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Part 1
Analytic theory of CM abelian

varieties

1 Introduction (01/17/2024)

This course is about abelian varieties with complex multiplication (abbreviated as CMAVs).
Major results we will prove include definability of CMAVs over Q, the Shimura-Taniyama
formula, and the Main Theorem of Complex Multiplication. Additionally, a substantial
portion of the course will be devoted to developing the general theory of abelian varieties.
We will have roughly biweekly homeworks (5 total).

Prerequisites:

e A graduate course in algebraic number theory. We will review some of the main
statements of class field theory near the end of the course when we state and prove
the Main Theorem of Complex Multiplication, but we will not have time to prove any
results from CFT—see the references, especially [Mil20] and [Ked21], if you would like
to learn more. We will not need group cohomology.

e A graduate course in scheme theory, especially comfort working with line bundles. We

will review some results from sheaf cohomology.

e We will cite results from noncommutative algebra without proof, which will be relevant
when studying the endomorphism ring of an abelian variety. Good sources for these
results are [Mil20, §IV] and [Mil10].

e Near the beginning of the course we use some basic Lie theory, although not nearly

enough to make Lie theory a strict prerequisite.

e Familiarity with complex manifolds is largely unnecessary, although we will cite the
Hodge decomposition when discussing the CM type associated to a CMAV.

We attempt to give examples where possible. Keep in mind that many basic examples
of abelian varieties are supplied by elliptic curves. Unfortunately, it is generally difficult to
write down explicit polynomial equations cutting out an abelian variety inside projective
space, even starting in dimension 2. Explicit descriptions are much easier in the complex
analytic setting, where abelian varieties are of the form C"/A for a suitable lattice A.
Moreover, in the analytic setting is especially simple to write down a CM abelian variety
with a prescribed CM type.

In the first couple weeks, we will be stating a lot of results without necessarily fully
explaining them. Do not worry; we will eventually see more rigorous proofs, especially
for the general theory of abelian varieties from the perspective of algebraic geometry. One
major result whose proof we unfortunately omit is the algebraizibility of tori with a Riemann
form (Theorem , which implies the equivalence of the algebraic and analytic categories
of abelian varieties over C. Despite this, we will freely switch between the analytic and

algebraic categories as best suits our needs.



CJ’s note: These are an edited version of my course notes for Yunging Tang’s Math
254B in the Spring 2024 semester at UC Berkeley. I worked to revise and polish these notes
during the semester and the following summer. In some areas these notes are substantially
expanded versions of original lectures, mainly where I felt more detailed explanations were
needed. I learned the majority of the content of these notes during the course. Since I am
not an expert, these notes may contain silly mistakes that I missed. If you see any errors
in these notes, or if you can offer details in places where they seem to be missing, please let

me or Prof. Tang know.

1.1 Abelian varieties over C

Definition 1.1. An elliptic curve over a field k is a pair (E, e), where E is a smooth proper

curve of genus 1 over k and e € E(k).

If k = C, then F(C) may be given the structure of a compact genus 1 Riemann surface
isomorphic to C/A for some latticdﬂ A C C. The identity e corresponds to the coset A in
this interpretation.

More generally:

Theorem 1.1. [MumO8|, Cor on p.33] Consider X = V/A, where V ~C"and A C V

is a lattice. The following are equivalent:
1. X can be holomorphically embedded into CP™.
2. X is the analytification of some algebraic variety[’]

3. There exists a positive definite Hermitian form H : V x V — C such that
Im H(A x A) CZ.

2Qur definition of a variety is a reduced separated scheme of finite type over a field. In particular,
we do not assume projectivity or quasiprojectivity.

. J

The main idea for (3) = (1) in Theorem [1.1]is to associate a certain line bundle .Z to
the positive definite form H. One then shows that this line bundle is ample—in fact, that
£93 is very ample—by studying the so-called theta functions associated to the pair (A, H).
These theta functions form the space of global sections of .Z. One of the key ingredients is
Fourier analysis. Unfortunately, we will not say any more about these things in this course;
read [Mum08| §I.3] if you are interested in the full proof.

Definition 1.2. An abelian variety over C is the algebraic variety associated to a complex
torus V/A satisfying one of the equivalent conditions of Theorem (1.1

1n this course, whenever we say a discrete subgroup A is a lattice of some real vector space V, we mean
full rank, i.e. A ®z R ~ V as real vector spaces. Such lattices are always cocompact.



Lemma 1.2. Suppose V =~ C™. We have a bijection between:
1. Hermitian forms H on V;

2. Skew-symmetric forms on Vg (V viewed as an R-vector space) such that

Y(iwv, iw) = Y(v,w).

The skew-symmetric form associated to a Hermitian form H is Im H, and the Her-

mitian form associated to a skew-symmetric form is H (v, w) = ¥ (iv,w) + iyp(v, w).

. J

Definition 1.3. A skew-symmetric form ¢ : A x A — Z is said to be a Riemann form if
YR : V x V — R satisfies

1. Y(iv,iw) = (v, w); and
2. The associated Hermitian form H from Lemma is positive definite.

Hence condition 3 in Theorem is equivalent to existence of a Riemann form.

1.2 CM fields

- ~

Lemma 1.3. Prop. 1.4] For a number field?| E, the following are equivalent:

1. There exists a field ET C E such that ET/Q is totally real and E/ET is an

imaginary quadratic extension.

2. There exists a nontrivial ¢ € Aut(E) such that for all embeddings 7: F — C,

we have ¢ o7 = 7 o ¢, where ¢’ denotes complex conjugation in C.

3. There exists a field ET C E with ET/Q totally real such that £ = Et[a],
where o? € E7 is totally negative, i.e. under every embedding 7 : E+ — R we
have 7(a?) < 0.

%A finite field extension of Q.

The automorphism ¢ in condition 2 is uniquely determined, since under any given em-
bedding E — C, at most one automorphism of E corresponds to complex conjugation. We
must have ET = Fix(c) C E, so the totally real subfield E* is also uniquely determined.

Definition 1.4. A number field F satisfying one of the conditions in Lemmal[l.3]is said to be
a CM field. More generally, a CM algebra is a finite product of CM fields: £ = E; x---x E,
for CM fields FEy, ..., E,.

Remark 1.4. Some authors additionally define totally real fields to be CM by taking
criterion (2) above without the assumption that ¢ is nontrivial. For us, the term “CM
field” will be reserved exclusively for a quadratic imaginary extension of a totally real
field.

The symbol E will typically be reserved for CM fields or algebras in these notesE|

2 Although we will occasionally also use E to denote an elliptic curve when no confusion is possible.



Example 1.5. All quadratic imaginary fields are CM with totally real subfield Q.
All cyclotomic fields Q(¢,,) for n > 3 are CM with totally real subfield Q((, + ¢, 1).

Example 1.6. A CM field need not be Galois. For example, let ET be any non-
Galois totally real field, e.g. Q[a] where « is a root of a generic irreducible cubic
with real roots. Then E := ET(i) is a CM field which is non-Galois; otherwise,
Gal(E/E™) would have index 2 in Gal(E/Q), hence a normal subgroup, so that E*
would be Galois.

Corollary 1.7.If E,,...,E, C Q are CM fields, then their compositum F; --- E,,
is also CM. In particular, the Galois closure of E C Q is CM.

Proof. We use condition 3 from Lemmal[I.3] It suffices to prove this fact for the compositum
of two CM fields E1, E» with respective totally real subfields Ef , E; . Let a1, as be elements
in Ey, Es, respectively, with totally negative squares such that E;'[o;] = E;. Then ajasz
has totally positive square, so ajay is totally real. We conclude that ET := E; EJ [ aq]
is totally real, and we have ET[a1] = Et[as] = E1FE2, so condition 3 is again satisfied.
The remark about the Galois closure follows from the fact that the Galois closure of E

is the compositum of the images of the finitely many embeddings E — Q. |

Definition 1.5. Let E be a CM algebra. A CM type on FE is a subset ® C Hom(F, C) such
that Hom(FE,C) = @[] ¢®, where ¢ is complex conjugation. We may also denote complex

conjugation with a bar when there are no ambiguities.

Remark 1.8. If E = E; x--- x E, is a CM algebra, then choosing a CM type on F
is not equivalent to choosing a CM type on each of the £ individually. If ®4,...,®,
are respective CM types on Fy, ..., FE,, then ®; x --- x &, C H;L:1 Hom(E;,C) ~
Hom(E,C) is too small to be a CM type on E if n > 1.

Example 1.9. (Construction of CM abelian varieties.) Given a CM type (E, ®) with
n = 1[E: Q] = |®|, consider the embedding ® : O — C" given by a — (p(a))pca.
Then C"/Og is a complex torus, and indeed an abelian variety.

To prove this, by Theorem we need to exhibit a Riemann form on Og. Fact: by
weak approximation, we can find a totally imaginary £ € O such that Im(¢(&)) > 0
for all ¢ € ®. Given such &, we define ¢ : Op x O — Z by (z,y) — trgg({c(z)y).
On the homework, you will verify that this is indeed a Riemann form.




Example 1.10. The case n = 1 of the previous example corresponds to the case
of a CM elliptic curve. Let E/Q be an imaginary quadratic extension and let ®
be a choice of embedding E < C (out of only two possibilities). Let 7 € Og be
any element such that Op = Z + 77Z, and let £ be as in the previous example. We
compute trg/q(éc(x)y) = Ty + oy = {(Ty — x7). The associated Riemann form 1

0 &t —7)
E&T—1) 0

with respect to the basis {1,7}. (Note that the entries of this matrix are real—in

has matrix

fact integers—since both 7 — 7 and ¢ are pure imaginary.)

\. J

We have essentially constructed all CM abelian varieties in this way, though we have not
defined what this means yet. However, there is a slight generalization we can make: instead
of using the ring of integers O, we can more generally use a fractional ideal of this ring

and make some adjustments.

2 Basic properties of abelian varieties (01/19/2024)

2.1 Group objects

Definition 2.1. Let S be a base scheme. A group scheme over S is a group object in the
category of S-schemes.

A group variety over a field k is a group object in the category of k-varieties.

A complex analytic Lie group over C is a group object in the category of complex man-
ifolds.

What is a group object in a category C? This is an object G € C endowed with morphisms
m:GxG—= G,i:G— G, and e : {x} = G corresponding to multiplication, inversion,
and an identity section. Here, the product is the product in the category C—in the category
of S-schemes or k-varieties, this is the fiber product over S or k—and {*} denotes the
final object in the category, which is S, Speck, or a point in each of the three cases listed
previously.

We require these morphisms to satisfy commutative diagrams encoding the usual group

axioms:

e Associativity:

GxGxGY axa

|mia |m

m

GxG——— G

e Identity:

Gx{x}=G~{x}xG L% gxa

J{Gxid\ Jm
Gx@G n G

10




e Inverse:

Ie. idx1 GxQG
ixid {x} m
GxG m \ G

2.2 Abelian varieties

Definition 2.2. An abelian variety over a field k is a smooth connected proper group scheme

over Speck.

Remark 2.1. These properties allow us to deduce quite a bit more—for example, we
can use connectedness and the existence of a k-valued point to deduce that abelian
varieties are geometrically connected, hence geometrically irreducible. Smoothness
is equivalent to geometric reducedness for group schemes over a field, so we even
get geometric integrality. In particular, even though our definition specifies that an
abelian variety is a group scheme over k, it is in fact also a group wvariety over k.
We will eventually prove that every abelian variety is projective, not just proper,
but we need to develop the theory of line bundles on abelian varieties first. There
are many equivalent definitions of an abelian variety; the Stacks Project gives 16 of
them [Sta24] Tag 0H2UJ.

These remarks are largely unimportant in the context of this course, but if you are
interested in the details, see [EvdGM?24], especially Theorem 2.25 and Section 3.2, or
[Sta24] Tag 0BF9]. If you would prefer to work through facts like these on your own,
see instead the exercises in the first few chapters of Brian Conrad’s notes [Conl5].

\. J

Note that we don’t actually include commutativity of the group law here. A general,
non-proper group variety is not commutative, e.g. the algebraic variety GL,, for n > 2.

However, it turns out that properness guarantees commutativity.

Definition 2.3. An abelian scheme A over S is a group scheme A/S such that the structure
morphism 7 : A — S is proper and smooth with geometrically connected fibers.

Again, we will not worry about the technical scheme-theoretical details of these require-
ments. Our use case for a general abelian scheme will be over an arithmetic base such as
SpecZy,. If 5= Speck — S is a geometric point of S, then the fiber Az is connected, so in
particular Az is an abelian variety over k.

It is often more intuitive to view abelian varieties from the perspective of the functor of

points. For example, to check or define the group law, it suffices to work with A(k).

Theorem 2.2. Let A/k be an abelian variety. Then A is commutative.

We will prove this in full generality once we start developing the algebraic theory of

abelian varieties, but for now we prove commutativity in the analytic setting. Given an

11
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abelian variety A/C, the set of C-points A(C) can be endowed with the structure of a

smooth compact connected complex analytic Lie group.

Proposition 2.3. [Mum08, pp.1-2] A connected compact complex Lie group is iso-
morphic to V/A for some vector space V ~ C™ and lattice A C V.

Proof. (Sketch.) Consider the Lie algebra Lie A(C) := T.(A(C)). You can think of this
either as the algebraic tangent space or the complex analytic tangent space. For every
x € A(C), we obtain a conjugation morphism ¢, : A(C) — A(C) defined by y — zyz .
Taking the derivative yields, for each x € A(C), a linear map dc, : Lie A(C) — Lie A(C).
The map z — dc, defines a holomorphic homomorphism A(C) — GL(Lie A(C)). But
A(C) is compact and connected and GL(Lie A(C)) may be viewed as an open subset of C",
so we conclude that x +— dc, is constant, hence dc, = idyc a(c) for all z. This implies
that ¢,(y) = y for all € A(C) and all y in some neighborhood of the identity. Such
neighborhoods generate all of A(C), so we conclude ¢, = idg for all x € A(C), i.e. the
group law is commutative.

Since the group law is commutative, the exponential map exp, : Lie A(C) — A(C) is
a group homomorphism, hence a Lie group covering map, so we conclude that A(C) ~
Lie A(C)/ kerexp 4 as complex Lie groups. Since exp, is a local homeomorphism near the

origin and A(C) is compact, this kernel must be a lattice in the Lie algebra. u

Corollary 2.4. Let A/C be an abelian variety of dimension g.

1. [n] : A — Ais surjective with kernel isomorphic to (Z/nZ)?9. Here, [n] denotes
themapar—zx+zx+- -+ 2.
—_——

n times

2. 1 (A(C)) ~ H,(A(C),Z) ~ A ~ 7%9.

Proof. Both of these are clear from the description of A ~ V/A from the previous proposi-

tion. Note that the universal covering space of A is V', which gives part 2. |

Definition 2.4. Let A, B be abelian varieties over k. A morphism f : A — B is called an

isogeny if f is a surjective homomorphism with finite kernel.

Example 2.5. Multiplication by n is an isogeny [n] : A — A for any abelian variety
A.

Proposition 2.6. [Mil86, 1.2] Given complex tori V/A, V'/A’, holomorphic maps
V/A — V'/A’ sending 0 — 0 are in bijection with C-linear maps a : V' — V’ such
that a(A) C A,

Corollary 2.7. Any holomorphic map between abelian varieties preserving the iden-

tity is automatically a group homomorphism.

This is also true more generally for abelian schemes.

12



3 Structure theory, definition of CM abelian varieties
(01/22/2024)

3.1 Structure of the category of abelian varieties

Remark 3.1. Given abelian varieties A, B/k, we say A is isogenous to B if there
exists an isogeny A — B, and write A ~ B. Perhaps surprisingly, A ~ B is an
equivalence relation in the category of abelian varieties. Reflexivity and transitivity
are obvious. For symmetry, it is true that given any isogeny f : A — B there exists
an isogeny g : B — A such that go f = [n], for some n € Z, although we won’t prove
this yet.

Theorem 3.2. (Poincaré reducibility.) Let A/k be an abelian variety and let B C A
be an abelian subvariety (i.e. a closed subvariety over k that is closed under the
group operations and inherits the structure of an abelian variety). Then there exists
another abelian subvariety B’ C A/k such that BN B’ is a finite set and B+ B’ = A,
or equivalently A ~ B x B’.

Proof. Exercise/read [Mum08, p.160], or Thm 2.12] for the case over C. ]

Remark 3.3. Any reduced connected closed subgroup variety of an abelian variety
is automatically abelian, since closed immersions are proper. In characteristic 0, all
group varieties are automatically reduced, so the only requirement is connectedness
in this case.

On the homework, you will also be asked to give an example of B C A such that any

complement B’ as in the theorem necessarily has B N B’ nontrivial.

Definition 3.1. An abelian variety A/k is called simple if the only abelian subvarieties are
{e} or A itself.

Remark 3.4. The definition of simplicity depends on the field of definition k.
Abelian varieties that are simple over a given field might not be simple after base
change to a field extension.

Corollary 3.5. For any abelian variety A/k, we can write

ANﬁA%
i=1

where each A;/k is simple, r; € Z~¢, and the A; are pairwise nonisogenous.

Proof. Apply Poincaré reducibility inductively. |

13



Definition 3.2. Let A, B/k be abelian varieties. We write Hom(A, B) for the abelian
group (equivalently, Z-module) of homomorphisms from A to B; we do not require these
to be isogenies. We write Hom(A, B) := Hom(A, B) ®7 Q. Likewise, we write End(A) =
Hom(A, A) and End’(A) := End(4) ®z Q.

- )

Remark 3.6. We are implicitly working in the category of abelian varieties over
some given field k, so when we refer to a homomorphism A — B, we mean one
defined over k. Therefore these Hom groups and endomorphism rings may get larger
after base change. If we really want to emphasize that the homomorphisms must
be defined over the base field, we will write Homg (A, B), or for endomorphisms
End®(A/k).

