there are

two cases:

1. The case F where is totally real is on your homework.
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2. If F is CM, we have π · π = q (under any complex embedding), and the only possibly

nonzero contributions to
∑
v invv come from places v | p. For v | p, if v ̸= v, then

invv + invv =
ordv(π) + ordv(π)

ordv(q)
[Kv : Qℓ] = 0 mod Z

and if v = v, we have

ordv(π)

ordv(q)
= 1/2

but
∑
v: v=v[Kv : Qp] is even ([L : Q] is even and the v with v ̸= v come in pairs), so

the overall contribution to the global invariant is 0.

■

36 Honda-Tate theorem: surjectivity part II (04/17/2024)

Let π be a Weil q-number. Recall that we showed that F := Q(π) is either totally real or

a CM field. Using local invariants, we got a division algebra D with center F and local

invariants as prescribed in Theorem 35.4, in particular with Dv split if v ∤ p∞ and Dv

nonsplit if v is a real place.

Proposition 36.1. There exists a CM field L ⊇ F such that D ⊗F L splits at all

places of L. For such L, we have [L : F ] =
√
[D : F ].

Remark 36.2. See [Mil20, §IV , Cor. 3.7]. If [L : F ] =
√
[D : F ], splitting of D⊗F L

(everywhere) is equivalent to the existence of an F -algebra embedding L ↪→ D.

Proof. The totally real case is on your homework; the answer will be L = F (
√
p). So assume

F is CM, and let F0 := Q(π + q/π) be its maximally totally real subfield. There exists a

totally real extension L0/F0 of degree d such that all places v of F dividing p are totally

inert in L0/F0, i.e. such L0 is unramified at p, has one place above any given v | p, and
the splitting polynomial defining L0 has all real roots.25 In particular, this means that

[L0,w : K0,v] = d for the unique place of L lying above v. Then L := FL0 is a CM field, and

[L : F ] = [L0 : F0] = d.

Local invariants satisfy the compatibility invw(D⊗F L) = invv(D)[Lw : Fv] for any w | v
([Mil20, §IV.4, Rmk 4.4.(c), §III.2, Thm. 2]). Since we already have invv(D) = 0 for all

v | p, we conclude automatically that

invw(D ⊗F L) = 0 · [Lw : Fv] = 0

for all w ∤ p for all w | v. In the case v | p, invv(D) is a multiple of 1/d and we have

specifically chosen L so that [Lw : Fv] = d. Hence we also get invw(D⊗F L) = 0 when w | p.
25One way to do this is to find a degree d integer polynomial f that is irreducible in the residue fields of

F0,v for all v | p and then adjust the coefficients by multiples of p suitably to ensure f has all real roots.
Then let L0 be obtained by adjoining a root of f to F0.
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Since we are assuming F , hence also L, is CM, there are no real places to consider. ■

Proposition 36.3. There exists an abelian scheme A over OK′ , where K ′/Qp, such
that AK′ admits CM by L as in Proposition 36.1 and Ak has Frobenius conjugate

to πN for some N ∈ Z.

Proof. We will use the Shimura-Taniyama formula to reverse-engineer exactly the CM type

Φ we want. Let A0 := Ak. Recall the formula: let L⊗Qp =
∏
w|p Lw, and Φ ⊆

∏
w|pHw :=

Hom(L,Qp) a CM type, Φw = Φ ∩Hw. Then Frobenius πA0
of A is descended from some

element of OL and
ordw(πA0

)

ordw #k = #Φw

#Hw
.

Lemma 36.4. If π, π0 are a Weil q- and q0-numbers, respectively, with

Q(π),Q(π0) ⊆ L such that ordw(π0)
ordw(q0)

= ordw(π)
ordw(q) for all places w | p of L, then there

exists N,N0 ∈ Z≥1 such that πN = πN0
0 .

Proof. We have ππ = q and π0π0 = q0. Pick N ′, N ′
0 such that qN

′
= q

N ′
0

0 . We may

assume by raising π and π0 to a suitable power that q = q′. Then it suffices to show that

π/π0 is a root of unity. This will follow if we can show that π/π0 is an algebraic integer,

since |π/π0|τ = 1 for all embeddings τ : L ↪→ C, and the only algebraic integers with all

embeddings of absolute value ≤ 1 are the roots of unity. For integrality, it suffices to show

that |π/π0|w = 1 for all finite places w—but this immediately follows from our hypotheses

on the w-adic absolute values of π0 and π. ■

We choose subsets Φv ⊆ Hom(Lw,Qp) ⊆ Hom(L,Qp) such that #Φw

#Hw
= ordw(π)

ordq(q)
for all

w | p of L. This is possible because

#Hw ·
ordw(π)

ordw(q)
= [Lw : Qp]

ordv(π)

ordv(q)
= [Lw : Fv][Fv : Qp]

ordv(π)

ordv(q)
= [Lw : Fv] invv(D) ∈ Z.

We have π · π, and ordw(π) = ordw(π) = ordw(q), so that #Φv + #Φw = #Hw = #Hw.

This means that we may actually choose each pair Φw,Φw so that Φw is the complement of

Φw in Hw. (There are no cases where w = w since L is totally imaginary.) Therefore, we

get a CM type Φ =
⋃
Φv, where the union is appropriately understood under some fixed

embedding Qp ↪→ C. (Note that the Φw ↪→ Hom(L,C) are disjoint.)

Now let A have CM by (L,Φ)—certainly we can construct such an abelian variety over

a number field, and CMAVs have potentially good reduction everywhere. By the Shimura-

Taniyama formula, we have

ordw(πA0)

ordw(#k)
=

#Φw
#Hw

=
ordw(π)

ordw(q)
.

Then by Lemma 36.4 we conclude πN0

A0
= πN for some integers N,N0, and we may replace

L with a degN0 totally ramified extension to in fact get πA0 = πN . ■

We finally prove the surjectivity part of Honda-Tate. We have done the hard part of

showing that there exists an abelian variety that is close to what we want, only off by a

power: we have an abelian variety A0/k with π
N = πA0

for a finite field k. Then then formula
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ordw(πA0
)

ordw(#k) = ordw(π)
ordw(q) shows that [k : Fq] = N . Consider the Weil restriction Resk/Fq

A0—this

is an abelian variety over Fq of dimension N · dimA0.

Definition 36.1. Let k be a ring, let k′ be a k-algebra, and let X be a k′-scheme. Then

Resk′/kX is the k-scheme representing the functor of points R⇝ X(R⊗k k′) for k-algebras
R. (This doesn’t always exist, but it does when X is an abelian variety and k′/k is a finite

field extension.)

On the homework, you will show that Vℓ(Resk/Fq
A0) = Ind

Gal(Fq/Fq)

Gal(k/k)
Vℓ(A) (induced Ga-

lois representation). When we induce a representation and then restrict it back to the origi-

nal representation, we get a direct sum of copies of the original representation. Therefore, as

a Gal(k/k)-representation we may identify Vℓ(B0) =
⊕N

i=1 Vℓ(A0), with FrobNB0
= FrobB0,k

acting by FrobA0
on each component. Hence πNB0

∼ πA0
and PB0

(t) = PA0
(tN ), so that

π = πNA0
is a root of PB0

. We conclude that there exists a simple factor of B0 over Fq with

Frobenius conjugate to π by Corollary 35.1.

37 Local invariants at p (04/19/2024)

37.1 Dieudonné theory

We will only be able to give a brief outline of the local invariants at p that we ignored in

our proof of the Honda-Tate theorem, specifically in Theorem 35.4. See [CCO14, A.1,§1]
and [CO19] if you are interested in more about Dieudonné theory and p-divisible groups.

Let D = End0(A) for an abelian variety A/k with k a perfect field of characteristic p > 0.

The p-divisible group A[p∞] is the inductive system {A[pn]}n≥1, where each A[p
n] is a finite

group scheme over k with a natural embedding A[pn] ↪→ A[pn+1] identifying A[pn] with the

kernel of [pn] : A[pn+1]→ A[pn+1].

Theorem 37.1. (Tate, see also Milne-Waterhouse.) Let A,B be abelian varieties

over a finite field. Then Hom(A,B)⊗ZZp → Hom(A[p∞], B[p∞]) is an isomorphism.
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Theorem 37.2. (Dieudonné theory.) Let k be a perfect field of positive characteris-

tic p, and let W :=W (k) be its ring of Witt vectors.a There is a (dual)b equivalence

of categories between:

• p-divisible groups

• Dieudonné modules, i.e. finite rank free W -modules with semilinear actions by

Frobenius F and Vershiebung V , subject to the relation FV = V F = p.c The

Frobenius action on k lifts uniquely to an action σ on W (k). The semilinearity

requirement is that F is σ-linear and V is σ−1-linear, i.e. F (ax) = aσF (x) and

V (ax) = aσ
−1

V (x) for a ∈W (k), x an element of the Dieudonné module.

We write X ⇝ D(X) for the (contravariant) Dieudonné functor. This functor is

Frobenius- and Verschiebung-equivariant, and satisfies other various nice compati-

bilites.

aWe won’t define these here, but the Witt vectors are a natural lifting of k to a characteristic 0
complete DVR with residue field k. An important example is that for q = pn, W (Fq) is the ring of
integers of the unique degree n unramified extension of Qp.

bThere are covariant and contravariant versions of the Dieudonné functors; both define equiva-
lences of categories. We will use the contravariant version.

cWe showed that [p] factors through F = F (1) : A → A(1) on abelian varieties; this is also true
for p-divisible groups. The Vershiebung is the morphism V : A(1) → A such that V ◦ F = [p].

Remark 37.3. Some more details on p-divisible groups: we will always have a in-

ductive (a.k.a directed) system of finite groups schemes {Xn, ιn}n≥0 of rank pnh for

some fixed h (called the height) with ιn : Xn ↪→ Xn+1 a closed embedding. We

additionally require [p] : Xn → Xn to factor as πn ◦ ιn−1 for a faithfully flat map

πn : Xn → Xn−1.