Remark 3.7. You can think of End”(A) as the group obtained from End(A) by

formally inverting all of the multiplication by n maps.

Remark 3.8. Hom’(4, B) and End’(A) depend only on the isogeny classes of A
and B, since isogenies become isomorphisms after tensoring with Q.

Corollary 3.9. If A/k is simple, then End”(A) is a division algebra. More generally,
with A decomposed as in Corollary [3.5 we have

End’(A4) = ﬁ M, (End’(4;)).
i=1

Proof. The first part follows from the fact that for a simple abelian variety, the only en-
domorphisms are 0 and isogenies, and for any isogeny f on A, there exists g such that
go f = [n] for some n € Z; then the inverse of f in End’(A) is [n]~! o0 g. The general
decomposition follows from the fact that there are no nontrivial homomorphisms between
the distinct simple factors A;. |

3.2 Definition of CM abelian varieties

Definition 3.3. An abelian variety A/k is said to have complex multiplication over k if
End’(A) contains a CM algebra E such that [E : Q] = 2dim A. (A CM algebra is a finite
product of CM fields.)

Remark 3.10. The main idea is that CM abelian varieties have unusually large
endomorphism rings, which gives them special properties. Chief among these prop-
erties, as we will see over and over again later in these notes, is that the Tate modules
Ty(A) are rank 1 free E-modules. This fact alone will be responsible for a substantial
portion of the CM theory.

A CM abelian variety has the “largest endomorphism ring possible,” in the following

sense:

14



Lemma 3.11. If A is a simple abelian variety over a field k C C, then [End’(A) :
Q] < 2dim A.

Proof. Over k C C, we identify a simple abelian variety A with a torus V/A. Then End®(A)
acts faithfully on H;(A(C),Q) ~ A ®z Q ~ Q?3™A4 giving an embedding End’(A4) —
End(Q2 dim A).

We show in general that if V' is an n-dimensional vector space, then any subspace W C
End(V) of dimension at least n 4+ 1 contains nonzero noninvertible elements. This proves
the claim since End’(A) is a division algebra. Choose any nonzero v € V and independent
elements ¢1,...,¢on+1 € W. Then the vectors p1(v),. .., p,11(v) satisfy a nontrivial linear
dependence, which pulls back to some nontrivial linear combination ¢ of the ¢; such that

p(v) =0, so ¢ is not invertible. [ |

Remark 3.12. This lemma is false in positive characteristic, since, for example,

supersingular elliptic curves have endomorphism rings of degree 4.

Example 3.13. Being CM and simple over k& C C is equivalent to saying End®(A) is a
CM field of degree 2 dim A. If A is simple and CM, then an embedding E < End®(A)
with [E : Q] = 2dim A forces E = End"(A) by the previous lemma, and the CM
algebra F must be a field since the only CM algebras that are division algebras are
fields.

Conversely, suppose A is an abelian variety with End®(A) a CM field of degree
2dim A. Then A is automatically CM, and A is simple by Corollary since

otherwise we see explicitly that End’(A) has zerodivisors.

Remark 3.14. We are not claiming if A has CM by a field (of degree 2dim A), then
it is simple—it’s important that we’ve identified E = End”(A) in the above example,
since generally End’(A) can be larger than E. A condition for simplicity that is
determined solely by the CM field, without reference to End®(A), is discussed later
in Proposition [£.8

For more general k, we can instead work with the Tate module Ty(A) to mimic the first

homology group; we have a similar faithful action End(A4) ~ T,(A) := I.&HA[BR].

Example 3.15. Let E1, E5 be any nonisomorphic imaginary quadratic fields. We
have embeddings Of, — C as lattices. Then

End’(C/Op, x C/Og,) = E; x Es.

This is a CM algebra that is not a field, and it is degree 4 over Q.
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Example 3.16. Instead of taking two different fields, instead consider
End’((C/Og,)?) = Ma ().

This contains many degree 4 CM fields; for example, given any D € Zq, we have

2
0D\ _,,
10

so we realize Q(v/D) - E as a degree 4 CM subfield of M,(E;). This illustrates that
the CM algebra of an abelian variety might not be unique, not even abstractly up to

isomorphism.

The ambiguity demonstrated by the previous example necessitates some rigidification of
the data.

Definition 3.4. Let E be a CM field. An abelian variety with CM by E is a tuple (A, 1),
where A is an abelian variety of dimension 3[E : Q] and i : E — End’(A) is an embedding
of E as a subfield of End"(A).

We will very often abbreviate “abelian variety with CM” to just CMAV. Don’t forget
that these objects include the data of the embedding i : E < End".

More generally, let O be an order in a CM field E. Then an abelian variety with CM
by O is the data of a tuple (A,4) where A is an abelian variety of dimension 3[E : Q] and

i: O — End(A) is a choice of embedding of O into the endomorphism ring End(A).
The tuple (A,4) determines a CM type ® C Hom(E,C) on E associated to (A,i), via

the following recipe.

Let (A,i) have CM by E. The choice of i : E < End’(A) determines a faithful rep-
resentation £ ~ H;(A(C),Q), which gives H1(A(C),Q)) the structure of a 1-dimensional
E-vector space. By Hodge theory we have a canonical decomposition

H'(A(C),C) = H*' @ H™°
where H10 = HO.1, We have
H' = H(A(C),0") = P C-dz,

where Q! is the sheaf of holomorphic 1-forms and the z; are the coordinate functions of
A ~ C"/A near the identity. There is a natural identification H°(A(C), Q') = T.(A)*,
so dualizing gives a canonical decomposition H;(A(C),C) = Lie A(C) & Lie A(C). Since
H,(A(C),C) ~ H1(A(C),Q)®¢C by the universal coeflicient theorem, H; (A(C), C) inherits
the structure of an 2dim A-dimensional E-module over C. By standard algebraic number

theory we have

Hi(A(C),C)~E®eC~ P C,

p€Hom (E,C)

as E-modules, where C, denotes the space C treated as an E-module via multiplication
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under a given embedding ¢ : F — C. In the decomposition H;(A(C),C) = Lie A(C) &
Lie A(C), the two factors are E-invariant—(anti)holomorphic vector fields certainly push
forward to (anti)holomorphic vector fields under any automorphism—but swapped by com-

plex conjugation ¢, so we conclude that our decomposition restricts to a decomposition

Lie A(C) = @B C,,

ped

where ® C Hom(FE,C) is a CM type of E. Except for the choice of embedding i : E <
End° (A), all the identifications we have made are canonical, so ® is uniquely determined by
the tuple (A4, 7).

Definition 3.5. We say that the pair (E, ®) is the CM type of (A, 1).

If we want to define the CM type of an abelian variety over some k C C, we should also
specify the embedding k — C.

4 Classification of CMAVs (01/24/2024)

A recap: Given A/C and i : E < End’(A) for a CM field E, E acts on Lie(A(C)), and we

may decompose this representation as € C,, where ® is the CM type of (4,7).

ped

4.1 Classification of CM abelian varieties by CM type

Remark 4.1. Given a CM field E with CM type @, recall that we defined an abelian
variety A(C) = C*/Op ~ Lie A(C)/A in Example Then the CM type of this
A'is (E,®), where the embedding i : E < End’(A) is the obvious one induced by
isomorphism A(C) = C*/0Og.

Definition 4.1. An isomorphism of CM types (E,®) — (E’,®’) is a field isomorphism
a: E — E' such that ¢’ o € ® for all ¢’ € ¢’.

Proposition 4.2. Given a CM algebra F, we have a bijection between:
1. Abelian varieties (A4,7) with CM by E, modulo E-equivariant isogenies; and
2. CM types (E,®) on E up to isomorphism.

The bijection is given by sending a CM type (E,®) to the class of abelian variety
C?/Og, and in the other direction sending a CM abelian variety to its CM type.

Proof. We first check that the map (2) — (1) defined by (E,®) — C®/Og is well-defined,
i.e. if we have an isomorphism of CM types a : (E, ®) — (F,®’), then we get an E-invariant
isogeny (in fact, isomorphism) C®* /O — (CCD'/OE. Since « induces a bijection a, : ® — @',

we have a commutative diagram

ce — c®
] ]
Og E—°*5 F Og,
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which shows that we get an isomorphism C®/Op ~ c? /Og where the respective Op-
actions are identified, as desired.

Next, we must describe all possible (4,4). An arbitrary CMAV, say with with CM type
(E,®), is of the form A = Lie(A)/A = C®/A, where A is some lattice, and we are given
some embedding E — EndO(A). Here, E acts on C® = @so@D C, appropriately, and @ is
the given CM type by definition (we defined it using the Lie algebra). The main idea is to
embed an order of E into A, compatibly with the E-action. We also know that End®(A),
hence E, acts faithfully on A ®7 Q.

We claim that there exists v € A ®z Q with trivial stabilizer in E. If E is a field, then

any nonzero v works, and more generally:

Lemma 4.3. Let E = E; X --- X E, be a product of division algebras with an
embedding E < End(k™) for an infinite field k. Then there exists v € k™ such that
x-v =0 with z € F implies z = 0.

Proof. Let e; be the i-th idempotent in the algebra E, i.e. the element whose i-th coordinate
is 1 and all other coordinates are 0 in the coordinates £ = E; x --- x E,. Since E acts
faithfully, ker(e;) C k™ is a proper subspace, so since k is infinite, [ J;_, ker(e;) is a proper
subset of k™ (standard important linear algebra fact).

Choose any v in the complement of this set, and suppose e = (a;)} satisfies e-v = 0. If
the i-th coordinate a; is nonzero for some %, then (a;lei)(e) v = ;v = 0, which contradicts

the choice of v. Hence e = 0, so E acts freely on the orbit of v. |

Since [E : Q] = dimg A ® Q, we conclude any such choice of v yields an isomorphism
E ~ A ®z Q as E-modules, hence an embedding A C E as a lattice that is commensurate
with the ring of integers Og. This commensurability induces an F-equivariant isogeny
C?/A — C®/Og, so indeed the map (2) — (1) is surjective.

The composition (2) — (1) — (2) is the identity by Remark (though we neglect to
prove this remark), so we conclude that these maps are actually all bijections. |

Remark 4.4. (Very vague, don’t worry about this.) If A is an abelian variety, and
we have E/ < End’(A) with £/ CM but [E’ : Q] < 2dim A, then in the moduli space
of principally polarized abelian varieties 7, we get something positive dimensional,
and the CM type is related to signatures on PEL type Shimura varieties. In contrast,

the CM case gives a finite set of points.

If O is an order in a CM field E, recall that we can more generally refer to abelian
varieties with CM by O, which is the data of a tuple (A4, ), where i : O — End(A). This
also specifies CM by F if we tensor with Q.
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Corollary 4.5. Let O C FE be an order in a CM algebra. There is a bijection

between

e Abelian varieties (A, i) with CM by O, where i : O — End(A) for an order O

of F, modulo O-invariant isomorphisms; and

e Equivalence classes of tuples (E, ®,a), where (E, ®) is a CM type, a is a frac-
tional ideal of O, and we define (F,®,a) ~ (E',®’,a’) if we have an isomor-
phism of CM types a : (E,®) — (F',®’) such that a(a) = ka’ for some
ke (E)*.

Corollary 4.6. For a given CM type (E, ®), isomorphism classes of abelian varieties
with CM by Opg are in natural bijection with the class group of E.

4.2 Primitive CM types
Definition 4.2. Let Ey C E be CM algebras.

1. Given a CM type (Ey, o), its extension (E,®) is given by setting
O:={p: E—=C:plg € Do}
This is always another CM type.
2. Conversely, given a CM type (E, ®), its restriction is (Eg, Pp), where
D|g, :={p|r, : p € D}.

However, (Eg, ®g) is not always a CM type; in fact, it is a CM type if and only if
(E, ®) is already an extension of a CM type on Ej.

Definition 4.3. We say a CM type (E,®) is primitive if there exist no proper sub-CM
types (Eo, o) that extend to ® (equivalently, such that ®|g, is a CM type).

Proposition 4.7. Let E be a CM field. For any CM type (E, ®), there exists a
unique primitive CM type (Eg, ®¢) such that Ey C E and ®|g, = Po.

Proof. [Mil10, Prop. 1.9]. ]

Proposition 4.8. There is a bijection between:
1. Simple CMAVs/C up to isogeny; and
2. Primitive CM types (E, ®) up to isomorphism.

The bijection is given by sending (A, 1) to (End® A, ®), where ® is the CM type of
(A, 7).
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Corollary 4.9. A CMAYV is simple if and only if its CM is by a field with primitive
CM type.

Example 4.10. Let (E, ®) be an extension of (Eg, ®;). Then C®/Og is isogenous
to (C*/Op,)F#ol ~ (C* /O, ) ®0,, OF.

5 Jacobian of the Fermat curves (01/26/24)

5.1 Wrapping up yesterday

A clarification from last time: whenever we are talking about isogeny or isomorphisms of
CMAVs (A,1d),(A’,i') with CM by E, E’, we mean a pair (f,a), where « : E — E' is an
isomorphism and f : A — A’ is an isogeny/isomorphism such that the following diagram

commutes:

E —— End°(A)

b

E 5 End®(A4)

(Note that f also induces an isomorphism f, : End’(A) — End°(4’) even if f is only an
isogeny, since isogenies become isomorphisms after tensoring with Q.) We will usually fix a
single CM type (E, ®), in which case the only ambiguity is the embedding i : E < End’(A).
This is usually what we have in mind for the bijections in Proposition [£:2] and Corollaries
4.5 and (.6l

We now prove Proposition [4.8] from last time.

Proof. We already have a general correspondence from Proposition 2] so we need only
show that it restricts in the desired case.

If (E, ®) is an extension of (Fy, ®g) with Ey € E, then A is not simple, since (proper
nonzero) subset of A fixed by Fy — End®(A) is also an abelian variety.

Conversely, suppose (E,®) is primitive. We want to show that C*/Op is simple. We
sketch this; see [Mil10, Proposition 3.6]. Suppose C®/Op is not simple. Then:

1. Show that A ~ Aj for some simple A0E| This follows from the fact that F is a field:
if there were distinct factors in the decomposition, then we would not be able to find
a CM field of degree 2dim A in EndO(A).

2. Show that if r > 1, then (E, ®) is not primitive.

3An abelian variety whose Poincaré decomposition into simple factors only has one isogeny class is called
isotypic.
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5.2 Jacobians

We introduce Jacobians via an example. Let C' C IP’% be the Fermat curve C = V(XP +

YP = ZP), described in homogeneous coordinates with p prime. This is smooth with genus

(r—=1)(p—2)
5 .

degree 0 divisor classes (equivalently, line bundles) on C'. It is not obvious that this functor

Its Jacobian J(C) is the group variety whose functor of points parametrizes

is representable, but in the complex case there is a nice explicit analytic construction.

For an arbitrary smooth curve C, we construct
J(C) = H(C,Q")Y/Hi(C, Z).

Here, a class in H{(C,Z), represented by a loop =, is identified with the functional on
HY(C, QY given by w fvw, and the integral is independent of representative of the
homology class.

How exactly does this parametrize line bundles? Let an element of Pic’ (C) be repre-
sented by some divisor of the form ). [p;] — [¢;]. Then to this divisor we associate the func-
tional w — Y, f;; w. This integral is not well defined a priori, since it depends on the choice
of path, but the only ambiguities occur from integrating around loops. So it is a well-defined
functional modulo integration around loops, i.e. as an element of H°(C,Q')Y/H,(C,Z).

Moreover, this element is independent of the choice of representative divisor.

[ Theorem 5.1. J(C) is a CM abelian variety, where C is the Fermat curve above. ]

In general, if C is a smooth curve, then J(C) is an abelian variety—clear from its
description as a torus once we know that this construction is actually algebraic—but it
might not be CM.

We momentarily specialize to the case p = 3. The curve X3 + Y3 = Z3 is a genus 1
elliptic curve, choosing identity element (0 : 0 : 1). The group of third roots of unity us acts
on this curve by (X : Y : Z) — (¢X : Y : Z), and this preserves the identity element, so
we conclude that we have CM by Q((3). (An elliptic curve is naturally its own Jacobian.)

5.3 Constructing CMAVs for cyclotomic fields via the Fermat curve

For concreteness, we set ¢, = e2™i/P to give a fixed embedding of Q(¢p) into C. In the case
of a general Fermat curve C' = V(X? +YP = ZP), p, x p, acts on C by

(X:Y:2)= ((X: QY :2)

so we conclude we have an embedding p, x p, — End(J(C)). Fact: working in the affine

coordinate chart with z = %, Yy = %, the 1-forms

1 dx? dz d
Wr g 1= 7mrys o — xrflysfl p— — _xrflysfl Y
p 7Y )

where 1 < 7,5 < p — 1 are integers with r + s < p — 1, form a C-basis of H°(C,Q'). This
condition on a pair of integers (r, s) will show up a lot in the remainder of this section, so

for brevity we define:
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Definition 5.1. We say that a pair of integers (r,s) is admissible if 1 < r,s < p—1 and
r+s<p-—1.

The p, X p, action sends
A ir+js
( P> Cp) P W Cp Wr,s-

(no restrictions on the pair (¢,7) € Z/pZ). That is, these basis elements are eigenforms for
the p, X pp-action. Since i, X p1p acts on each form w; s by a different character, this shows
that these forms are linearly independent, which gives a proof that these forms do indeed
constitute a basis of H(C, Q) ~ CP~D®=2)/2 once we know:

Lemma 5.2. There are exactly p — 2 equivalence classes of admissible pairs (r, s),
each of size (p — 1)/2, defined by the relation (r,s) ~ (r/,s’) iff there exists m €
(Z/pZ)* such that mr = ' mod p and ms = s’ mod p. Hence there are (p — 1)(p —
2)/2 different admissible pairs in total.

Proof. Every equivalence class of admissible pairs has a unique representative of the form
(1,8) with 1 < s < p — 2. For such a representative, there are exactly (p — 1)/2 values
of m € (Z/pZ)* for which (m,ms) is congruent to an admissible pair mod p. In fact, m
satisfies this property if and only if —m does not satisfy it, i.e. such m constitute a full set

of coset representatives for {+1} mod p. |

Example 5.3. Let p = 5. The three equivalence classes of admissible pairs in Lemma
are

Corollary 5.4. The equivalence classes of admissible pairs [(r, s)] yield CM types
on Q((p): identifying Hom(Q((p), C) =~ (Z/pZ)* via (¢ = () = n mod p, the class
[(r,s)] corresponds to the CM type ® = {r' : (v, s’) € [(r, s)]}.

Proof. WLOG take (r,s) = (1, s). Complex conjugation sends n — —n under the identifica-
tion Hom(Q(¢,),C) ~ (Z/pZ)*, so a set ® is a CM type if it corresponds to a complete set
of coset representatives for {£1}. But we’ve already observed that {m : (m,ms) € [(1,s)]}
satisfies this property. |

Remark 5.5. We are not claiming that this construction yields all CM types on
Q(¢p)- In fact, we miss most of them: there are 2(p=1)/2 CM types on Q(¢&p), but the
construction only gives p — 2 of them.

Let (r,s) be an admissible pair. We can construct a curve C, s equipped with a map
C — Crs: (z,y) — (aP,z"y®). More specifically, this is the unique smooth curve with
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function field C(u,v)/(vP —u" (1 —u)*®). The map C — C, s induces a map J(C, ) — J(C).

Proposition 5.6. C, ; is a curve of genus (p — 1)/2. Moreover, C, s ~ C,/ o if and
only if (r,s) ~ (r,s’) as admissible types. In particular, C, , is isomorphic to a
unique curve of the form C 4.

Since we have a concrete description of J(C,. 5) = H°(C, s, Qc,.,)V/H1(Cys, Z), hence a
natural identification H°(C,.s,Q¢, )" ~ Lie(J(C,)), we can explicitly determine the CM
type on this abelian variety via the action on differentials described previously. Let u, act
on Cvia (- (X :Y : Z) = (X : Y : Z) (only using half of the p, x pp-action). We
also have action of p, on C;., via ¢, - (u,v) = (u,{jv), which is compatible with the map
C — C,,s. These actions descend to compatible actions by Z[(,] on the respective Jacobians,
hence CM by Q(¢,) on J(C, ) since the dimensions are correct.

By our computation of the action on differentials, the eigenvalues of ¢, on H°(C, QL)
are {¢) : 1 < r < p—2}, and each eigenvalue has multiplicity (p — 1)/2. Note that
dime HO(C,Q¢) = (p—1)(p—2)/2, but dime¢ H°(C,5, Qg ) is only (p—1)/2, so the image
of the pullback map H(C,s,Qf, ) — H°(C,Qf) is a proper Q(¢p)-subrepresentation.
(This map is injective because it ,is induced by a finite separable morphism of curves.)
To determine the CM type of J(C, ), we therefore must determine precisely what this
subrepresentation is.

Proposition 5.7. As a subspace of H(C,Qf), H°(C,. s, Qa) has basis given by
{wpr g 2 (1", 8") ~ (1, 5)}, ranging over all admissible pairs (17, s") equivalent to (r, s).

Proof. See [Lan83 Theorem 7.2]. [ ]

Corollary 5.8. J(C, ;) has CM by Q((,) with CM type ® = {r’ : (', s") ~ (r,s)} C
(Z/pZ)* ~ Hom(Q(¢p),C), with notation as in Corollary

Proof. The eigenvalue of the action of ¢, on w5 is (;, so by Proposition the spectrum
of this operator on H°(Cy.5, Q¢ ), hence also on H(C.s, Q4 )Y, is {(;/ s (' 8) ~ (r,8)}.
This precisely determines the CM type to be ® = {r': (+',s') ~ (r,9)}. [ |

This also shows how to find the CM type on J(C) as well, since Proposition implies
that H°(C,Q¢) is the direct sum of the various H°(C,.s, Qf, ) ranging over admissible
equivalence classes [(r,s)]. In particular, []; ) J(Crs) = J (C’) is an isogeny, since the
images of differentials of the J(C} 5) form a direct sum decomposition of Lie(J(C)).

Remark 5.9. The J(C, ;) might not be simple. On Homework 1, you should find a
case where the CM type of J(C, s) is non-primitive.

For more details and discussion of this construction, see [Lan83], especially §1.6 and §1.7.
This includes discussion of the case of the Fermat curve X~ + Y~ = ZN and CM by Q(¢y)
when N is not necessarily prime. However, Lang’s discussion of the Jacobian at the end of
§1.7 is very brief.
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6 Rosati involution (01/29/2024)

6.1 Rosati involution

Let A/C = V/A with Riemann form ¢ : A x A — Z.

Definition 6.1. The Rosati involution is the unique involution on End’(A), usually denoted

by a superscript t, satisfying
P(az,y) = ¢(z,aly)

for all & € End’(A) and all z,y € A.

Remark 6.1. A Riemann form gives a map v : A — AV, which becomes an isomor-
phism after tensoring with Q. The Rosati involution yields, for any a € Endo(a), a

commutative diagram

A9Q 5 AV ®Q

bl

A9Q 5 AV®Q

This gives a direct formula for the Rosati involution as
al =y~ loaor

and shows that it exists and is unique.
In a more general algebraic setting over an arbitrary field k, we will have a similar

description of the Rosati involution based on a polarization 1 : A — AV.

Lemma 6.2. Let V =T, (A(C)), and let H be the positive definite Hermitian form
on V induced by a Riemann form 1 : Ax A — Z; note that End®(A(C)) acts faithfully
on V. Then the Rosati involution associated to 1 also defines an adjoint involution
on End’(A(C)). with respect to H.

Proof. There isn’t really much to do here besides recall definitions: H is defined by H (v, w) =
Y(iv,w) + (v, w), where 1 is extended to A ®z R ~ Vi as real vector spaces. Then for
o € End’(A), we have

H(av,w) = Y(a(iv),w) + i (v, w)
= (v, alw) + i (v, afw)
= H(v,a'w).
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Proposition 6.3. Let Tr : EndO(A) — Q be the trace map, treating elements of
EndO(A) as Q-linear endomorphisms on H;(A,Q). Then Tr(af o a) > 0 for all

nonzero a End”(A).

Proof. See also the first few pages of [Lan83].

Let V = T.(A(C)) and let H : V x V — C be the positive definite Hermitian form
associated to . The trace of an element of End’(A) on V as an R-endomorphism is the
same as its trace as an operator on Hj (A4, Q) as a Q-endomorphism, so it suffices to show
that that Tr(af o @) > 0 treating af o o as an endomorphism of V.

Note that any o € End®(A) is in fact C-linear on V = CY, since by definition endomor-
phisms of A must respect the complex structure. Hence it makes sense to say that afoa is a
self-adjoint operator on V' with respect to the Hermitian form H. By the spectral theorem,
we conclude that af o a, treated as a complex endomorphism, is diagonalizable with real

eigenvalues. Moreover, if v is a A-eigenvector of af o a, then
0 < H(av,av) = H((al o a)v,v) = AH (v,v),

so A > 0, and if « # 0 at least one eigenvalue is positive.
This tells us that of o o has positive trace as a C-linear operator. If we instead treat
al o« as an R-linear operator on Vi ~ R?9, by restricting scalars, the trace gets multiplied

by 2ﬁ Therefore the trace is also positive as an R-linear operator. |

Fact: on a CM algebra E, there exists a unique positive involution, given by complex
conjugation on each factor. Therefore, for any simple CMAV A, we may identify EndO(A)
with a CM algebra with Rosati involution given by conjugation. Then we have

Plaz,y) = ¥(z, c(@)y).

If A is not necessarily simple, then for any given Riemann form v there exists a CM algebra
EC EndO(A) with [E : Q] = 2dim A such that ET = E.

Lemma 6.4. Let A = V/A be simple,
¢:A®ZQXA®ZQ—>Q

be a nondegenerate skew-symmetric form such that ¢ (az,y) = ¥(z, c(a)y) for all
a € E ~ End’(A). Then ¢(z,y) = trp/g(éc(z)y) for all 7,y € E ~ AQ, where
¢ € F is a totally imaginary element, i.e. ¢(§) = —¢&.

6.2 Data of CMAVs with polarizations

Definition 6.2. Let (A,i,%) be a tuple consisting of the data of an abelian variety A, an
embedding E — EndO(A) for a CM algebra E, and a Riemann form v such that Et = E

4In general, let L/K be a finite field extension, let V' be an L-vector space, say of dimension n, and
let & € Endf, (V). Denote by Try(a) the usual trace of « as an L-linear endomorphism on V, and denote
by Tri (o) the trace we get by instead treating o as a K-linear endomorphism on V ~ K™L:K] Then
Trr (o) = Trp g (Trr (@), where Trp, /i : L — K is the field-theoretic trace map.
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with respect to the Rosati involution induced by 1. We define (A4, 4,1) ~ (A’,i',’) if there
exists an isomorphism f : A — A,a : E — E’ making all diagrams relevant to these data

commute.

To such a tuple (4, 4,1), we associate a tuple (E, ®, a, ) consisting of a CM type (E, ®),
a fractional ideal a C E, and a totally imaginary element £ € E. We already know how to
get a CM type from (A,4). Pick some v € Hy(A,Q) such that E — H1(A,Q):a—a-vis
an isomorphism (see the proof of Theorem . Let a C E be the lattice identified with A
under this isomorphism, and let £ € E* such that ¢(§) = —£. The choice of v ambiguous up
to multiplication by E*, and a different choice sends v +— a~!v for some a € EX, yielding

an isomorphism

(E,®,0,8) ~ (X, ®,aa,&/a(ca)).

6.3 Every CMAY is defined over Q

Proposition 6.5. Let k = k — C. The functor

AVk — AV(C
A A(C

(from the category of abelian varieties over k to the category of abelian varieties over
C) is fully faithful, and its essential image contains all CMAVs over C. In particular,
taking k = Q, all CMAVs are defined over Q.

This allows us to port a lot of the theory we have developed over C to Q.

Proof. The key observation is that we get a map A(k) — A(C) such that A(k)tors =~ A(C),
since the equations cutting out torsion elements (of any given order n) are algebraic with
coefficients in k.

Faithfulness: Suppose we have two homomorphisms f,g : A — A’ such that fc =
gc. Hence in particular fc|a(c),... = 9c|A(C).,.- By the previous observation, this implies
Fla®)iore = 9lA(k)ior.- Then the claim that f = g follows if we can show that A(k)iors is
Zariski dense in A, which we can do by applying the following lemma for any prime number

L.

Lemma 6.6. Let A be an abelian variety over an algebraically closed field k. Then
for any prime ¢ # char(k), A[¢>°] is Zariski dense in A. (This should be read as “the
only closed subscheme of A containing all of the closed subschemes A[{™],m € Z, is
A itself.”)

We state this in the general algebraic setting since it is not much harder to prove there—
however, we will use the fact that A[(™] ~ (Z/¢mZ)?%mA. We will get to this later, but
this fact is clear when working in the analytic setting over C, so we still obtain a complete

proof of Proposition [6.5]
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Proof. Let B be the Zariski closure of A[¢*°] with its reduced induced structure. Then B
is proper and reduced. Moreover, we claim B is a subgroup variety of A. To show this,
we need to show that the group operations factor through B, e.g. m|pxp : Bx B — A
factors through B < A. Let g,h € B(k); then any open neighborhoods U; > g, Uy 3 h
in A intersect A[¢*°](k) since B is the closure of this set. Let V be an open neighborhood
of g+ h € A(k); then the preimage m~1(V) is open and therefore contains a product of
neighborhoods U; x Uy as above. Choosing any two £°°-torsion points z1, 20 € Uy, Uz we
conclude that z; + 29 is an £*°-torsion point in V. But this shows that any neighborhood of
g + h contains an ¢>°-torsion points, hence by definition g + h € B(k). A similar argument
shows that B is preserved by inversion, and the fact that the unit map factors through B
is clear.

Hence B is a proper reduced subgroup variety of A, so the connected component of its
identity BY is an abelian subvariety. We claim that A[¢>°] C B°. Since B is finite type,
it has a finite number n of connected components. Suppose e = vy(n) is the maximum
power of ¢ dividing n; then ¢¢A[¢*>°] is contained in B, since the only £*°-torsion elements
of the finite group B/B° have order dividing ¢¢. But A[¢*°] is an (-divisible group, so in
fact A[(>°] = (¢ A[¢>°] C B too.

For ¢ # char(k) and any abelian variety A’, we have A'[(] ~ (Z/¢Z)2%™ A" Therefore
the fact that B® O A[(] implies that dim B > dim A. But A is connected and B° is a
subvariety of A, whence B = B = A. [ |

Remark 6.7. This proof can be easily modified to prove Lemma for £ = char(k)
if A is assumed to be an ordinary abelian variety.

Fullness: We apply descent theory. We can writ k= CAC/F) Let f: Ac — Af: be
any homomorphism over C; we wish to show that this actually comes from a homomorphism
over k. For 7 € Aut(C/k) we consider the map " f : Ac — A given by the map 7o for 1
By descent theory, f comes from a morphism over k if and only if 7 f = f for all 7. This is
again true if and only if 7 f and f agree on the dense subset (Ac)tors, but again all points

of these subgroups are defined over k = k, so these maps are the same.
We'll finish the claim about CMAVs next time. |

7 Fields of definition (01/31/2024)

7.1 CMAVs in the essential image

Suppose A is a (not necessarily abelian) variety over C. Then there exists a ring R, with
Q 2 R D C and R finitely generated Q-algebra, such that A is defined over R as a scheme,
i.e. there exists an R-scheme &7 such that o/ ~ A. This is not very mysterious: A is finite
type over C, so there are finitely coefficients involved in the polynomials cutting it out. We
can take R to be generated by these polynomials and then use the same equations as before
for of. We say that ./ is obtained from A by “spreading out.”

5If a, 8 € C are two transcendental elements over k, then a Zorn’s lemma argument shows that the
automorphism on k[a, ] swapping the two elements extends to C.
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Proposition 7.1. With notation as above, suppose that A is an abelian variety over
C. Then there exists a finitely generated R/Q, a proper group scheme /R, and
nonempty open U C Spec R such that 7, /U is an abelian scheme.

Proof. The morphisms defining the group laws again involve only finitely many coefficients,
and we can take R large enough to include all of them. Therefore we can spread out to find
o/ /| R with the structure of a group scheme such that o ~ A.

Since we can originally write A/C as a closed subvariety of ]P’é:\' for some N, we can
use the same equations to write &/ as a closed subscheme of ]P’g . In particular, &/ /R is
projective, hence proper. Since properness is stable under base change, this will remain true
if we later restrict to some open U C Spec R.

For connectedness on geometric fibers, we have a morphism Ogpec r = O . A fiber
over a geometric point § < Spec R is connected if and only if this morphism is an iso-
morphism on the stalk at 5. But 3 = Speck’ for some algebraically closed k' C C, and a
k’-scheme is (geometrically) connected if and only if it is (geometrically) connected over C:
one definition of geometric connectedness is that the scheme is connected after base change
to any field extension, not necessarily an algebraic field extension.

Note that if o/ is an R-group, then @7, is a U-group for any open U C Spec R. Since &
is smooth on the generic fiber, and smoothness is an open condition, we may choose some
U C Spec R so that o7 is smooth over U, and @7 /U still satisfies all of the other criteria
for being an abelian scheme.

See also [Mil86, Remark 20.9]. |

We finish the proof of Proposition [6.5

Essential image: Let A/C be an arbitrary CM abelian variety defined over C. Spread
out A to an abelian variety over some open U C Spec R, with ¥ C R C C and R finitely
generated over k. We may assume k = k. Letting O := End(A4/C), we may enlarge R
and shrink U sufficiently to have O C End(%/U) too, since End() is always finitely
generatedEI over Z. Pick a geometric point s : Speck — U; then B := &/ is an abelian
variety over k that base changes to A, so we have B(k)tors = A(C)iors-

B/k is CM with the same CM type as A; its endomorphism ring is large enough since we
took U appropriately, and we have an isomorphism Lie(B¢) ~ Lie(A4). By Proposition
this means that B¢ is isogenous to A. Therefore, there exists a finite subvariety G C B¢
such that Bc/G = A. But such G is torsion, 80 B(k)tors = A(C)tors implies that G is defined
over k, too, so we may descend B¢/G to a quotient[] of B defined over k.

6We will eventually prove this in full detail in Theorem but it is easy to show finite generation in
the analytic category by using the fact that morphisms between abelian varieties are in correspondence with
maps between lattices.

"We have not defined how to take a quotient of a group scheme. In general, quotients of group schemes
are subtle and do not always work (instead requiring algebraic spaces), but the case of quotienting an abelian
variety by a finite subgroup behaves as it should. We’ll discuss this in more detail after we learn about fpqc
descent.
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7.2 Reflex fields

Remark 7.2. We can alternatively define a CM type as a subset of Hom(E,Q)
rather than Hom(FE, C)—it does not matter which complex conjugation we choose

on Q, since all choices become the same on E if E is a CM algebra.

Definition 7.1. Given a CM type (E, ®), its reflex field E* C Q C C is the fixed field of
the subgroup

{0 € Gal(Q/Q) : 0® = ®}

Fact: if E is a field, then E* is contained in the Galois closure of E in Q. By definition,
E* is a field even if F is not a field.