Let A/k be an abelian variety with D = End0(A) with Frobenius π, and recall that

Q(π) =: K is a number field. Using Dieudonné theory, we have D⊗QQp = End(A[p∞])opp⊗
W [1/p], and Qp ⊗Q K =

∏
v|pKv gives a decomposition A[p∞] ∼

∏
v|pGv in the isogeny

category. We correspondingly get

D(A[p∞])⊗W W [1/p] =
⊕
v|p

D(Gv)⊗W W [1/p]

Now set Dv := D ⊗K Kv = End(D(Gv) ⊗W W [1/p])opp. These are W [1/p] linear maps of

the W [1/p]-vector space D(Gv)⊗W W [1/p] compatible with the Frobenius action.

Let g ∈ Z[t] be the minimal polynomial of πA, so that g =
∏
v|p gv in Qp[t] for the

minimal polynomial gv of πA in Kv. Then πA acts on D(A[p∞]) as F r, where q = pr, and

we claim:
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Theorem 37.4. invv(Dv) is the same as the local invariant of W [1/p][F ]/(gv(F
r)),

which is v(π)
v(q) [Kv : Qp].

This is the local invariant we were hunting in our proof of the Honda-Tate theorem; we’ll

leave this at that.

37.2 Proof of Main Theorem: tori

We will spend the remainder of the course proving the Main Theorem of Complex Multipli-

cation. Our presentation generally follows that of [Mil10]

For σ ∈ Gal(Q, E∗), or really σ ∈ Gal(E∗,ab/E∗), pick s ∈ A×
E∗,f/E

∗,× mapping to σ

under the Artin map, i.e. with ArtE×(s) = σ|E∗,ab . We defined elements η(σ) ∈ A×
E,f and

NΦ(s) ∈ A×
E,f/E

×. Recall that the claim of the Main Theorem of Complex Multiplication

is that these two elements are the same modulo E×.

For a number field K, we notate TK = ResKQ Gm, which is an algebraic torus over Q.

Recall that TK is the Q-scheme representing the functor of points R ⇝ (R ⊗Q K)× for

Q-algebras R.

Definition 37.1. Let F be the maximal totally real subfield of E. Then set T := Gm ×TF

TE :

T TE

Gm TF .

NmE/F

Here NmE/F : TE → TF is the group scheme homomorphism induced on points via

(R⊗Q E)× → (R⊗Q F )
× : r ⊗ x 7→ r ⊗NmE/F (x),

and the homomorphism Gm → TF is given by the inclusion R× ↪→ (R⊗Q F )
×.

More concretely, we can identify the functor of points of T as

T (R) = {r ∈ (R⊗Q E)× : NmE/F (r) ∈ R×}

for Q-algebras R, so in particular

T (Q) = {a ∈ E× : NmE/F (a) ∈ Q×}

T (Af ) = {a ∈ A×
E,f : NmE/F (a) ∈ A×

f }.

We topologize T (Af ) by its subspace topology in A×
E,f using this description of T (Af ) as a

subset of A×
E,f . The reason why we bother with all of this is that we can look at idèlic points

on T rather than attempting to directly analyze idèles. This is useful because T (Af )/T (Q)

is much nicer than A×
E,f/E

× due to the following:
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Lemma 37.5.

1. The map T → TE induces an injective map T (Af )/T (Q)→ TE(Af )/TE(Q) =

A×
E,f/E

×, and a closed embedding as a topological subspace.

2. T (Af )/T (Q) is Hausdorff.

Therefore, to see that two elements in T (Af )/T (Q) are the same, we can compare

them using arbitrarily small open neighborhoods U ⊆ A×
E,f .

Note that A×
E,f/E

× is not itself Hausdorff—omitting the archimedean places means

that E× is no longer a discrete subgroup. If we include the archimedean places, then

Art : A×
E/E

× → Gal(Eab/E) is not injective.

Proof. 1. The map T → TE is defined using polynomials over Q, so if we have x ∈ T (Af )
with x mapping to TE(Q), then x ∈ T (Q). The topological assertion is an easy check.

2. We prove T (Q) ⊆ T (Af ) is discrete; since T (Q) is also closed, this implies that

T (Af )/T (Q) is Hausdorff. Since T (Af ) is Hausdorff, it suffices to show that there

is an open subset U of T (Af ) such that T (Q) ∩ U is finite. We take U = O×
E , which

is open in T (Af ). By the Dirichlet unit theorem, O×
F has finite index in O×

E—the

signatures of F and E are ([F : Q], 0) and (0, [F : Q]), respectively, so the free parts

of O×
F and O×

E both have rank [F : Q]− 1 by Dirichlet. Therefore T (Q)∩O×
E is finite

iff T (Q) ∩ O×
F is finite, so it suffices to show that the latter is finite. We have

T (Q) ∩ O×
F = {a ∈ O×

F : NmE/F (a) ∈ Q×}

However, the restriction of the norm map NmE/F to F× is just squaring, so the

requirement is that a2 ∈ Q×. Since a is a totally real unit, this implies a2 = 1, hence

a = ±1 and so |T (Q) ∩ O×
F | = 2.

■

38 Proof of the Main Theorem: preliminaries (04/22/2024)

Recall our conventions: E is a CM field with reflex field E∗ and maximal totally real subfield

F , TE = ResEQ Gm, and T := Gm×TF
TE . Let A be an abelian variety with CM by E. Also

recall a key fact we have used repeatedly: V̂ (A) is a rank 1 free AE,f -module.