Lemma 7.3. [Mill(, Propositions 1.16, 1.18] Let (F,®) be a CM type with reflex
field E*.

1. E* is the subfield of Q generated by > pca Pla), ranging over all a € E.
2. E* is a CM field.
3. If (E,®) = ngigm(Ei’ ®,), then E* is the compositum Ef - -- E¥,.

4. If (Fy, ®q) is an extension of (E,®), then Ef = E*.

Proof. Omitted; read Milne. [ |

Since E* is a CM field, you may ask whether there is a natural CM type on it arising
from the CM type (F,®). We'll talk about this later.

Proposition 7.4. Let A/k with k& — C. Assume Ay is a CMAV with CM type
(E, ®) and reflex field E*.

1. If E C End’(A/k), then E* C k.

2. If E* C k and A is simple, then E C End’(A/k).

Proof. 1. E acts on Lie A, which is a k-vector space. By the definition of the CM type on
A, we have Lie Ac ~ P co
the trace of its action on Lie A after base changing to C, so we conclude that

C, as E-representations. Given a € E, we can compute

Tr(a|Lie Ac) = Z o(a).

ped

But this trace comes from a k-vector space endomorphism, so it must lie in k. Such
traces generate E* by part 1 of Lemma [7.3] so E* C k.
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2. By Example simplicity of Azimplies that £ is a field and that £ = EndO(AE).
The group Gal(k/k) acts on End”(Az), so we must show this action is trivial, so that
End’(A4;) = End’(A/k).

Any o € Gal(k/k) fixes k, so it also fixes E*; by the definition of the reflex field, this

means that 0o ® = P.

We know Lie Az ~ Do
the isomorphism o : Lie Az — Lie Ay induced by o corresponds to an isomorphism

k, as E-representations. Therefore, given o € Gal(k/k),

o: @w@b ko — @ve‘b k,. Hence o induces an automorphism of the CM type (E, ®),
so there exists a € Aut(E) such that ® = go® = Poa. Letting Ey be the fixed subfield
of a, it follows that the restriction (Ey, ®|g,) is a CM type; see [Mill0, Proposition 1.9].
But (E, ®) is primitive, so we must have a = idg.

|

Corollary 7.5. There are no CMAVs defined over Q.

Remark 7.6. When we say that a CMAV A is defined over Q, we specifically mean
that End?Q(A) is already large enough to admit an embedding £ — End%(A) with
E CM and [E : Q] = 2dim A, without needing to take a field extension to get more
endomorphisms. There are plenty of CMAVs that are defined as abelian varieties
over Q, but we do not get enough endomorphisms that are defined over Q. For
example, the elliptic curve A : 4> = 22 + z has End@(A) = ZJi], generated by the
endomorphism (x,y) — (—z,4y), but this endomorphism is not defined over Q.

Proof. If A has CM by E and is defined (as a CMAV) over Q, then by definition this means
that E — End%g(A). By Proposition we conclude that £* C Q. This is impossible since
E* is itself CM by Lemma [7.3| Part 2, hence a nontrivial extension of Q. ]

8 Shimura-Taniyama formula (02/02/2024)

8.1 Statements

Let A/K be an abelian variety over a number field K.

Definition 8.1. For a prime p of K, we say that A has good reduction as p if there exists
an abelian scheme o7 /Ogpec K, such that @k = A.

In particular, good reduction means that .27 must be smooth over Ogpec k,- The spec-
trum of this DVR only has two points, and we already know that the generic fiber is an
abelian variety A, so really this is equivalent to the special fiber being an abelian variety.

Now let X/F, be a variety. There exists a map Fx : X(F,) — X(F,) defined in

coordinates by sending a — a?; this is the (¢-th power) Frobenius map on X.

Definition 8.2. If X is an abelian variety, the (¢-adic) Tate module is Ty = Hm A(F,)[em].
Then Frobenius also descends to an action on the Tate module.
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Theorem 8.1. (Shimura-Taniyama formula.) Let A/K be a CMAV with CM type
(E, ®) such that K contains all Galois conjugates of E (hence also the reflex field E*)
and E C End’(A/K). Let p C Ok be a prime of good reduction, with Ok /p ~ F,.
Assume further:

1. K,/Q, is unramified;
2. End(A)NE = Og.
Then:
(a) There exists m € O such that 7 induces the Frobenius action on A mod p.

(b) The ideal (7) C OF is given by [[,cq ¢~ (Nmg/pE ).

The assumptions (1) and (2) are unnecessary but make the proof easier. There is another

version that we will also consider:

Theorem 8.2. (Shimura-Taniyama formula v2, Tate’s paper.) Let A/K have CM
type (E, ®) (with E C End’(A/K), and suppose p is a prime of good reduction lying
over (p) C Z, with Ok /p ~ F,. Then:

(a) There exists 7 € E that induces F4 mod p.
(b) For all places of E dividing p, we have

ordy(7)  #(® N H,)

ord,(q) #H,

where H, = Hom(E,,Q,).

Remark 8.3. The Shimura-Taniyama formula is not to be confused with the

Shimura-Taniyama conjecture, aka the modularity theorem.

8.2 Eigenvalues of Frobenius

Here are some corollaries that will make these results more concrete and actually allow you
to compute things on the homework.

Suppose Op C End(A/K). By the theory of Néron models, we can take <7 so that
End(A/K) = End(#//Ok,). The latter injects into End(A mod p) by the theory of Tate

modules, which we will discuss later.
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Corollary 8.4. Let A/K be CMAV with hypotheses as in the Shimura-Taniyama

theorem.
(a) The characteristic polynomial of Fo mod p is an integer polynomial.

(b) The g-adic valuations (i.e. the p-adic valuation renormalized so that v(q) = 1)

of the eigenvalues of the characteristic polynomial of F'g moq p are

U,

each with multiplicity #H,,.

Here, we take the characteristic polynomial of Frobenius to be the one via its action
on the Tate module V; = T; ®z, Q¢ over ;. This is also the same as the characteristic
polynomial of the lift of 7w to Hi(A(C),Q). Part (a) is true for non-CM AVs via the Weil
conjectures, but part (b) seems to be a lot harder to approach in general.

The eigenvalues of Frobenius are one of the Great Mysteries of number theory. For
example, they control whether an abelian variety is ordinary or otherwise how non-ordinary
it is; if the valuations are all 0 or 1, then the AV is ordinary, and if all of them are 1/2, it
is supersingular. We know basically everything in the CM case by the above theorem, but
more generally less is known. For example, we don’t even know if a given abelian surface
over K reduces to a supersingular abelian surface over F, for infinitely many q.

We first prove the corollary from the Shimura-Taniyama formula:

Proof. (a) The characteristic polynomial of Frobenius is the same as the characteristic poly-
nomial of 7 as a Q-linear transformation on E—we consider 7 to act on H; (A, Q)—so

it is an integer polynomial. Explicitly, this polynomial is

H (x — o(m)) € Z[x].

oc€Hom(E,Q)

(b) Over Q,, we can rewrite the above polynomial as
I[I II G@-o,
v|p o'GHom(Ev,@p)

ord, ()
ord, (q) ’

and the o(7) in the inner product all have the same valuation which is equal to

% by Theorem
|
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Example 8.5. Let A be an elliptic curve with CM by an imaginary quadratic field
E. There are two cases for a prime p € Z:

o If p splits in E/Q into two places vy, ve, then #H, = #H,, = 1. Since the
CM type ® has only one element, we conclude that the Frobenius eigenvalues
have g-adic valuation 0 and 1, each with multiplicity 1. This is the case of an

ordinary reduction.

e Otherwise, if p is inert or ramified, then #H, = 2, and we get the eigenvalue of

valuation 1/2 with multiplicity 2. This is the case of a supersingular reduction.

By the Chebotarev density theorem, this tells us that exactly half of the reductions
of A will be ordinary and half will be supersingular (in the natural density of primes).
In particular, any CM elliptic curve reduces to a supersingular curve for infinitely

many p.

Example 8.6. Now let dim A = 2 (an abelian surface), and suppose E = Q((s).

1. If p splits completely in E/Q, then we similarly get eigenvalues of valuation
0,0,1,1, yielding an ordinary abelian variety.

2. If p # 5 is inert in E/Q(v/5), then for any place v lying above p (there are
either 1 or 2) we have ¢(H,) = H,, i.e. ® N H, consists of exactly half of the
elements of H,. Hence the g-valuation of all eigenvalues are 1/2.

On the homework, you will compute the g-valuation of the Frobenius eigenvalues for
the Jacobians of some Fermat curves. You will also give an example of an CMAV A of
dimension 2 with Frobenius eigenvalues of valuation 0,1/2,1/2, 1.

We will not be able to prove the Shimura-Taniyama formula for a while because we have
not yet built the algebraic theory of abelian varieties and schemes. The proof will be given
in Lecture

Part 11
Algebraic theory of abelian varieties

9 General theory of AVs (02/05/2024)

I was absent this day; this section is reconstructed from Prof. Tang’s outline, Nir Elber’s

notes, and the accounts of these facts in [Conl5].

9.1 The Rigidity Lemma and applications

We now work in the algebro-geometric setting over an arbitrary field k. Recall from Lecture
2:
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Definition 9.1. An abelian variety over a field k is a group variety that is smooth, con-

nected, and proper (among many other equivalent definitions).

We claimed early on that it is the properness that ensures abelian varieties are commu-
tative group schemes. In the complex analytic setting, we used a compactness argument to
conclude that the adjoint action is trivial. In the algebraic setting, the key is the following
result:

Theorem 9.1. (Rigidity lemma.) Let X,Y be geometrically integral varieties over a
field k and Z a separated k-scheme. Let f : X Xx Y — Z be a k-morphism. Suppose:

e X/k is proper and X (k) is nonempty, say zo € X (k);

e There exists yo € Y (k) such that f|xy,} is constant, mapping everything to
a point zg € Z(k).
Then there exists a morphism g : Y — Z such that the following diagram commutes:
XxY
N
y 24— Z

That is, the morphism f is independent of its first coordinate.

\. .

Proof. Define g(y) := f(xo, y); more rigorously, g is the composition
Y ~Speck x VY x vy L, 7

To show that f = g o pry, it is enough to show that this is true on an open dense subset of
X xY, since the source is reduced and the target is separated (see [Har77l, Exercise 11.4.2] or
[Vak, Theorem 11.4.2] for the “Reduced-to-separated theorem”). Since X and Y are both
geometrically integral, X x Y is irreducible, so any nonempty open subset is dense.

Let U > zp is any open affine neighborhood of zy in Z. By continuity, f~1(Z \ U) is
closed in X x Y, and since X is proper, the projection pry (f~1(Z \ U)) is again closed.
(Recall that proper schemes are universally closed by definition, so in the Cartesian diagram

Xxy 2 .y

| |

X — Speck

the top arrow is a closed map because the bottom arrow is.) Define V := pry (f~1(Z\ U)),
which we know is open and nonempty: it at least contains yo, since f(zg,y0) € U.

The open set X x; V C X X Y is the open set we will use to test the equality of f
and g o projy-. It is even enough to check equality on k-points, since these are dense in any
k-variety. (The maximal locus of agreement of any two morphisms ¢, : S — T is locally

closed in general and closed if T is separated, in the sense that in the Cartesian diagram

V—=S§

|

T -2,TxT
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the map V' — S is locally closed, and closed if S is separated.
Solet y € V(k). Then f(X x%{y}) maps inside Uy, but Xz xz{y} is proper over Speck
and Uy is affine, so f is constant (the image of a proper morphism is proper, and the only

proper subschemes of an affine scheme are the finite). Hence for any = € X (k), we must

have f(z,y) = f(zo,y) = g(z,y), as desired. |

Remark 9.2. The hypotheses in the Rigidity Lemma can be slightly weakened; see
the version in [ConI5, Theorem 1.7.1].

Some immediate applications:

Corollary 9.3. Let A and B be abelian varieties, and let f : A — B be an arbitrary
morphism of k-varieties (not necessarily a homomorphism). Then there exists a
homomorphism h € Homy (A, B) and a point b € B(k) such that f = t,0h, where ¢ :
B — B is the translation by b. In particular, if f(ea) = ep, then f is automatically

a homomorphism, where the e’s are the identity elements.

Proof. We reduce to the case f(e4) = ep by post-composing with translation by b = — f(e).
Writing the group law multiplicatively for the moment, without yet knowing that this law
is commutative, define o : A x A — B by

a1, 22) = f(r1m2) f(z2) " f21) 7"

Then a(z1,e4) = f(x1)f(ea) L f(x1)~! = ep, and likewise (e, z2) = ep. By the Rigidity
Lemma, o : A x A — B factors through both projections A x A — A, so a must be constant
with a(Ax A) = {ep}. But this means f(z122) = f(z1)f(x2), i.e. fisahomomorphism. W

Corollary 9.4. The group law on an abelian variety is commutative.

Proof. The inverse morphism i : A — A preserves e 4, so by Corollary[0.3] i is automatically
a homomorphism. But a group is commutative if and only if the inverse map defines a

automorphism. |

Remark 9.5. Since the group law on A is commutative, multiplication by n is a

homomorphism. We denote the multiplication by n morphism as [n] : A — A.

Remark 9.6. From now on, we will notate the group law on an abelian variety
additively.
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9.2 Theorem of the Cube statement and corollaries

Theorem 9.7. (Theorem of the Cube.) Let X,Y,Z be geometrically integral k-
varieties with X and Y proper. Let zo € X (k),yo € Y (k), z0 € Z(k). Suppose a line
bundle .Z on X X Y x Z becomes trivial under the three restrictions

Ll xxyx iz} Llxx{yo}x2>ZL | {zo} x¥ x Z-

Then % itself is trivial.

It will take quite a bit of work to prove this; we’ll start next lecture. For now, we give

some consequences.

Theorem 9.8. (Cubical structure of line bundles.) Let A be an abelian variety and
X any variety over k. Given three morphisms f,g,h : X — A and a line bundle .¥

on A, we have an isomorphism

(f+9+h) LR LRQILINL=(+9)ZR@g+h)*'Zeh+f)Z.
(1)

In particular, take X = A x A x A and let m, : X — A denote the projection onto
the indices o followed by addition in the group law. Then

miy3 £ ®pri £ @pry £ @pry L ~mjy £ @my; £ @mjz 2. (2)

Proof. The isomorphism []is the universal case: the general case [I] can be obtained from 2]
by pulling back along the morphism (f,g,h) : X — A x A x A. Therefore, we need only

prove 2}
Equivalently, we must show that

H =Ml LOpr Loprs L@pr L omiy, £ ' oms, £ omi; £

is trivial. This follows from Theorem if we can show that J|(c,}xaxa: | Ax{ea}xa
and %/|AXAX{8A} are all trivial, so by symmetry we need only show that «75/|{eA}><A><A is

trivial. But
K feayxaxa =iy £ @0 @pry.L @prs £ @pry. L~ @myy L @pry.L !

and the factors cancel. [ ]
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Remark 9.9. As currently stated, the isomorphism appearing in Theorem [0.8]is not
canonical. Moreover, when considering abelian schemes over a more general base S,
it might not be true that e*.# is trivial, where e : S — A is the unit morphism. The

“correct” version of Theorem [0.8] is
migs £ @pr] L @pry L @pry. L ~mi, £ @ms; £ @mij; L eyl

where ey : X — A is the base change of the unit morphism; the extra term cancels
the factor that was trivial in our original computation. Naturality of this version of

the isomorphism is the content of one of the exercises in Homework 2.

Corollary 9.10. (Quadratic structure of line bundles.) Let .Z be a line bundle on

an abelian variety A. Then for any n € Z,
)" = p@n(n+1)/2 ® [_1}*$®n(n—1)/2.

In particular, if .Z = [-1]*.Z (we say such .Z is symmetric), then [n]*.¥ = %’
and if £~! = [~1]*.% (we say such . is antisymmetric), then [n]*.¥ = £%".

. J

Proof. The statement is trivial for n € {—1,0,1}. Suppose we know the statement for n
and n — 1. Then

n*Zen* N2 [-1]"Y~n+1]"Ln-1]"Z[0]"ZL

by Theorem taking X = A and f = [n],g = [1], h = [-1]. By inductive hypothesis, the

above simplifies to

(g@n(nJrl)/Q ® [71]*$n(n71)/2)®2 © L[]
~n+1"2® p®(n—1)n/2 ® [_1]*$(n71)(n72)/2

and gathering like factors gives the formula for [n + 1]*.%. Likewise, this same argument
gives the formula for n — 1 if it is known for n and n + 1. Therefore we win by upwards and

downwards induction. [}

10 Theorem of the Cube proof part I (02/07/2024)

The proof of the Theorem of the Cube (Theorem will occupy us for the next two
lectures. We will need to cite other well-known theorems in algebraic geometry and apply
some cohomology theory.

The proof is much simpler if one blackboxes the existence of the Picard variety. This is
how [ConTH] does it; the proof is a straightforward application of the Seesaw Principle and
the Rigidity Lemma. Instead we will follow the proof in [Mum08§|, which avoids the Picard

variety but unfortunately is rather technical and unintuitive.
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10.1 Theorem of the square

We first give one last crucial application of the Theorem of the Cube.

Corollary 10.1. (Theorem of the square.) Let A/k be an abelian variety. For all
z,y € A(k) and line bundle .Z on A, we have

£, LOL L DL,

where ¢, denotes translation by z.

Proof. Apply the Theorem of the Cube with X = A, f : A — {z}, g : A — {y}, and
h=ida. [ |

Remark 10.2. Suppose k'/k is a field extension, and pick any line bundle . on
A. Then the theorem of the square shows that ¢ : A(k') — Pic(Ax/) defined by
=t @£ is a group homomorphism, since by tensoring the isomorphism in

the theorem of the square by .22 we obtain
i, LOL '~ XL (il L.

The homomorphism ¢ ¢ is vitally important in the theory of abelian varieties, espe-
cially when £ is ample. If you've studied elliptic curves, this is the generalization
of the isomorphism E — Pic’(E) given by P~ O(P) — O(e). These are the homo-

morphisms that yield polarizations when % is ample.

10.2 Review of cohomology

Let f : X — Y be a morphism of noetherian schemes. We have higher pushforward functors
R"f. : QCoh(X) — QCoh(Y) on the categories of quasicoherent sheaves on X and Y. If
f is proper, then these higher pushforwards send coherent sheaves to coherent sheaves.

We know the following properties of these functors:

1. R°f, = f. is the usual pushforward map.

2. A short exact sequence of sheaves induces a long exact sequence in cohomology.
3. If Y = Spec R, then R™f,.% is the sheaf associated to the R-module H"(X,.%).

4. If Y = SpecR and X is separated, then H"(X,.Z) can be computed using Cech
cohomology. Let U = {U;}icr be a finite cover of X by affine opens, and fix an
ordering of I. The Cech complex C*(U,.%) is a complex of R-modules with

cru,7)= [ TW,n---nU;

i< <ip

7)

n?
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with coboundary maps d" : C"(U, F) — C" YU, .F) given by

n+1

(da)io<~~-<in+1 = Z(_1)J0—i0<...<%j<m<in+1
=0

UigN+NUn g1 -

Then we define Cech cohomology to be the cohomology of this complex. For example,
HU, F)=T(X,F).

Theorem 10.3. (Semicontinuity theorem.) [Mum08, IL.5, Cor. 1], [Vakl 28.1.1] Let
X — Y be a proper morphism of noetherian schemes, and let .% be a coherent sheaf

on X that is flat over Y. Then for all integers n > 0, the function Y — Z defined by
Y = dlmk(y) Hn(Xy, gz|xy)

is upper-semicontinuous, which means that the preimage of [m, co) is closed for any
m > 0.

Grauert’s theorem gives a criterion to check whether a higher pushforward is locally free

and determine its rank.

Theorem 10.4. (Grauert’s theorem.) [MumO8| IL5, Cor. 2] [Vak, 25.1.5] Let hy-
potheses be as in the semicontinuity theorem, and assume also that Y is reduced and

connected. Then the following are equivalent:
1. dimy,) H"(Xy, #|x,) is constant for all y € Y.

2. R"f..7 is locally free of finite rank and R" f..# ®@ k(y) — H"(Xy, #|x,) is an

isomorphism for all y € Y.

10.3 Seesaw principle

We can reduce proof of the Theorem of the Cube to the case k = k, since we have:

Lemma 10.5. Let V/k be a proper and geometrically integral scheme.
1. T(V,0y) = k.

2. Let Z/V be a line bundle. If £ is trivial, then . is also trivial.

Proof. 1. See Tag 0BUG].

2. If F(V;‘;ﬁ) ~ I'(V, Z*') ® k are nonzero, then so are I'(V, .Z*!). By Lemma W,
these conditions are equivalent to triviality.

Lemma 10.6. Let V/k be again as in the previous lemma, and £ a line bundle on
V. Then .Z ~ Oy if and only if . and ! both have nonzero global sections.
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Proof. It £ is trivial, the claim is immediate from part (1) of Lemma For the other
direction, use a global section s € T'(V,.Z) to define a morphism s : Oy — %, and use a
global section ¢t € I'(V, £ 1) to define a morphism Oy — £ ~!. Tensoring the latter by .#
yields a morphism ¢ : . — Oy. The composition t o s : Oy — Oy is a nonzero morphism,
but the only automorphisms of Oy are scalar multiplication by k, so we conclude that ¢ and

s are isomorphisms. [ ]

The main reason we need all of these results from cohomology is for the following very

helpful result:

Theorem 10.7. (Seesaw Principle.) Let X/k be proper and geometrically integral,
let T/k be a variety, and let £ be a line bundle on X x; T. Then:

1. The set T = {t € T closed: Lx (4 trivial} is closed.

2. There exists some line bundle .# on T; such that .Z|xx7, ~ pry, A .

Proof. We have

Ty ={teT:T(X x {t}, 2" |xxq # 0}
={teT :dimI(X x {t},. L% |xx( > 0}.

This set is closed by the semicontinuity theorem, proving part (1) of the theorem. For part
(2), on X x Ty, we have

dlmk(t) HO(X X {t}7$|X><{t}) = 1,

since by definition .Z|x 4y is trivial on this locus. By Grauert’s theorem, we conclude
pry, £ is locally free of rank 1, i.e. a line bundle .#. By adjunction, we have a natural

map
pr*Tl M = pr*Tl PIp, « j‘Xle — gXle

which we can check on fibers to be an isomorphism. |

We will often use Seesaw Principle in the guise of the following corollary.

Corollary 10.8. Let X,T,.% be as in Theorem If there exists a point zg €
X (k) such that Z| ;1«7 is trivial, and if Z|x 4y is trivial for all t € T, then £

is trivial.

Proof. By the Seesaw Principle, everywhere triviality of 2| x4} tells us that % = prj .#
for some line bundle .# on T. But for any z¢ € X (k), the composition

T —5 {ag} xT —— X xT 225 T

is the identity on 7. This means that Or ~ £, yx7 =~ idy. 4 ~ M, so #, hence also
L = pry A, is trivial. |
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Remark 10.9. (See also [Mum08|, pp. 52-53].) We ended lecture by discussing the
Theorem of the Cube in the complex analytic case. Let W = X xY X Z be a
complex-analytic variety. We have the exponential exact sequence

0 ——2Z — O =25 05, —— 1
inducing an exact sequence
HY (W, Ow) — HY(W,0y;,) —— H*(W,Z).

The middle term is Pic(W).
The Theorem of the Cube may be rephrased as the assertion that

Pic(X XY x Z) — Pic(X xY) x Pic(X x Z) x Pic(Y x Z)

is injective, where the the pullback maps are defined with respect to some arbitrary
base points xg, yo, 20. In general, given a contravariant functor 7" from the category

of proper varieties to the category of abelian groups, we say that T is of order n if

T(XO><~--><Xn)—>HT(X0x---xXix~-~xXn)
i=0

is always injective, where the maps on each factor are induced by the maps X x - - - X
{z;} x -+ x X, = Xog x -+ x X, for some collection of base points z;. In this sense,
the functor H' (W, Oy) is order 1 (linear) and H?(W,Z) is order 2 (quadratic) by the
Kiinneth formulas[7] If a functor 7" is order n, then it is also order m for any m > n,
so we know that Pic is sandwiched in an exact sequence between two quadratic
functors. Hence it, too, must be quadratic, since the middle arrow of the following

commutative diagram must also be injective:

Hl(XO X X1 X XQ,O) — PIC(XO X X1 X XQ) e H2(X0 X X1 X X27Z)

l | [

[, HY...,0) ———— [/, Pic(...) ———— [y H*(...,Z)

2See [Sta24] Tag OBEC] for the Kiinneth formula for sheaf cohomology, which basically works
as we expect it to in the case of trivial sheaves.

11 Theorem of the Cube proof part II (02/09/2024)

11.1 Reduction to the case of a smooth curve

Today we finish the proof of the Theorem of the Cube[9.7] We want to reduce our proof to

the case of X being a smooth projective curve.

Lemma 11.1. Let X be a proper geometrically integral variety over a field k. For
any xg,x1; € X, there exists a geometrically irreducible curve C C X containing z

and x1.
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Proof. Our main steps will be to apply Chow’s lemma to reduce to the case that X is

projective, and then apply a theorem of Bertini to supply a curve with the desired properties.

Theorem 11.2. (Chow’s lemma.) [Vakl 19.9.2] Let 7 : X — Spec A be a proper
map, with A a noetherian ring. Then there exists a surjective proper morphism
w: X" — X such that w o pu : X’ — Spec A is projective and such that there exists
an open dense U C X with y~1(U) — U an isomorphism.

Theorem 11.3. (Bertini irreducibility theorem.) [Jou83|, [Benll] Let k be an infi-
nite field, and suppose X <> PkN is a geometrically integral projective variety over k.
Then there exists a hyperplane H C ]P’]kv such that H N X is geometrically integral.
Moreover, the set of hyperplanes H for which this is true forms a Zariski open dense
subset in the family of all hyperplanes of PV.

Remark 11.4. The lemma still holds for finite fields if we replace “hyperplane” by
“hypersurface”; see [CP16, Theorem 1.1.1.8]. It usually also still works if we require
other properties of H N X, such as smoothness.

Given a proper variety X and a surjective morphism p : X’ — X as in Chow’s lemma,
one way to produce a geometrically irreducible curve containing given points zg,z; € X
are to take points x) € p~1(zg),ry € p~(x1), find a geometrically irreducible curve in
X' through z( and =z}, and then take the image of this curve under pu. The image of a
geometrically irreducible variety is again geometrically irreducible, and the image of an
irreducible (complete) curve is either a point or another (complete) curve, but our image
contains zg and x1. Since X’ must be geometrically irreducible if X is, we reduce to the
case that X is projective.

We induct on the dimension of dimy X. If dim X = 1, we are done. Otherwise, take
the blowup Bly,, ,,} X along the two points, which is also projective. The two exceptional
divisors have codimension 1, so applying Bertini’s irreducibility theorem we get a geomet-
rically irreducible subvariety of Bly,, ,,} X that intersects both of these. Projecting back
down onto X yields a geometrically integral subvariety containing xg,x; of strictly lesser

dimension, so we conclude by induction. |

We return to proving the Theorem of the Cube. Given any closed z € X, use Lemma
[I13] to produce a geometrically integral curve C' C X containing x and the base point zo.
Let its normalization be C’. We have an induced map 7, : C' x Y x Z — X xY x Z. The
pullback 7*.% on C’ x Y x Z satisfies the hypotheses of the Theorem of the Cube, except
with X replaced by C’ and z( replaced by some point in C’ lying over zy € C. If 7*.% is
trivial, then 2|,y xy x -} is trivial for all z € X,z € Z, as

T L ey xy iz} = Ol yxy x{z}
for any 2’ € C’ lying over = and 7|z xy <z} : {2’} x Y x {2z} = {2} x Y x {2} is an

isomorphism. If Z[(;1xy x (-} is trivial for all z € X,z € Z, then since we also know that
Z|x x{yo} x z 18 trivial, the Seesaw Principle via Corollary m tells us that .Z is also trivial,
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where X x Z takes the role of T and Y takes the role of X in the corollary (this is permissible
since Y is assumed proper).
Since we have shown that .Z is trivial if 7*.% is trivial, it suffices to prove the theorem

in the case that X is a geometrically integral smooth curve.

11.2 End of proof

It suffices to prove the theorem after replacing Z by a dense open subset Z’ C Z, since
if Z|xxyx(z is trivial for all z € Z’, then by part (1) of the Seesaw Principle [10.7]
Z|xxyx{z} Is trivial for all z € Z. Then another application of the Seesaw Principle shows
that & is trivial. (We will select the appropriate Z’ shortly.)

As justified in the previous section, we assume X is a smooth projective curve, say of
genus g. Then a generic divisor E C X of degree g has HY(X,Qx(—F)) = 0. Choose one
such divisor and define .# := prj O(F) ® £—a line bundle on X x Y x Z—and let W
be the support of R! Prag . -/, which is a closed subset W < Y x Z. The assumptions

ZLNxxyxiz} =~ Oxxy and ZL|xx(yyxz = Oxxz imply
M| X 5 {yyx {20} = AN X x{yo}x {2} = O(E) (3)
for all y € Y, z € Z. Therefore, by Serre duality,

Hl(X X {y} X {20}7'//|X><{y}><{zo}) = Hl(XaO(E))
= H(X,Qx(-E))
= 0.

Since Y is proper, pr, (W) C Z is closed. Since H'(X x {y} x {20}, M| X % {yyx{z}) =0
for all y € Y, by Grauert’s theorem we conclude R prog , |y x (-} = 0, hence R' pro , A
is not supported anywhere above zg. This means zg & pr,(W). Therefore there exists an
open neighborhood Z’' 3 2y such that W N (Y x Z’) is empty. Since Z is connected, Z' is
dense, so by our previous remarks it suffices to prove the theorem over X x Y x Z’.

OnY x Z', we have R! Proz . # = 0. We conclude that, for any y € Y,z € 7,

HO(X, M | x s (yyxi23) = XA | x5 1 x423) = XA | xx gy x {z01) = X(O(E)) =1
where the last equality is given by the Riemann-Roch formula
X(O(E)) =1—g+deg(O(E)) = 1.

Hence one more application of Grauert’s theorem shows that .4 := prys , .# is a locally
free rank 1 module on Y x Z’, i.e. an invertible sheaf.

We construct a divisor D C X x Y x Z'. Pick an open cover {U;} of Y x Z’ such that
u, is trivial, fixing specific isomorphisms «; : Oy, — A |y,. Then

N

ai(l) S F(UZ,JV) = F(X X UZ‘,%).

Define D; to be the zero locus of ;(1) on X x U;. Such D; glue to a divisor D C X xY x Z’,
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because on overlaps U; N Uy, the functions «;, o differ by a unit. Then

O(D)|x x{yyx{z} = | xx{y}x{=} (4)

for all y,z € Y x Z’ since for each y, z there is a neighborhood U; 3 {y} x {2z} on which
D N U, is cut out by a section of A |y,.
We claim that D = E x Y x Z’. The isomorphisms and show that

O(D)|xx(yoyxtz} = OD)|x x{y}x{z0} = O(E). (5)

for any y € Y, z € Z'. Therefore, if p € X is not contained in the support of F, we have

Dn({p} xY x{20}) = DN ({p} x {yo} x Z') =0,

so the closed subset

T = prZ(D|{p}><Y><Z') g Z/

does not contain zg. The set D\{p}xyxz/ on Y x Z' is the divisor associated to the line
bundle .4, so this has pure codimension 1 in {p} x Y x Z’, and therefore its projection to
Z' has component all of codimension at most 1. But 7' C Z’, ruling out the possibility of

codimension 0, so we conclude T also has pure of codimension 1 in Z’. We clearly have
DNn({p} xY xZ")C{p} xY xT. (6)

Any irreducible component of {p} xY xT must either equal a component of DN({p} xY x Z’)
or not intersect, since components of both sides all have codimension 1. But it is impossible
for this intersection to be trivial since, by definition, any point of T" must have some point
of DN ({p} XY x Z’) in its preimage. We conclude that the inclusion in @ is an equality.
Yet we also know that D does not meet {p} X {yo} X Z’, so the only possibility is T = ().
We conclude that D is supported only over E. Conversely, Equation shows that D
is supported everywhere on E x X X Y, so we conclude that the support of D is precisely

FE x X xY. Hence we can write these Weil divisors as
D=> ni({pi} xY x 2)
i

for positive integers m;. But then restricting to X x {yo} x {z} and applying Equation
shows that we must have all m; = n;, hence D = E as divisors. This equality, in conjunction
with Equation , finally lets us conclude

M| x % yixizy = O(E)

for any y € Y,z € Z', not just yo or 2y as in Equation . Since X is a curve, this
means that D is of the form ), n;({p;} x Y x Z’) for some nonnegative integers n, and
points p; € X. But .# was defined so that .#|x(y1x(z3 = O(E) @ L|xx{y}x{z}> 50
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ZL|xx{y}x{z} must be trivial. Thus, triviality of Z|(;,1x{y}x (-} and Corollary shows
that . is trivial [l [ ]

12 Projectivity of abelian varieties (02/12/2024)

12.1 The homomorphisms ¢«

Recall the theorem of the square (Theorem|10.1)) and the subsequent Remark given any
line bundle .# on an abelian variety A/k, we have a group homomorphism A(k) — Pic(Ay)
defined by

(@)=L 0L

Right now this is just a group homomorphism, but we will soon upgrade this to a homo-
morphism of group schemes.

The maps ¢o yield a group homomorphism ¢ : Pic(A) — Hom(A(k), Pic(Ag)) via
Definition 12.1. Pic’(A) is the subgroup ker¢ C Pic(A), consisting of all translation-

invariant line bundles on A.

Example 12.1. If A is an elliptic curve, then we have an exact sequence

0 —— Pic’(4) —— Pic(4) 2%, 7 —— 0
where the last map is the degree map, i.e. Pic’(A) is just the group of degree zero
line bundles on A. To see this, let D = ", np[P] be the divisor associated to a
given line bundle .Z. Another divisor E = >, ng|[Q] is linearly equivalent to D if
and only if deg ' = deg D and Y _pnp - P =} 5nq - Q, where the this sum is via

the group law on A ([Sil09, Cor. 3.5]). Given a point x € A(k), we have
t-(D) = nplz+ P,
P
which is linearly equivalent to D if and only if
an~P:an-(x+P) = deg(D) ~I+an~P.
P P P

This shows that £ is translation-invariant if deg(D) = deg(.¥) = 0. Conversely, if
deg(D) is nonzero, choosing x € A(k)\ A[deg(D)](k) (a point without order dividing
deg(D)) shows that £ is not translation-invariant.

Beware: it is not true in general that Pic’(A) is the subgroup of all degree 0 line

bundles; this is just a happy coincidence in the case of elliptic curves.

81 find this proof very unintuitive. The ultimate idea is to show that .Z is trivial by showing (O ®
Z) x x{y}x{=} is trivial for any y,z and then apply Seesaw. But juggling around the pushforwards and
various divisors makes it very easy for the ideas to be lost. If anyone reading this has a good way to explain
the intuition behind the proof in more detail, I would greatly appreciate hearing it.
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Lemma 12.2. .Z € Pic’(A) if and only if m*.Z ~ pri £ @ pr} £, where the pr; are
the projection maps A x A — A and m : A x A is the group law.