38.1 Proof the main theorem: norms

Lemma 38.1. Let σ ∈ Gal(Q/E∗) and s ∈ A×
E∗,f/(E

∗)× such that Art(s) = σ|E∗,ab .

Pick an isogeny α : A→ σA, and let η = η(σ) ∈ A×
E,f be such that α(η(x)) = σx for

all x ∈ V̂ (A).

Then η(σ)
NΦ(s) ∈ T (Af )/T (Q) ⊆ TE(Af )/TE(Q).

Recall that we ultimately wish to show that η(σ) = NΦ(s) mod E×, so Lemma 38.1 is a

partial result in this direction.
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Proof. We take advantage of the polarization ψ. Using the same computations and notation

as in Remark 31.6, we have

χcyc(σ)ψ(x, y) =
σψ(σx, σy)

= σψ(α(η(x)), α(η(y)))

= σψ(η(σ)η(σ)αx, αy).

Both ψ and σψ(α(−), α(−)) are polarizations on A/Q compatible with the E-action. In

the complex analytic setting, these correspond to two different Riemann forms on A/C.
From our discussion of Riemann forms over C with compatible E-action (all the way back

in Lemma 6.4), we know that these are both of the form trE/Q(ξxy) for a totally imaginary

ξ ∈ E, treating the Riemann form as a form onH1(A(C),Q) ≃ E. Changing the polarization

is equivalent to changing ξ by a totally positive element b ∈ E, necessarily lying in F . This

implies that η(σ)η(σ) = χcyc(σ) · b for some totally positive b ∈ F . On the other hand,

Corollary 31.3 implies

NΦ(s)NΦ(s) = NmAE∗,f/Af
(s) ≡ σ|Qab mod Q× ≡ χ(σ) mod Q×

where we use the Kronecker-Weber theorem Qab = Q(ζ∞) to observe that σ|Qab acts through

the cyclotomic character, which we may identify as having image in Ẑ× ⊂ A×
f acting on

µ∞ ≃ Ẑ. By positivity, we know that the ambiguity
σ|Qab

NΦ(s)NΦ(s)
actually lies in Q×

>0.

Write t := η(σ)
NΦ(s) . Then our work shows that t · t is a totally positive element of F× ↪→

A×
E,f . We cite:

Theorem 38.2. (Hasse Norm Theorem.) Let L/K be a cyclic extension of number

fields. If x ∈ K is a local norm at all places, i.e. for all places v of K and all places

w | v of L, there exists yw ∈ Lw such that NmLw/Kv
(yw) = x, then x is in fact a

global norm, i.e. there exists y ∈ L such that NmL/K(y) = x.

Proof. See [Mil86, §VIII, Thm. 3.1]. ■

The element t is, a priori, an element lying in A×
E,f , so t · t is visibly a local norm at all

finite places. Since we’ve also shown that t · t is totally positive, t · t is also a local norm

at all archimedean places—an element of R× is a norm from C× if and only it is positive.

Since E/F is cyclic of degree 2, by Theorem 38.2 there exists e ∈ E such that ee = tt. We

conclude t mod E× ∈ T (Af )/T (Q), since t/e has norm 1 ∈ A×
f . ■

Indeed, by definition, we already know that NΦ(s) lies in T (Af )/T (Q). Lemma 38.1 then

shows that η : Gal(Q/E∗) → A×
E,f/E

× factors through Gal(E∗,ab/E∗) → T (Af )/T (Q) →
A×
E,f/E

×.

38.2 Review of ray class groups

See also [Mil20, §V.1, §V.4]; note that when we refer to a “prime,” we mean a finite prime,

whereas Milne allows this to refer to an arbitrary place.
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Let K be a totally imaginary number field. A modulus m =
∏

p p
m(p) is a product of

finitely many prime26 ideals in OK . We let S(m) denote the support of m, i.e. those p such

that m(p) > 0, and we let IS(m) be the subgroup of the group of fractional ideals coprime

to S(m).

Definition 38.1. The ray class group is

Cm(K) := IS(m)/Km,1,

where

Km,1 := {a ∈ K× : ap ∈ 1 + pm(p)OKp
},

which we map inside IS(m) by taking principal ideals. The subgroup Km,1 ⊆ K× should

be thought of as elements that are sufficiently p-adically close to 1 for all p; exactly how

close is dictated by the multiplicity of p in S. If p ̸∈ S(m), i.e. m(p) = 0, then there are no

conditions at p. We also define an idèlic analogue of Km,1:

A×
K,m :=

∏
v∤m

′
K×
v ×

∏
v|m

1 + pm(pv)
v OKpv

where as usual the primed summation notation means that all but finitely many components

lie in O×
v . We also write

Wm(K) =
∏

v∤m,v|∞

K×
v ×

∏
v|m

(1 + pm(pv)
v OK)×

∏
v∤m,v∤∞

O×
Kv
,

which is an open subgroup of A×
K,m ⊆ A×

K . We can re-express the ray class groups as

Cm(K) = A×
E,m/Km,1 ·Wm = A×

E,m,f/Um ·Km,1,

where Um(K) =
∏
v|m(1 + p

m(pv)
v OK)×

∏
v∤m,v∤∞O

×
Kv

.

Finally, if m = (m) for an integer m, then we will also use the notation Km,1,A×
K,m, etc.