Proof. Suppose the second isomorphism holds. Choose a point z € X(k), yielding an
embedding i : A ~ {z} x A — A x A. Then t, = m o4, hence

UL =" (m* L) ~i"(pr] L pr5 L)~ 04 %,

which means .2 € Pic’(A).

Conversely, if £ € Pic’(A), let A4 := m* L @ pri L' @ prs £, Then for all z €
A(k) we have M px(zy = Oa =~ Mlzxa. By the Seesaw Principle, we conclude that
M~ OAXA. |

Definition 12.2. For L € Pic(A), we set K(.£) := ker ¢, the subset of x € A(k) for which
tr¥=2.

Hence .2 € Pic(A) if and only if K(.2) = A(k).

Lemma 12.3. K(.¥) is Zariski closed in A(k).

Hence we may view K (.£) as a subvariety of A via the reduced induced structure.

Proof. K () is the locus consisting of z € A(k) such that the following line bundle is trivial:
m* L @pry L ax(a}-
By the first part of the seesaw principle, this locus is closed. |

Note also that K(.£) = K(£71).

12.2 Ampleness and projectivity

Theorem 12.4. Let D be an effective divisor on A, and let . = O(D). Then the
following are equivalent:

1. £ is ample.
2. K(2) is a finite set.
3. H(D) := {z € A closed pt :  + D = D}[]is finite.

4. The linear system |2D| := (I'(X, O(2D)) \ {0})/k*, which is also in bijection
with the set of all effective divisors rationally equivalent to 2D, is base point
free and defines a finite morphism 4 — P

Additionally, for any ample line bundle £ (not necessarily of the form O(D) for an
effective D), the set K(.Z) is finite.

“We require literal equality of divisors here, not just up to linear equivalence.
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We'll prove this after the following corollary.

Corollary 12.5. Any abelian variety A/k is projective.

Proof. To show that a proper variety is projective, we need only exhibit a single ample line
bundle, since then some power of that line bundle is very ample. Hence we need to find
some effective D on A such that one of the conditions in Theorem [[2.4] holds.

Pick an affine open neighborhood U of e in A. Then D = A\ U is an effective divisorﬂ

We observe:
1. H(D) C U, sinceif v € H(D), thenz+U =U, hencex =x +e € U.
2. H(D) is closed in A, since it is pra(m|;L (D).

Conditions (1) and (2) together imply that H (D) is simultaneously proper and affine, hence
finite, yielding condition (3) of Theorem [12.4} |

We now prove Theorem

Proof. e (1) = (2): The subvariety B := K(.£)° is an abelian variety. By definition,
t:L|\p ~ Z|p forall z € B. By Lemmall2.2l m*.Z|p ~ pr} .Z|p®prs.%|p on BxB.

We are assuming .Z, hence .Z| g, is ample, so this isomorphism implies
OB :$|B X [_1]*$|B

by pulling back along [1] x [-1] : B — B x B. Both factors in this tensor product are
ample—the pullback of an ample line bundle by an isomorphism is again ample—so
Op is also ample. But the only way the trivial sheaf can be ample on a proper variety
is if that variety has dimension 0, so B is the single point {e} and K (.%) is finite.

Note that this argument is valid for any ample ., proving the final claim at the end

of the theorem.
e (2) = (3): Clear since H(D) is a subset of K(.Z).

e 3) = (4)m By the theorem of the square, 5. +t* | .% ~ #%? or in the notation
of divisors, t_,(D) + t,(D) ~ 2D (sum taken in Div(A4)). This supplies us with a
lot of divisors that are linearly equivalent to 2D, and maybe explains why 2D is the

divisor appearing in condition (4).

We need to show that for all y € A(k), there exists a section of I'(4, O(2D)) that
does not vanish at y. Up to nonzero scalars, such global sections are in bijection
with effective divisors linearly equivalent to 2D, with a global section s associated
to the effective divisor div(s). Therefore, we need to show that, for any y € A(k),
there exists D' ~ 2D with y ¢ supp(D’). To do this, we find z € X with y &
supp(t— (D)) Usupp(t,(D)), setting D’ =t_, (D) + t,(D) ~ 2D. Such z is supplied
by any point in the (dense) complement of the codimension 1 set +t_, (D) (negation

taken in the group law of A).

9The claim here is that D has pure codimension 1, which follows from an argument using the normality
of A; we give the full argument in a handout on bCourses.
10We saved this part until the next lecture.
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To show that |2D| defines a finite morphism ¢ : A — P¥ | it suffices to show that ¢ is
quasi-finite, since quasi-finite + proper = finite for noetherian schemes. So let y € PV
be a closed point; we want to show that ¢ ~!(y) is finite. Suppose this is false; then
¢~ 1(y) contains an irreducible projective curve C C A. This implies that if s is a global
section of 2D, then either the vanishing locus V' (s) contains C, or V(s) NC = —that
is, the linear system does not separate any points in C. Equivalently, for any effective
E € |2D|, we must either have supp(E) 2 C, or ENC = (. Let x € A be any
point such that (x + D) U (—z + D) N C = . Then by Lemma applied to the
divisor B/ =z + D, for any y € C, we have x — y + E’ = E’ as divisors; equivalently,
D =z —y+ D. Since H(D) is finite, we conclude that there are only finitely many
possibilities for z —y € H(D). But since C is a curve, there are infinitely many choices

of y, contradiction.

Lemma 12.6. Let C' C A be an irreducible projective curve, and let £/ C A
be an effective divisor with E' N C = (). Then for all z,y € C, we have
r—y+E =F.

Proof. Let ' = O(FE’). The assumption E' N C = () means .Z’|¢c ~ O¢. Consider
m*. %" on C x %' (via the restriction of the group law m : C'x A — A). The morphism
C x A — A is flat and proper, so the Hilbert polynomials of the fibers of m*.%Z’|cx 4
over any x € A are constant; in particular, the degree is constant. This fiber is t£.%’|¢,
so we conclude that

deg(t;2"|c) = deg(t;Z|c) = deg(L"|c) = deg(O¢) = 0.

Since E’ is an effective divisor, this implies that either (z+E’) 2 C or (z+E")NC = (),
since any proper nonempty intersection would yield deg(t:.%’|¢) > #{(z+ E')NnC} >
0.

Finally, let ,y € C and z € E’. Then z € (z—y+C)NE’, hence z—y+C C E’, hence,
z—y-+x € E’. Since z is an arbitrary point in F’, we conclude F' —y+xz=F'. R

(4) = (1): We need only show that £®? = O(2D) is ample, since radicals of ample
sheaves are again ample. We claim that the pullback of an ample line bundle by a

finite morphism is ample. Serre’s criterion for ampleness states that a line bundle
Z/X is ample if and only if

H(X, 7 @ ZL%") =0

for all coherent .#, all i > 0, and sufficiently large n (depending on .%).

Given (4), let ¢ : A — P¥ be the finite morphism associated to the linear system |2D]|.

Finite pushforward commutes with taking cohomology, so

H (X, 7 @ Z°") = H(PY, ¢.(F @ L") = H'(PY, 0.7 @ O(n)),
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which is zero for sufficiently large n since O(1) is ample on PY. (The isomorphism
0+ (F @ L) ~ ¢,.F ® O(n) follows from the projection formula.)
[ |

Definition 12.3. If £ is a line bundle on A, we say that £ is nondegenerate if K(.£) is
finite.

13 Multiplication by n (02/14/2024 Q)

We began class by finishing the (3) = (4) part of Theorem [12.4} this argument has been

recorded in the previous section.

13.1 Multiplication by n is an isogeny

[ Corollary 13.1. On an abelian variety A, the map [n] : A — A is an isogeny. ]

Proof. Tt turns out that being a self-isogeny is equivalent to being surjective, which is also
equivalent to having finite kernel. We won’t prove this; see [Mil86l, Prop. 7.1].

So we only need to show that [n] has finite kernelB Since we now know that abelian
varieties are projective, pick an ample line bundle .. By Corollary we have

[’I’L]*g ~ g@n(n+1)/2 ® [_1]*$®n(n—1)/2.

The right hand side is a product of ample line bundles, so [n]*.¥ is also ample. Since

[1n]*Z |iex[n) is a pullback of the trivial line bundle .Z|., we have

)" 2| (kex )0, = Oicerin])0,, -

But restriction of line bundles preserves ampleness, so the trivial bundle on the proper
scheme (ker[n])?ed is ample, hence very ample since it remains unchanged by taking tensor

powers of itself! Since O(yerin is proper and geometrically irreducible (being a reduced

0

proper connected group schem;r)e,d the global sections of O(ker[n])?ed are just k, so we conclude
that (ker[n])%, consists only of the single point e € A, since the global sections of a very
ample line bundle separate points. Since ker[n] has only finitely many components, and
(ker[n])® must have finite length if its reduction is a point, we conclude ker[n] is a finite

subscheme of A. [

Remark 13.2. This fact, as well as Corollary does not depend on char(k).
However, many other properties of ker[n] depend on whether char(k) | n. For exam-

ple, [n] is inseparable iff ker[n] is nonreduced iff char(k) | n.

HThe kernel of a morphism of group schemes f : X — Y is the fiber Xe,, which is a group subscheme
of X. In positive characteristic, this might not be reduced even if f is a morphism of group varieties. The
kernel subscheme represents the kernel on the functor of points; that is, if f : X — Y is a morphism of
S-group schemes, then (ker f)(T) = ker(fr : X(T) — Y (T)) for S-schemes T
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13.2 Degree

Definition 13.1. Let f : X — Y/k be a dominant morphism with dim X = dimY. We
define deg f := [k(X) : k(Y)] via the induced embedding of function fields.

We say [ is separable if this k(X)/k(Y) is a separable field extension. In general, letting
kE(Y)® be the separable closure of k(Y in k(X), we define the inseparable degree of f to be
[£(X) : k(Y)*].

Definition 13.2. Let X/k be a proper variety with line bundle .. For a coherent sheaf .#
on X, we define the Hilbert polynomial of F# with respect to £ as

pe(F,n):=x(FeZL").

where x is the Euler characteristic. Fact: po(.#,n) is a numeric polynomial in n of degree
at most dim X, in fact of degree equal to the dimension of the support of .%. This is easier
to show if .Z is ample, using Serre’s criterion for ampleness, but it is true for general Z.
We define the degree do(.F) of .F with respect to .Z to be the number such that
ndimX dim X1
F.n) =dg(F)——= + O0(n“"™"270).
p2(Fn) = dz(F) g5y H O )
This is always an integer.
Finally, we define deg.¥ := d»(Ox) to be the degree of Z. If £ is very ample, then we
also define this number to be the degree of X with respect to the corresponding embedding

into projective space.

See [Vakl, §18.6] for more discussion on Hilbert polynomials and degree.

Proposition 13.3. Let f : X — Y/k dominant with X, Y proper of equal dimension.
Then
deg(f) - deg(-Z) = deg(f*L).

Proof. See Proposition from the next lecture. [ |

Proposition 13.4. deg(.Z%™) = mdm X deg(.¥)

Proof. Immediately from the definition, pgem (Ox,n) = py(Ox, mn). Therefore, the de-

gree dim X term of pom (Ox,n) is
)dimX dim X ndimX
— mdimX g N
" &) (imx]

(mn

deg(2) - im0

Corollary 13.5. [n] : A — A has degree n2dim4,

Proof. Take £ /A ample. Then deg ¥ > 0. We may assume ¢ is symmetric by replacing
it with £ ® [-1]*.% if needed. By we have [n]*.Z ~ £®"° Then by Propositions
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and we have
deg([n]) - deg(Z) = deg([n]*.£) = deg(L®"") = n? ™4 deg(2),

so dividing both sides by deg(.¥) gives the formula. [ ]

14 Separability (02/16/2024)

14.1 Degree of a sheaf under pullback

Proposition 14.1. Let X be a geometrically integral variety.

1. Let .# be a coherent sheaf on X, say with rank r at the generic point n € X.
Then do(F) = r deg(Z).

2. Let f: X — Y be dominant with dim X = dimY’, and let .£/Y be a line
bundle. Then deg f - deg(.¥) = deg(f*.%).

Proof. 1. See [MumO8, Appendix to §I1.6]. This is a standard dévissage argument; we
argue by induction on dimsupp(#). By the long exact sequence in cohomology, the
Euler characteristic x is additive in exact sequences. Suppose that we can show that
there exists a coherent sheaf of ideals .# such that

0—— Jor F g 0

where .7 is a torsion shea@ with support contained in some closed subscheme of X of
dimension < dim X, and such that Ox/.# also has support in a closed subscheme of
dimension < dim X. Then by additivity of x we get do(F) =r-de(F) =r-deg(L),
as desired, since p(7) has degree strictly less than dim X and therefore does not
contribute to the leading term in

do(F) = dg(f@r) +do(T)=r-de(S)+de(T).

We also have the exact sequence

o

54 OX Ox/f4>0

so by the same reasoning and the assumption on Ox/.# we conclude de(f) =
de(Ox) =: deg(.Z). Combining these two formulae gives the desired formula for
do(F).

The fact that such a map #®" — F exists is a standard fact, but takes some legwork
to prove (and Mumford omits the proof). For a full proof, we refer to [Sta24l, Tag
01YE] and its prerequisites [Sta24l [Tag 01YB| and [Sta24l, [Tag 01PQ)], which give a
proof using the Artin-Rees lemma.

12 A sheaf with stalk 0 at all generic points; see [Vakl, Def. 6.1.5].
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2. In the case that f is finite, pushforward commutes with cohomology, hence

HY(X, [*2%") ~ H'(Y, f.f*£*")
~ H(Y, f.Ox @ L°"),

using the projection formula, so deg(f*.Z) = do(f.Ox) equals deg(f)deg(.¥) by
part (1) with .# = f.Ox.

More generally, if f : X — Y is dominant with dim X = dimY, then there is some
open V C Y such that f : f~1(V) — V is finite, so that the higher pushforwards
Rif, f*£%" i > 0, have support outside V. One can show using the Leray spectral
sequence that

X(f*2®m) = Z(—l)%(Rif*f*f@"),

and the only term on the right hand side contributing to the leading coefficient of the
Hilbert polynomial is the i = 0 term, i.e. the term x(f« [*Z®") = x(f.Ox ® L"), so
we conclude as in the finite case.

|

14.2 (In)separability of [n]

Theorem 14.2. Let A be an abelian variety over a field k of characteristic p > 0.
and let [n] : A — A be multiplication by n.

1. [n] is a separable morphism if and only if p { n.

2. deg;([p]) > p¥™4 (inseparable degree).

Proof. 1. By definition, [n] is separable if and only if [n] is smooth at the generic point,
if and only if [n] is smooth on some nonempty open set U since smoothness is an
open condition, if and only if [n] is smooth at e by homogeneity considerations. The
differential d[n]|. : Lie(A) — Lie(A) is multiplication by n, since one can check that
the differential of the group law

dm)|. : Lie(A) @ Lie(A) — Lie(A)

is just addition (see [Mum08, p.40]). Hence d[n]|. is the zero map if p | m and an
isomorphism otherwise. [n] is smooth at e if and only its differential is an isomorphism,

so we get separability if and only if p t m.

2. As we just saw, the map d[p|. is the zero map, so [p]*QY — QY is also the zero map,
ie. for all f € k(A), we have [p|*df = d([p]*f) = 0 as an element of Q}C(A)/k. Hence
[p]*f € (k(A))P -k, since these are the only elements whose differential is 0 (exercise).

kE(A) — k(A) has image contained in k(A)P-k. We know tr.deg(k(A)) =
dim A (

*

Therefore, [p)

dim A, so k(A)/(k(A)P - k) is a purely inseparable extension of at least p choose

52



a transcendence basis for k(A)/k to see this). Therefore the inseparable degree of [p]

is at least pdim4,

Corollary 14.3. Let dim A = g, and let A(k)[n] be the kernel of [n] on points A(k).
Then as an abstract group,

A = A pin
RN e ——

In the second case, 29 — deg;([p]) < g. For a prime ¢ # p, the Tate module is
To(A) = Z79.

Proof. The separable degree of a finite morphism of varieties is the number of points in a
general fiber (working over k). For a group scheme, by homogeneity considerations all fibers
over k-valued points are isomorphic, so in particular #[n]~!({e}) = deg,[n]. This gives the
correct order in the separable case. In the inseparable case, we deduce the separable degrees

of [p°] from [p]: we have an exact sequence
0 —— A(k)[p] — A&)[p] — A(R)[p*'] — 0

so by induction we conclude that deg,([p¢]) = (deg,([p])¢-
Then the group structure can be determined by the fact that

A(R)In] = [T A®) €]
)4

via the Chinese remainder theorem, and the structure theorem for finitely generated abelian
groups along with the fact that A(k)[¢¢] is £°-torsion determines the group structure in the

prime power case. |

~ ~

Remark 14.4. This tells us that the p-adic Tate module of A is not necessarily very
useful. Instead, the “correct” group would be the p-divisible group associated to A,
or its corresponding Dieudonné module. This is the start of the story of crystalline
cohomology—a p-adic Weil cohomology theory to remedy the failures of p-adic étale
cohomology—but we won’t discuss this further in this course.

14.3 Picard scheme

See also [Conl5l, Theorem 2.3.1] or [BLRI0, §8]. Let X/k be a geometrically integral pro-
jective variety with a rational point € X (k)E

Definition 14.1. The Picard functor Picx/y : Sch;® — Set is defined on objects (k-
schemes T') by

Picx /(1) := {iso. classes of line bundles on Pic(X x; T)}/ ~

13These assumptions are not strictly necessary but they make things a lot easier.
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where we define the equivalence relation . ~ %’ if these two line bundles differ by the
pullback of some line bundle on T (via X x T — T).
Alternatively, this is

{(Z,a) : £ line bundles on X x T, : L |2y xr~00 }/ ~

Here, the pair (&, «) is a rigidified line bundle: £ is a line bundle on X x T that becomes
isomorphic to O under restriction to {x} x T, and « is a specific choice of such an iso-
morphism « : 2|11« — Or. The relation ~ is isomorphism of rigidified line bundles, i.e.
(Z,a) ~ (£, ) if there exists an isomorphism ¢ : £ — %’ making the following diagram

commute:
¢|{z}><T /
gl{z}xT >z ‘{z}xT
Or

Given a morphism of k-schemes f : S — T, we define Picy,,(f) : Picx/(T) —
Picx/,(S) via pullback of rigidified line bundles by f*, i.e. sending (£, a) to ((idx x
)2, 1 (a)).

Remark 14.5. One upshot of rigidified line bundles is that any isomorphism of
rigidified line bundles is unique. It is necessary to define the Picard functor using
isomorphism classes rigidified line bundles instead of just isomorphism classes of line
bundles if we want it to be representable. In practice, this distinction is usually not
a big deal: when K/k is a field extension, we have a natural group isomorphism
Picy/,(K) = Pic(Xk) : [(Z, )] = [£]. Surjectivity is just the fact that all line
bundles on Speck are trivial, and injectivity is also easy to check by appropriately

adjusting trivialization.

We blackbox:

Theorem 14.6. (Grothendieck.) Let X/k be a smooth projective variety with
X (k) # 0.

1. Picy/y, is representable by a separated k-scheme locally of finite type.

2. Picg(/k (neutral component of the scheme Picy ;) is quasi-projective, and is

projective if X is smooth.

Corollary 14.7. Picx/;, is a commutative group scheme.

Proof. For any k-scheme T, the set Picx/,(T') of classes of rigidified line bundles on X x T
is a commutative group via tensor product, and pullback is compatible with this group
structure, so we conclude that the functor Picy ;, factors naturally through the category of

abelian groups. By Yoneda, this is equivalent to being a commutative group scheme. |
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We will deduce other properties of the scheme Picx/, from these facts. We will be
especially interested in the case that X is an abelian variety; this will be our construction
of the dual abelian variety.

15 Comparison of Pic), and Pic’(4) (02/21/2024)

Let A/k be an abelian variety. We previously defined a group Pic’(A) C Pic(A) for an
abelian variety A back in Definition [12.1] and last lecture we defined the Picard scheme

Pic% /k- To justify the suggestive similarity in notation:

Theorem 15.1. Picgl/k(k) ~ Pic’(A) naturally. Here, Picgl/k(k) is the group of
k-valued points of neutral connected component of the Picard scheme, and PicO(A)

is the group of translation-invariant line bundles . on A.

Definition 15.1. We notate AY = Picg(/k, and call this the dual abelian variety to A. It
turns out that this is a smooth projective group scheme over k, hence also an abelian variety.
We will prove smoothness in Theorem shortly.

Definition 15.2. Let 7' = Picx/, and consider idr € Hom(7,T). By the Yoneda lemma,
id7 corresponds to some “universal” rigidified line bundle (Pyniv, Quniv), called the Poincaré
bundle, on X xj Picx j, where Pyyiy is a line bundle and auypiy : Puniv|{w}XPiCX/k ~ Opicy,,

is a trivialization.

Remark 15.2. This line bundle is universal in the sense that given any scheme
T/k and rigidified line bundle (%, ) over X x T, there exists a unique morphism
¢ : T — Picx/y, such that (£, a) = ¢*(Puniv, Quniv). This more or less the content
of the Yoneda lemma.

In particular, if A € Picx/; (k') for a field extension k'/k, the base change Puniv|x x {1}
is the line bundle on Xy corresponding to A. This is often the most concrete way to

think about the Poincaré bundle and is very useful in practice.

Definition 15.3. Let .#, .4 be line bundles on X7. We say that these two line bundles are

algebraically equivalent if there exists a connected k-variety T, a line bundle .Z on X xT,

and t1,ts € T(k) such that 4 ~ $|Ex{tl} and A ~ .,?\X?X{Q}.

Remark 15.3. A special case of algebraic equivalence is rational equivalence, which

is when T can be taken to be P! in the definition of algebraic equivalence.

Lemma 15.4. Let £2’/X be a line bundle corresponding to A € Picx/,(k). Then
\ € Pick sk (k) if and only if £ is algebraically equivalent to Ox,.

Proof. = : It X € Picg(/k(k), then let T = ((Picqu)g)red. Then, as we remarked above,
Punivlxxiay = 2’5 and Puniv|xxfe,v} = Ox, since by definition the identity element of

AV(k) corresponds to the trivial line bundle on A.
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<= : If we have algebraic equivalence by some T, write T as a union of connected
open subschemes {U;} trivializing £|x xv,, with fixed choices of trivialization «;. Each of
these is the datum of a rigidified line bundle on X x U; over U;, so by the definition of
Picx/y, these data correspond to morphisms ¢; : U; — Picx/y, for each U;. These glue to a
map ¢ : T — Picg(/k, since the rigidified line bundles (*£|xxuv,, ;) become isomorphic on
overlaps U; N Uj.

With 1, t2 as in the definition of algebraic equivalence, by hypothesis we have .Z| Xex{t1} =
& and &L x_x (1,3 =~ Ox,. Since the U; cover T', at least one of the U;, say Uz, contains
ta. The condition Z|x_x(s,} ~ Ox, means that ¢s(t2) is the identity element in Picg(/k
(apply functoriality of Picx/, to the morphism ¢; < U and unravel the definitions; the
same reasoning shows that A = ¢(¢1)). Since we have taken Us to be connected, this means
that 1o (Us) C Picg(/k. Since T is also connected, we conclude ¥(T) C Pic% /i too. In
particular ¥(t;) = X € Picg(/k. [ |

We can now prove Theorem [15.1

Proof. We first show Pic% (k) = Pic’(A) naturally. The desired map is given by sending a
point in Pic% /i (k) to the corresponding line bundle in Pic(A), which is injective by Remark
Thus we need to show that the image of this map lies in PicO(A); we will apply the
criterion from Lemma We remark that Pic)y (k) — Pic”(Ay) restricts to Pic} (k) —
Pic’(A), and likewise the preimage of Pic’(A) is contained in Pic%/k(k) - Picg‘/k(ﬁ), which
is immediate from the definitions. Therefore we may and do assume that k& = k for the
remainder of this section.

Let P = Puniv|Ax(4v),.q- Consider the three morphisms A x A x AY ; — A x A}, given
by m x id, pr; xid, pry xid (which we abbreviate to m, pr;, and pry in the sequel), and let

Mo=m"PRpri Pt @pry Pl

Note that P|fe1x AV, ™ O Arvedfby definition the Poincaré bundle has a trivialization
in this way—and also Plaxge,,1 =~ Oa, again as a special case of Remark Hence
M eyxaxay, = Pri(Plieyxay,) = O, likewise A |ax(eyxay, = O, and also A |ax ax (e} =~
(m* @ pr{ @ pr3)(Plax{ey) ~ O. By the Theorem of the Cubﬁ we conclude . is also
trivial.

Let £ /A correspond to A € Pic%/k(k:), so that P|sx(ny ~ 2. Then

mZopr L oprs L = Maxiny = 0.

Hence by Lemma we conclude .Z € Pic’(A), proving Pic%/k(k) < Pic’(A).
Now we show Pic% /e(k) = Pic’(A) is surjective. We will tackle this in the following

way:

Lemma 15.5. Given .Z € Pic(A), the map ¢ : A(k) — Pic’(Ay) factors through
the map Pic%/k(k) < Pic”(Ay) defined above; equivalently, t5.% ® .2~ € Pic%/k(k)
for every x € A(k).

14To apply the Theorem of the Cube, we need everything to be reduced, which is why we are using A;/e a4
Of course, we will soon show that AY is already reduced.
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Proof. We apply the criterion from Lemma it suffices to show that t:.¥ ® £~ 1 is
algebraically equivalent to O4. Consider the line bundle m*.Z on A x A; for any y € A(k),
the translation map 7, is the composition

A~ Ax{y —— AxA "5 A
s0 M*L|ax(zy = T5L. Additionally, prj Z|xx¢,y = £ for any y. Therefore, letting
M =m* L @pri L1 we have

j/|A><{;c} ~ T;af@f*l
%|A><{e} 27’;3@371 >~ OA,
yielding the desired algebraic equivalence. |

In particular, if ¢ is surjective for any line bundle £, so is Pic%/k(k) — Pic?(4y).
Since we know abelian varieties have ample line bundles, it therefore suffices to prove:

Theorem 15.6. ¢ : A(k) — Pic’(k) is surjective when £ /A is ample.

Lemma 15.7. Let ¢’ € Pic’(A) be nontrivial. Then H*(A, £') = 0 for all i.

Proof. We first show H°(A, #") = 0. Otherwise, we can write O(D) ~ £’ for some effective
divisor D C A. We have

Ou=e"Z = ((id x [-1])* om*).Z' = & & [-1]".Z",

where we again apply Lemma for the last isomorphism. Hence the trivial divisor is
linearly equivalent to the effective divisor D+ [—1]* D, but this can only happen when D = 0
and ¥ ~ Oy.
In general, if the lemma is false, let k be the smallest integer such that H*(A,.#") # 0.
We know k > 0. By functoriality of pullback on sheaf cohomology, the composition
k n _m” k « con{erxid)” ’
HF(A, %) —— HF(Ax A,m* &'y —— H"(A, &)
is the identity. Hence H¥(A x A,m*.Z") # 0.
Again by Lemma we have m*.% = pr{ £’ ®prs £’. Hence by the Kiinneth formula,

HY(Ax Am 2= @ H'(AZL) o H (AL
i+j=k

But the terms with ¢ = 0 or j = 0 are zero by the base case proven previously, so nonzero-ness

of this direct sum contradicts minimality of k. |

We finally prove Theorem Recall the standing assumption & = k. We will need

the Leray spectral sequence:
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Lemma 15.8. (Leray Spectral Sequence, Tag 01EY]) For a morphism f :
X — Y of ringed spaces and an Ox-module .Z, there is a spectral sequence F5? =
HP(Y, RIf,.F) converging to HP4(X, 7).

We will not discuss spectral sequences in this course, so feel free to ignore the full

statementE Here are some consequences and reasons we care:

Corollary 15.9.

1. The cohomology group H"™(X,.%#) has a filtration by subquotients of
the cohomology groups HP(Y,RIf.%) for various p,q. In particular, if
HP(Y,R1f,.7) =0 for all p,q, then H"(X,.%) = 0 for all n, too.

2. If HP(Y,Ri1f.#) =0 for all p > 0 and all ¢, then

Hp(X’ y) = HO(Ya Rpf*tg.) = F(Y,Rpf*ﬁ').

Suppose, for the sake of contradiction, that there exists a line bundle .# € Pic’(A) not
in the image of ¢, i.e. such that

MEEL QL

for all z € A(k). Consider A = m* ¥ @pri L' @pr3(L 1@ .#71) on A x A. By the
Leray Spectral Sequence, H'(A, R7 pr, , .4 converges to H'*(A x A, /). Note that

Nayxa =L QL QM # 04

by assumption, so Lemmawe have H7(A, N {zyxa) = 0 for all j. By Grauert’s theorem
we conclude R’ pr; , 4" = 0, hence by Corollary we have

H"(Ax A, N)=0 (7)

for all n.
Now consider R/ pry . /. Then

Naxtey =L 0L

which is trivial if and only if x € K(.Z), so Lemmastates that H7 (A, A | ax{z}) = 0 for
all 2z € A\ K(£), so RIpry , N|a\k () = 0. Recall that K (%) is finite since .2 is ample.
Therefore, R’ pry ./ is a coherent sheaf supported on the finite set K (.£). Since this is
a zero dimensional set, we conclude H'(A, R’ pry ,.#") = 0 for all i > 0, so by Corollary
we have H"(A x A, 4") = T'(A, R" pry , /"), so both of these groups are 0 by Equation
@. Since R" pry , ./ is a quasi-coherent sheaf supported on a zero dimensional (affine) set

without any nonzero global sections, we conclude R" pry , 4" =0 for all n.

15But if you haven’t studied spectral sequences before, Corollary should be good motivation.
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In particular, pry , 4" = 0, so Grauert’s theorem tells us that
HO(A x {e}, N | axiey) = 0.
However, 4|4y ey = Oa since e € K(.£) automatically. This implies
HO(A x {e}, N |axiey) # 0;

contradiction. Hence .# as described cannot exist, so im(¢g) = Pic’(A4), and so also
Pic%/k(k) surjects onto Pic®(A).
]

16 Smoothness of the dual abelian variety (02/23/2024)

We started lecture by finishing the proof of Theorem [15.6] and hence Theorem The
proof has been moved to the previous section.
Let .2 /A be a line bundle. From now on we will write ¢ : A — Pic) /i using the

isomorphism we just gave.

Corollary 16.1. Let /A be ample. Then ¢ is surjective and dim A = dim AV.

(Hence an isogeny once we know that A" is indeed an abelian variety.)

Proof. Theorem [15.6] shows that ¢« is surjective, and the remark at the end of Theorem
shows that ker ¢ = K () is finite, so the dimensions of A and A" must be equal. W

Theorem 16.2. AV = Pic%/k is smooth.

Proof. We know from that dim AY = g := dim A. Therefore, to show smoothness,
it suffices to prove that dimT,AY < dim A := g, since the tangent space at e always has
dimension at least that of the variety, with equality if and only if e is a smooth point,
equivalently AV smooth by translation. This fact follows immediately from Lemma [16.3
and Proposition below.

Lemma 16.3. T,AV ~ H'(A,04) canonically.

Proof. Let A = Speck[e]/(e?) be the ring of dual numbers. One definition of the tangent
space is

T.AY = ker(AY(A) — AY (k).

This turns out to have a natural k-vector space structure agreeing with the other standard
definitions of the tangent space. By the definition of AY, we conclude:

T, AV = ker(Pica,(A) — Pica (k)
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This kernel consists of triples (.Z, a, 8) where % is a line bundle on Ax; A, @ : Z|exa =~ Op
is a trivialization (part of the data of a rigidified line bundle), and 8 : L, axa =~ Oy is
another trivialization (corresponding to the fact that this element lies in the kernel). Fact:

for a scheme X, Pic(X) = HY(X,0%). We have a split exact sequence
0— 0o ) — 05 — 1

with the section O — O, given by a — a + €- 0. This exact sequence induces an exact

sequernce
0 —— HY(A,04) — H(Ax A, O}, ) — HY(A,0f) — 0
(fully exact since the original sequence splits) which we identify as

0 — H'(A, 04) — Pic(A x A) — Pic(A) — 0.

But this description of H!(A,O4) is the same as our description of T, A". [ ]

Proposition 16.4. Suppose k = k and dim A = g. Then dim H'(A4,04) = g and
AN HY(A,04) ~ Hy = B?_, H(A,O4) as Hopf algebras.

Proof to come next lecture after discussing Hopf algebras. ]

17 Hopf algebras (02/26/2024)

17.1 Hopf algebra structure of cohomology

In Proposition we claimed that H4 := @?_, H (A, O4) has a Hopf algebra structure.
The k-algebra structure is the graded-commutative k-algebra structure arising from the
cup product. This is defined by using the Kiinneth isomorphism H4 ®; Ha ~ Hax 4 and
composing with A% : Haxa — Hy, where Ay @ A — AX A is the diagonal map. Meanwhile,
the coalgebra structure is defined via m* : Hq — Haxa ~ HAx® Hy, wherem: Ax A — A
is the group law and we again use Kiinneth for the last isomorphism. Since the group law is
commutative, this is a cocommutative coalgebra. Finally, the antipode is induced by [—1]*.
What do all these words mean?

Definition 17.1. Let H be a k-vector space equipped with (arbitrary) k-vector space ho-

momorphisms:

Multiplication m : H @ H — H;

Comultiplication A : H - H ® H;

Antipode s : H — H;

Counit € : H — k; and
e Unitd:k— H.

We say that H is a Hopf algebra if:
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1. (m, ) makes H into a (not necessarily commutative) k-algebra.
2. (A,€) makes H into a k-coalgebra, i.e. such that the following diagrams commute:

H—2 s HeH

s Jaos

HoH 2% HeoHoH

H—2 S HeH
A id lidxe
e®id

H®H — HRH®H

These diagrams encode dual versions of associativity and the axioms of the identity,

respectively.

3. A: H— H® H is an algebra homomorphism and m : H ® H — M is a coalgebra
homomorphism—mnote that A® A is itself an algebra via m®m, and likewise a coalgebra
via A ® A.

4. The antipode s satisfies a commuting hexagon:

HoH —2%9  HeH

HoH —9% L, HeoH
This encodes the role of s as an inversion operator for both the algebra and the

coalgebra structures.

If we omit the antipode s but axioms (1)-(3) still hold, then H is instead called a bialgebra.

Definition 17.2. We say that a graded (non-commutative) ring H is graded-commutative
if for all homogeneous a,b we have ab = (—1)(d€@)(degb)pg We similarly define cocommu-
tativity for coalgebras.

The following lemma gives one reason why Hopf algebras are worthy objects of study. It
won’t apply directly to abelian varieties—which are never affine in the nontrivial case—but
it will apply to the finite subgroups given by the kernel of an isogeny.

Lemma 17.1. The category of commutative Hopf algebras over k is equivalent to
the category of affine group schemes via the essentially inverse functors Spec and
I'(G, Og).