The ray class groups are all finite, and the images of the sets {Um(E)∩T (Af )}m∈Z>0
form

a basis of open neighborhood of the identity in T (Af )/T (Q). The maps η : Gal(Q/E∗) →
A×
E,f/E

× and NΦ : A×
E∗,f/(E

∗)× → A×
E,f/E

× are continuous, so for any m their composi-

tions with A×
E,f → Cm(E) have open finite index kernel.

38.3 a-multiplication

Definition 38.2. Let a be an ideal of OE ⊆ End(A). A surjective homomorphism λ : A→
B is said to be an a-multiplication if:

1. For all a ∈ a, the homomorphism a : A→ A factors uniquely through λ : A→ B.

2. The homomorphism λ is universal for this property, meaning that if λ′ : A→ B′ also

satisfies (1), then there exists a unique map B′ → B making the diagram commute:

26Since K is totally imaginary we need not worry about archimedean places.
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A B

B′′

λ

λ′
∃!

Fact: for every ideal a ⊆ OE , there exists an abelian variety B and an a-multiplication

λ : A→ B. More specifically, B = A/ ker(a) where

ker(a) :=
⋂
a∈a

ker(a).

(This intersection may be taken to be finite since a is finitely generated.) We can also write

B = A⊗OE
a−1.

38.4 Statement of the ideal-theoretic version of the Main Theorem

We will first prove a version of the Main Theorem stated in terms of ray class groups rather

than idèles, and from this we will eventually deduce the idèlic version. For a modulus m of

a field K, we let Lm denote the ray class field for the modulus m and we let

recK,m : Cm(K)→ Gal(Lm/K)

denote the ideal-theoretic version of the Artin map for the modulus m, again normalized to

send a geometric Frobenius to its corresponding prime.

Theorem 38.3. (Shimura-Taniyama Main Theorem of Complex Multiplication,

ideal-theoretic version.) Let A/Q have CM by (E,Φ). Assumea that End(A) ∩E =

OE . Fix σ ∈ Gal(Q/E∗) and m ∈ Z>0, where E
∗ is the reflex field.

Then

1. There exists an ideal a(σ) ofOE , coprime tom, and an isogeny α : A→ σA such

that α(x) = σ(x) for all x ∈ A[m] and α is a a(σ)-multiplication. Moreover,

the class [a(σ)] in Cm(E) is uniquely determined by σ.

2. For a sufficiently divisible modulus m of E∗, [a(σ)] only depends on σ|Lm
. More

specifically, for such m we have [a(σ)] = [NΦ(a
∗)−1], where [a∗] ∈ Cm(E

∗) is

the ideal class such that recE∗,m([a
∗]) = σ|Lm

.

aThis assumption is harmless because there is always a representative of the isogeny class of A
with this property, and the theorem will be invariant under isogeny.

39 Finishing the proof of Main Theorem (04/24/2024)

39.1 Properties of a-multiplication

We will omit some details about the Serre tensor construction, which is apparently mostly

formal and not hard in characteristic 0. Here is the definition:

Definition 39.1. (Serre tensor construction, CM case.) Let A/k be an abelian variety with

CM by a field E, and assume that OE ⊂ End(E). Then for a fractional ideal a of E we
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denote by A⊗OE
a the scheme representing the functor S ⇝ A(S)⊗OE

a for k-schemes S.

That is, we treat A as an OE-module, so that the idea of tensoring with another OE-
module makes sense. Fact: A ⊗OE

a always exists, i.e. the given functor is representable.

See also [Mil10, §II.7] and [CCO14, §1.7.4] for more details.

Let A have CM type (E,Φ) and let OE ⊆ End(A). If λ : A→ B is an a-multiplication,

then B ≃ A/ ker(a), which is also isomorphic to A⊗OE
a−1. If A = Cg/Φ(Λ), then we can

write B = Cg/Φ(a−1Λ).

Proposition 39.1. Let λ : A → B and λ′ : A → B′ be a- and a′-multiplications,

respectively. Then there is an E-isogeny f : B → B′ such that f ◦ λ = λ′ if and only

if a ⊇ a′. In particular, there exists an E-isomorphism f : B → B′ with f ◦ λ = λ′ if

and only if a = a′.

Proof. If a ⊇ a′, then the existence of f is immediate from the universal property of λ′.

Conversely, suppose such f exists. Then choose an a + a′-multiplication λ′′ : A → B′′.

We have λ′′ ◦ a = λ′′ for either a ∈ a or a ∈ a′, so by the universal property of λ and λ′

we get unique morphisms B′′ → B and B′′ → B′ making the upper-left and upper-right

triangles in the diagram commute:

A

B′′

B B′

λ

λ′′

λ′

f

Note that the outer triangle commutes by assumption. We deduce that the bottom triangle,

hence the entire diagram, commutes by chasing universal property.

The diagram shows the inclusion

ker a

ker(a+ a′)
= ker(B′′ → B) ⊆ ker(B′′ → B′) =

ker a′

ker(a+ a′)
.

But this implies that ker a
ker(a+a′) is trivial: we have ker(a) ∩ ker(a′) = ker(a + a′), hence

ker a
ker(a+a′) ∩

ker a′

ker(a+a′) = 0, hence ker a
ker(a+a′) ⊆

ker a′

ker(a+a′) implies ker a
ker(a+a′) = 0. Equivalently,

B′′ → B is injective, which implies a ⊆ a′. ■

Proposition 39.2. If λ : A → A′, λ′ : A′ → A′′ are a- and a′-multiplications

respectively, then λ′ ◦ λ : A→ A′′ is an aa′-multiplication.

Proof. Omitted; the idea is that we write A′ = A⊗OE
a−1. ■

Proposition 39.3. If λ is an a-multiplication, then deg λ = [OE : a].
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Proof. (Sketch.) The idea is that over C, we use deg λ = [a−1Λ : Λ] = [OE : a]. In general,

for a ∈ OE , we first note that [a] : A→ A is an (a)-multiplication of degree

[OE : (a)].

Then we use the principal case to get the general one by finding λ′ with degree coprime to

λ such that λ′ ◦ λ = [a]. ■

Proposition 39.4. Let A,B/Q have CM by E with OE ⊆ End(A),End(B). If there

exists an E-isogeny A → B, then there exists an ideal a ⊆ OE and an E-isogeny

A→ B that is also an a-multiplication.

Proof. Proof idea: We may assume A,B/C, so that A(C) = Cg/Φ(b1) andB(C) = Cg/Φ(b2)
for fractional ideals b1, b2 of E. We can adjust b1 by multiplying in elements in E in order

to arrange b1 ⊆ b2, so we get an E-quasi-isogeny A→ B that is a b1b
−1
2 -multiplication with

b1b
−1
2 ⊆ OE an integral ideal. ■

Proposition 39.5. Let A,B be E-isogenous CMAVs over a number field K with

with OE ⊆ End(A),End(B) with good reduction at a prime p of K. Let A0, B0

denote their reductions modulo p.

1. The reduction λ0 : A0 → B0 of any a-multiplication λ : A → B is another

a-multiplication.

2. Let λ0 : A0 → B0 be an E-isogeny. Then λ0 lifts to an a-multiplication

λ : A → B for some ideal a ⊆ OE after taking a finite extension of K. Hence

by part (1), λ0 is also an a-multiplication after taking a finite extension.

Proof. 1. Let a ∈ a. Then there exists a unique α such that a = α ◦ λ by the definition

of a-multiplication:

A B

A

a

λ

∃!α

The maps λ, α, a all extend uniquely to the Néron models A ,B of A0, B0 over OKp
,

giving a diagram

A B

A

a

λ

∃!α

and by the Néron mapping property this diagram descends uniquely to diagram

A0 B0

A0

a

λ0

∃!α0
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Since this holds for any a ∈ a, we conclude λ0 : A0 → B0 satisfies the universal

property of a-multiplication.

2. (Sketch.) Proposition 39.4 tells us that there exists some b-multiplication λ′ : A→ B

for some ideal b ⊆ OE after possibly taking a finite extension of K. By part (1), its

reduction λ′0 is also a b-multiplication. By properties of the Serre tensor construction,

we have HomOE
(A,B) ≃ b−1 with the isomorphism given by sending λ′ 7→ 1, and

likewise HomOE
(A0, B0) ≃ b−1 by sending λ′0 7→ 1. Hence the reduction map

HomOE
(A,B)→ HomOE

(A0, B0)

is an isomorphism. Thus any given OE-isogeny λ0 : A0 → B0 lifts to an isogeny

λ : A→ B, which is an a-multiplication for some ideal a.

Proposition 39.6. Let α : A→ B be an a-multiplication, and choose identifications

T̂ (A) ≃ T̂ (B) ≃
∏
v∤∞OEv

, which is unique up to multiplication by
∏
v∤∞O

×
Ev

. Then

under this identification, α : T̂ (A)→ T̂ (B) is given by multiplication by an element

x ∈ A×
E,f with v(x) = v(a) for all finite places v of E.

Proof. The universal property of a-multiplication tells us that a : A → A factors through

α. Take some identification T̂ (A) ≃ T̂ (σA) ≃
∏
v∤∞OEv , the choice of which is unique

up to a multiple of
∏
v∤∞O

×
Ev

. Then, up to a multiple of
∏
v∤∞O

×
Ev

, we may identify

a : T̂ (A) → T̂ (σA) with multiplication by its image in
∏
v∤∞OEv

. Therefore, α acts by

some element dividing a in
∏
v∤∞OEv

. Since this is true for all a ∈ a, we conclude that

α acts by an element x ∈ A×
E,f with v(x) ≤ mina∈a{v(a)} = v(a) for all finite places v.

Conversely, we know from Proposition 39.3 that α has degree [OE : a]. If an isogeny has

degree d, then its determinant on Tℓ (as a Qℓ-linear map) has valuation vℓ(d). Therefore

[OE : a]ℓ = detQℓ
(Tℓ(α))ℓ =

∏
v|ℓ#k

v(x)
v , where #kv denotes the order of the residue field

of the place v. But we also have the formula

[OE : a]ℓ =
∏
v|(ℓ)

#kv(a)v ,

so by comparing the two expressions we conclude the inequality v(x) ≤ v(a) must actually

be an equality for all places v. ■

■

See [Mil10, §II.7] for more details on the properties of a-multiplication.

39.2 Proof of ideal-theoretic Main Theorem part (1)

After all this setup, we can prove Theorem 38.3. By Proposition 39.4, there exists an ideal

a = a(σ), with a depending on σ, such that there exists an a-multiplication

α : A→ σA
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compatible with the E-action. By Proposition 39.3, deg(α) = [OE : a]. We may choose

a ∈ a−1 such that [OE : aa] is prime to m. Then aα : A→ σA is an (aa)-multiplication, an

E-isogeny, and of degree coprime to m, so without loss of generality we may choose a and

α with degα = [OE : a] coprime to m.

Therefore a defines a class in Cm(E) and α : A[m] → σA[m] is an isomorphism; we

also know that σ : A[m] → σA[m] is an isomorphism. The fact that V̂ (A) is a rank 1 free

AE,f -module implies that A[m] is a rank 1 free OE/(m)-module, which implies that any

two OE-endomorphisms differ by some element of OE . We conclude that there exists some

b ∈ OE , coprime to m, such that (α ◦ b)|A[m] = σ|A[m]. Therefore, replacing α with α ◦ b
and a with ba, we may further assume that α|A[m] = σ|A[m].

We know that any two E-isogenies α, α′ differ by an element of E×. However, only

multiplication by elements of Em,1 will preserve the property α|A[m] = σ|A[m], since these

are precisely the elements of E× that act by 1 on A[m]. We require a to induce this

property, so we conclude that all choices for a with this property differ by an element in

Em,1. Therefore, we have produced a canonical ideal class [a(σ)] in IS(m)/Em,1 = Cm(E)

that depends only on σ. This is part (1) of Theorem 38.3.

39.3 Ideal-theoretic Shimura-Taniyama formula

We will need to determine the ideal class [a(σ)] ∈ Cm(E) in terms of σ. The key to doing

this is the Shimura-Taniyama formula! We prove a formula for [a(σ)] when σ is a Frobenius

element associated to some prime P/p in K/E∗. Since the Frobenii exhaust any given finite

Galois group by the Chebotarev density theorem, this will let us identify [a(σ)] in general.

Theorem 39.7. (Shimura-Taniyama Formula, ideal-theoretic version.) Let A/K

have CM by (E,Φ), let K be Galois and contain all Galois conjugates of E, and

assume OE ⊆ End(A). Let P/p/p be primes of K/E∗/Q such that KP/Qp is

unramified, and assume A has good reduction at P. Let σ ∈ Gal(K/E∗) be a lift of

the arithmetic Frobenius Frob ∈ Gal(k(P)/k(p)). Then:

1. The lift α : A → σA of the #k(p)-th power Frobenius morphism A0 → σA0 is

an a-multiplication for

a = NmΦ(p).

2. The ideal a(σ) in part (1) of Theorem 38.3 has ideal class [a(σ)] = [NΦ(a
∗)]−1 ∈

Cm(E), where [a∗] is the ideal class such that recE∗,m([a
∗]) = σ|Lm

.

Proof. 1. Let σ ∈ Gal(K/E∗) be the lift of Frobenius from Gal(k(P)/k(p)). Let π ∈ OE
be an element that lifts the #k(P)-th power Frobenius morphism A0 → A0, which

satisfies

(π) =
∏
φ∈Φ

φ−1(NmK/φ(E) P) = NK,Φ(P) = NΦ(p)
f(P/p)

where the first equality is the Shimura-Taniyama formula (Theorem 30.1) and the

second is Proposition 31.1, and f(P/p) is the residue index. By Proposition 39.5,

there exists an a-multiplication α : A → σA that lifts the #k(p)-th power Frobenius
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map A0 → σA0. This is arranged so that the two maps π and

σf(P/p)−1

α ◦ · · · ◦ σα ◦ α (9)

are both endomorphisms on A that descend to the #k(P)-th power Frobenius endo-

morphism on A0. Therefore, by the Néron mapping property, these two endomor-

phisms are equal.

Immediately from the definition of a-multiplication, π is a (π)-multiplication, and

the endomorphism (9) is a af(P/p)-multiplication by Proposition 39.2. Therefore,

since these two endomorphisms are equal, by Proposition 39.1 we conclude that the

corresponding ideals are also equal:

NΦ(p)
f(P/p) = (π) = af(P/p).

Therefore, by unique factorization of ideals, we conclude that a = NΦ(p), as desired.

2. Part (1) tells us that [a(σ)] = [NmΦ(p)]. But p is the image of σ|−1
Lm

under the Artin

map, which sends a geometric Frobenius element to its corresponding prime ideal

under our conventions (i.e. the conversion from arithmetic to geometric Frobenius

introduces the inverse in this formula).

■

39.4 Proof of ideal-theoretic Main Theorem part (2)

Let σ, σ′ ∈ Gal(Q/E∗). By part (1) of Theorem 38.3, we have isogenies α : A → σA,α′ :

A→ σ′
A that are a(σ)-, a(σ′)-multiplications, respectively. Then σα′◦α : A→ σA→ σσ′

A is

an a(σ)a(σ′)-multiplication by Proposition 39.2. Thus the map Gal(Q/E∗)→ Cm(E) given

by σ 7→ [a(σ)] is continuous group homomorphism. By continuity, there exists a modulus m

of E∗ such that we have the following factorization:

Gal(Q/E∗) Cm(E)

Gal(Lm/E
∗) Cm(E

∗)

res

σ 7→[a(σ)]

recE∗,m

where recE∗,m is the Artin reciprocity map for the modulus m. Hence [a(σ)] only depends

on σ|Lm
, and we have defined a homomorphism Cm(E

∗)→ Cm(E) determined by

recE∗,m(σ|Lm
) 7→ [a(σ)].

Recall that we wish to show [a(σ)] = [NΦ(recE∗,m(σ|Lm
))−1]. Theorem 39.7 tells us this

is true whenever σ is the Frobenius element associated to an extensionK/E∗ unramified over

a given prime p. By the Chebotarev density theorem (or Dirichlet’s theorem), such p exhaust

Cm(E
∗), so we have proven part (2) of Theorem 38.3 for all σ|Lm

∈ Gal(Lm/E
∗). Since

[a(σ)] depends only on σ|Lm
, this prove part (2) of Theorem 38.3 for all σ ∈ Gal(Q/E∗).
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39.5 Idèlic version from ideal-theoretic version

Proposition 39.8. Theorem 38.3 implies Theorem 31.4.

Proof. Let σ ∈ Gal(Q/E∗) and let s ∈ A×
E∗,f/(E

∗)× such that Art(s) = σ|E∗,ab , and let α

and a(σ) be as in Theorem 31.4. Recall that η(σ) ∈ A×
E,f is defined to be the unique idéle

such that

α(η(σ) · x) = σ(x)

for all x ∈ V̂ (A), which is well-defined up to multiplication by E× since α is also unique up

to multiplication by E×.

From Lemma 38.1 we know that

η(σ)

NΦ(s)
∈ T (Af )/T (Q) =

{a ∈ A×
E,f : NmE/F (a) ∈ A×}

{a ∈ E× : NmE/F (a) ∈ Q×}
↪→ A×

E,f/E
×.

Therefore, by Lemma 37.5, to check that η(σ) and NΦ(s) are the same, it suffices to

check that an arbitrarily small open neighborhood of η(σ) contains NΦ(s).
27 Recall that

the subgroups Um ⊆ A×
E,f restrict and descend to a basis of open subgroups at the identity

for T (Af )/T (Q) ranging over m ∈ Z>0.

Fix m > 0, and adjust α by a multiple of E× so that α|A[m] = σ|A[m] as we did in Section

39.2, so that α is an a(σ)-multiplication (unique up to multiplication by Em,1).

We need to relate η(σ) to a:

Lemma 39.9. The image of η(σ) in Cm(E) is [a(σ)−1].

Proof. We may choose an isomorphism V̂ (A) ≃ V̂ (σA) ≃ AE,f such that the action of

σ : A → σA is identified with multiplication by 1 ∈ A×
E,f , since σ induces an isomorphism

on the Tate modules. By Proposition 39.6, α acts on the Tate module by an idèle x ∈ A×
E,f

with v(x) = v(a(σ)) for all finite places of E. Therefore, the idèle η(σ) such that

α(η(σ) · y) = σ(y)

for all y ∈ V̂ (A) must satisfy v(η(σ))+v(a(σ)) = 0. Hence η(σ) maps to the inverse of [a(σ)]

in Cm(E). (Note also that the assumption α|A[m] = σ|A[m] implies that η(σ) ∈ AE,m.) ■

Let η′ = η ◦ Art : A×
E∗,f/(E

∗)× → A×
E,f/E

×. For any fixed m, we have continuous

compositions

A×
E∗,f/(E

∗)× A×
E,f/E

× Cm(E)
NΦ

η′

both of which have open kernel. Therefore, we can find some open subgroup of the form

Um ⊆ A×
E∗,f contained in this kernel. This gives two factorizations

27This is the reason why we went through the trouble of introducing the torus T : while T (Af )/T (Q) is

Hausdorff, A×
E,f/E

× is not, making this sort of approximation argument via the ray class groups impossible

if we were to only work in A×
E,f/E

×.
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A×
E∗,f/(E

∗)× A×
E,f/E

× Cm(E)

Cm(E
∗)

NΦ

η′

(one for each of η′ and NΦ).

Theorem 38.3 and Lemma 39.9 tell us that the two maps Cm(E
∗) → Cm(E) agree

whenever σ restricts to a Frobenius element in Gal(Lm/E
∗) (note that the negative signs

from these two results cancel each other). By the Chebotarev density theorem, we conclude

that these maps are in fact equal for all σ ∈ Gal(Q/E∗).

Hence NΦ(s) and η′(s) map to the same element [NΦ(s)] = [a(σ)] in Cm(E) for any

s ∈ A×
E∗,f/(E

∗)×. This shows that η′(s)
NΦ(s) =

η(σ)
NΦ(s) lies in Um. Since the Um define a basis of

open neighborhoods at the identity, this means η(σ) and NΦ(s) are arbitrarily close inside

T (A)/T (Q), so by the Hausdorff property we conclude that η(σ) = NΦ(s) as elements in

A×
E,f/E

×. This statement is Theorem 31.4. ■
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