Proof. This follows by restricting the usual duality between affine schemes and rings—the

coalgebra axioms are dual to the axioms required of a group object. ]

61



We return to the Hopf algebra we were discussing at the beginning of the section, with
the goal of proving Proposition and thus our results on smoothness and the dimension
of AV.

Lemma 17.2. Let A/k be an abelian variety, and let H = @¢_, H'(A,O4). Then
(A%, m*, [—1]*), along with the natural maps k — H, H — k, makes H into a finite
dimensional and cocommutative k-Hopf algebra over k such that H° = k, and for all
h € H we have m*(h) =1 ® h + h ® 1 plus higher degree terms.

Lemma 17.3. Let k& be a perfect field and H a graded-commutative Hopf algebra
over k such that H® = k,m*(h) = 1®h+ h®1 plus higher degree terms and H" = 0
for all r > g. Then dim H' < g. Moreover, if dim H! = g, then H ~ A\* H' as
graded k-algebras.

\. 4

Proof. See [Mil86 Lemma 15.2] and its reference to Borel’s paper. Borel gives a classification
of Hopf algebras satisfying these hypotheses: it turns out that H has a presentation as a
k-algebra with finitely many generators x;, all of positive degree, such that the only relations
among the z; are those imposed by graded-commutativity and nilpotence relations of the
form z* = 0. In particular, the product of the z; is nonzero.

So consider [] ;. Since this is nonzero, it has degree > degz; < g by assumption, so in
particular there are at most g generators, hence dim H' = #{x; : degz; = 1} < g (where
the first equality is = and not < because the z; are linearly independent). This proves the
first claim.

If additionally dim H' = g, then all of the x; must lie in H'—else the vector space
they span is not large enough—and there are g generators. We also conclude that all z;
are nilpotent of order 2: otherwise, if 22 # 0, then z2 Hjﬂ x; is nonzero of degree g + 1,

contradiction. Thus the algebra structure of H is uniquely determined, and it must be
® 1
H=/\H

since the right hand side is an example of a graded-commutative algebra satisfying all of

the properties we require. |
We now prove Proposition

Proof. Since H) = 0 for all r > g = dim A by dimensional vanishing, by Lemma [I7.3]
dim H'(A,04) < g. Therefore A" is smooth and dim H'(A, O4) = g exactly. By Lemma

73 .
Ha=/\ H'(A 0.

as graded k-algebras, which gets upgraded to an isomorphism of Hopf algebras by calculating
that the coalgebra structures match on both sides. |

17.2 Polarizations

Definition 17.3. A polarization of A/k is an isogeny A : A — AY such that A : Ay — AY

is equal to ¢ for some ample line bundle .Z/A+.
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We say that a polarization is principal if X is an isomorphism (i.e. deg A =1).

Remark 17.4. For all &' € PicO(A), we have ¢ = ¢ g —that is, line bundles
that differ by an element of Pic”(A) give rise to the same polarization. Hence we
may treat the set of polarizations as living in the quotient Pic(Az)/ Pic’(Az).

Definition 17.4. The Nerdn-Severi group of A is

NS(A) = NS(A4z) = m
k

_ PiCA/k(k)

Remark 17.5. If £ = C, we have the exponential exact sequence (in the analytic

category)

exp

0 Z Oa

Ox 1.
The induced long exact sequence yields an exact sequence

T A E——

viewing the Nerén-Severi group as the image of Pic(A) inside H?(A,Z).

Remark 17.6. The Nerdn-Severi group is a finitely generated abelian group. We

have an inclusion
NS(A) — Homg(Az, A%),
and by Tate’s theorem we have, for ¢ # char(p),
Homg(Ag, AY) @ Z; < Hom(Ty(Ag), Te(AY).

The latter is a finitely generated Z,-module, and it turns out that this is enough to
conclude that Homgy(Ag, A%) is a finitely generated abelian group. (We’ll prove the
required details when we get to proving Tate’s theorem.)
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Remark 17.7. If k£ is not algebraically closed, then there might not be any line
bundle .# on A/k such that A = ¢. But if k is perfect, let G = Gal(k/k). (More
generally, for any k, let G = Gal(k**P/k).) The exact sequence of G-modules

0 —— AY(k) — Pica (k) —— NS(4) —— 0
induces a long exact sequence in Galois cohomology
0 —— AY(k) — Pic(4) —— NS(A)¢ —— HYG, AV (k)).

See also [Mil86, Remark 13.2].

Remark 17.8. Suppose that X is a projective curve over k with xg € X (k). We
define the Jacobian J(X) := Picg(/k. It has dimension equal to the genus g of
X. For all positive integers d, we get a map X¢ — J(X) defined on points by
(w1, .., 2q) = O(z1) ® - @ O(xq) @ O(z0)~%. In the case X9~ — J(X), the Weil
divisor defined by the image corresponds to an ample line bundle . that yields a
principal polarization ¢¢ of J(X). See also [Mil86], III.1, II1.6].

18 Duality and Descent (02/28/2024)

18.1 Cartier duality

Definition 18.1. Let A, B be abelian varieties over a field k, and let f € Hom(A4, B) (not
necessarily an isogeny). Then we define the dual morphism fV : BY — AV via the Yoneda

lemma as the morphism inducing the group homomorphisms
f* 1 Pick , (T) — Pich 4 (T)

induced by pullback by f x idy : A x T'— B x T, naturally for all k-schemes T,

Theorem 18.1. [Mum08, §15, Thm. 1] Let f : A — B be an isogeny between abelian

varieties over k. Then fV : BY — AV is also an isogeny and ker fV = (ker f)V.

Here, (ker f)V denotes the Cartier dual of the finite commutative group scheme ker f.
To prove the theorem (which we will do next lecture), we need to define what this means

and set up some descent theory.

Definition 18.2. (See also [MumO8| §14].) Let G be a finite commutative group scheme
over k (hence affine). Then H := I'(G,O¢) is a finite dimensional commutative and co-
commutative Hopf algebra over k. We endow the k-vector space H* := Homy(H, k) with
the structure of a Hopf algebra by dualizing the Hopf algebra morphisms on H: comul-
tiplication on H* is the dual of multiplication on H, multiplication on H* is the dual of
comultiplication on H, and similarly for the counit, unit, and antipode.

Then the Cartier dual of G is the group scheme GV := Spec H*, using the coalgebra

structure on H* to define the group law.
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Remark 18.2. We need G to be commutative for this to work, otherwise H* is not
a commutative algebra and we can’t use scheme theory. GV is always a commutative
group scheme since commutativity of H implies cocommutativity of H*. We have a
canonical isomorphism (GY)Y = G coming from the canonical isomorphism with the

double dual for finite dimensional vector spaces.

Definition 18.3. For commutative group schemes G1, Go over S, we define the functor
Hom(G4,Gs) : Schg — Ab

on objects by sending T'+— Homyr_gp. sen(G1,7, G2,7).

Proposition 18.3. Let G be a finite commutative group scheme over k, and let
G = Speck[t,t~!] be the multiplicative group scheme. Then GV represents the
functor Hom(G, G,,).

Proof. Let R be a k-algebra. We want to show that G¥(R) = Hom(Gg, G,, g), where the

Hom is as R-group schemesE By our original definition of GV, we have

GY(R) = Homy_as(H*, R)
= HomR,alg(HE, R)
C Hompg_1in(Hg, R) = Hp.

where the last Hom is merely as R-modules rather than R-algebras.

We observe that, for ¢ € Hg, we have ¢ € Homp_a1(Hj, R) if and only if Ag(¢) = ¢p®@¢
and ep(¢) = 1, where A : H - H ® H is the comultiplication and € : H — k is the counit.
This description characterizes the elements in Homp_1in (H};, R) = Hp that correspond to
elements of GV (R)—these are the grouplike elements that pull back to 1.

Meanwhile,

Homegp. sch(GRa Gm,R) - HomHopf alg(R[ta t71]7 HR)
={p € Hr : Ar(p) = ¢ ® ¢,  invertible in Hg}.

But if Ar(¢) = ¢ ® ¢, then er(y) = 1 if and only if ¢ is invertible in Hg. For we have
(e®e€)oA =¢, 50 Ar(p) = ¢ @ ¢ implies er(p)? = er(p). If  is a unit in Hg, then ex(yp)
is also a unit, so we conclude that eg(p) = 1.

Thus we have—functorially in R—identified both groups with the same subgroup of Hp,

so we conclude that these two functors are isomorphic. |

161t turns out that it is sufficient to check that functors are isomorphic on the subcategory of affine
k-schemes, rather than arbitrary k-schemes, via a covering argument. See [Conl5l, Exercise 1.5.4].
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Example 18.4. Let G = Z/nZ (the étale constant group scheme with n elements).
We claim that GV = u,, = ker([n] : G,,, = Gy,). Fact: the group algebra k[G] is
isomorphic to H* as k-algebras, by sending a point g to evaluation at g. This allow
us to identify the comultiplication structures of the two groups. For all f,g € H =
I'(G,O¢), we have fg(1) = f(1)g9(1) = (f®¢)(I1®1) on H® H, where 1 € Z/nZ is
the generator, so on H* comultiplication is x — x ® x, as desired.

18.2 fpqc descent

See various sources for more discussion: [BLRI0, §6.1-6.2], [Conl5l §6], [PoolT, Ch.4, §5.2].
Definition 18.4. A morphism of schemes Sy — S is called fpgc if it is faithfully flat (flat
and surjective) and quasicompact.

Most of what we will say will also work in the fppf site, although we definitely cannot
work over the Zariski site.

Let f: Sy — S be fpqc. We define Sy := Sy xg Sy, and Sy := Sy xXg Sy X Sg. Then we
have three maps pi2, p13, p23 : So — S7 given by projection to two of the three components,
and also two maps p1,ps : S1 — Sg via projection onto either factor.

Definition 18.5. Let % be a quasicoherent sheaf on Sy. A descent datum on % is an
isomorphism
0:piF — p3.F

in QCoh(S;) satisfying the cocycle conditions
P13t = P33t o p1,0
in QCoh(S2). In more detail, we are requiring that the following diagram commutes:

p* 0 * ok * % P33
PiaptF — Piops T = st F — phsps F

p130
PispiF = PiapsF

A morphism of descent data (F,0) — (¢,) is a sheaf homomorphism h : # — ¢ such

that the following diagram commutes:
« g _Pih *
PiF —— pi¥Y

b ]

Y
sh
P3F s
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Theorem 18.5. (Grothendieck.) For an fpqc morphism f : Sy — S, we have an
equivalence of categories

QCoh(S) = {# € QCoh(S)) with descent datum}
defined by the functor .7’ — (f*.%’,04/), where 62 is the natural isomorphism

pif*F =(fom) F = (fop) =psf*F'.

This means you can show that a quasicoherent sheaf .# on Sy is the pullback of a sheaf
on Sy by writing down a descent datum for .%. This is a very practical and useful condition;
for example, one might wish to check whether a line bundle on X3 comes from a line bundle
on X for a k-variety X.

We can also define descent data for schemes, rather than sheaves.

Definition 18.6. For an Sy-scheme X, a descent datum is an Sp-isomorphism
0:X X So,p1 Sl ~ X X 80,p2 Sl

such that pi30 = p350 o p7,0.

However, the scheme version of descent data turns out to be not quite as nice as the
sheaf version. For example, we don’t get an analogue of Theorem [I85] in the sense that
given a descent datum (X, 6) we do not always get an S-scheme Y such that ¥ xg Sy = X;
see [BLR90, §6.7] for a counterexample. We only get a weaker version descent
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Theorem 18.6. [Pool7, Thm. 4.3.5], [BLR90, §6.1, Thm.6] Let f : Sy — S be an

fpgc morphism of schemes.

1. In general, the functor Y — (Y xg Sy, fy) from the category of S-schemes to
the category of Sy-schemes with descent data is fully faithful. Here, 6y is the

the descent datum defined by the natural isomorphism

(Y Xg So) XSOyPl Sl ~Y Xg Sl ~ (Y Xg So) XSo,pz Sl.

In particular, this means that if X,Y are S-schemes and fo : Xg, — Yg, is
an So-morphism compatible with the descent data fx,6y, then fs, the base
change of a unique S-morphism f : X — Y. That is, we can uniquely descend

morphisms with descent data, if not schemes.

2. If we restrict this functor to the subcategory of quasi-affind® S-schemes, then
it becomes an equivalence between the category of quasi-affine S-schemes and

the category of quasi-affine Sy-schemes with descent data.

3. Suppose furthermore that S and Sy are affine. Then a descent datum 6 on an
Sp-scheme X is effectiveﬂ if and only if X can be covered by quasi-affine open
subschemes that are stable under 6.

%A morphism such that the preimage of every affine open is quasi-affine, i.e. isomorphic to an
quasi-compact open subscheme of some affine scheme.
bWe say a descent datum is effective if it lies in the essential image of the functor defined in part

(1)

19 Duality and quotient schemes (03/01/2024)

19.1 Dual morphisms

We prove Theorem [18.1] citing some more results about quotient groups and descent theory.

Proof. Since f is an isogeny, we must have dim A = dim B = dim AY = dim BY. Therefore,
once we show that ker fV is finite—which follows once we know (ker f)¥ = ker fV—we can
conclude that fV is an isogeny.

For k-schemes T, the scheme ker fV has functor of points

(ker f¥)(T) = {(£,0) : Z/B x T,al(eyxr = Og, f*(£,a) = (Oaxr,id)}
={Z:Z/BxT, % ~04r}/{iso. of line bundles}

because £ must be trivializable on {ep} x T if it is trivial under pullback to A x T' (write
down an appropriate commutating diagram). Here, the trivialization we are notating id :
€4 Oaxr =~ Or is the unique isomorphism sending the section 1 €% Oaxr to 1 € Op; we
have actually already been using this implicity to define the identity of the Picard scheme.
We are also using the fact that ker f¥ C Pic” already; we’ll say more later.

We apply fpqc descent to Sp = A x T'— S = Bx. We claim that (ker fV)(T) is the set
of all descent data on 6 on Q4«7 (up to isomorphism of descent data). Let G = ker f C A.
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We have
S1=8SoXsSg=AXTgur X AXT~AXxTxG
where the last isomorphism is define by (a,a + g) < (a,g). We also have
So =8y XxgSyXxsSg=AxTxGxG

Fix, once and for all, an isomorphism a1 : Oaxrxg ~ p50axr and an isomorphism
as : Oaxrxa 2 p5O0axr. A descent datum 6 is an isomorphism p}Oaxr =~ p5O ax; under
our fixed identifications with O xrxa, such an isomorphism is equivalent to multiplication

by an element of
T xG,01,c) =T(AXT x G, O0%yrxc) =Aut(l' x G,O0rx¢q)

, since A is proper. The cocycle condition on 6 translates to the condition that 8(a, g1 +g2) =
0(a, g2)0(a+g1,g2), 50 A(f) = OR0O. But this is exactly the functor of points for GV (T'). B

Corollary 19.1. If f is an isogeny, then deg f = deg fV.

Proof. deg f = dim; I'(G, Og) = dim, T'(GY, Ogv) = deg fV. |

Proposition 19.2. Let f,g : A — B be morphisms of abelian varieties (not neces-
sarily isogenies or even homomorphisms). Then (f +g)¥ = f¥ +g".

Proof. For all £ € Pic%/k(ﬁ), we have (f + ¢)*.Z ~ f* ¥ ® g*.Z, using the fact that the
morphism f+ g is the composition mpo(f xg): A= Bx B — Band m*¥ = p{ £ Qps.%
from Lemma [[2.21 u

[ Corollary 19.3. [n]av = ([n]a)V, hence AY[n] = (A[n])". ]

Proof. Apply the previous proposition inductively, adding copies of the identity morphism
to itself. ]
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19.2 Quotient group schemes

Theorem 19.4. [Gro62, 3.1, VLA, 3.2] If A — B is a closed normal” subgroup
scheme, where A and B are both fppf group schemes over a field k, then there exists

a unique fppf group scheme C' fixing into an exact sequence

1 A B C 1,

in the sense that the functor of points associated to C' is the fppf sheafification of
T +— B(T)/A(T).
In particular, we may always form A/ ker f for an abelian variety A and a homomor-
phism f: A — B.

%In the group scheme-theoretic sense, which has a precise scheme-theoretic statement.

Remark 19.5. It is fairly straightforward how to proceed in the affine case B =
Spec R—the quotient group scheme C ought to the the spectrum of the subring of
elements of B that are invariant under translation by A. More technical is how to

glue all of this together in the non-affine case; uniqueness is a descent argument.

Remark 19.6. Given a group homomorphism, then we get G - G/ker f — H.

Remark 19.7. An exact sequence of group schemes does not generally have an
exact functor of points—we need the fppf sheafification. For example, the following

sequence should be considered exact:

1 2 Gm 2 G 1.

The map on the functor of points G,,(Q) — G,,(Q) given by squaring is certainly
not surjective—many rational numbers lack rational square roots. But when we pass
to the fppf extension Spec Q@ — SpecQ, the functor of points does become exact.

Theorem 19.8. [BLRI0, §8.2,Thm12] Let X be a group scheme. Assume X/k is
quasi-projective, and let R C X x X be a subgroup scheme such that both projections
R — X are proper and flat. Then the quotient X/R exists, is a quasi-projective
scheme, and X — X/R.

We also discussed more facts about descent. These have been incorporated into last

lecture’s notes.

20 More on the dual abelian variety (03/04/2024)

I was away at the Arizona Winter School for this lecture and the next. The notes for these

have been reconstructed from Prof. Tang’s written lecture notes.
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20.1 Sketch of Mumford’s construction of AY

See also [Mil86, §10] or [MumO8| II.8, III.13]. Recall that for an ample line bundle on
an abelian variety A, we have a morphism ¢o : A — Picg\ /i defined on points by = —
Y@L We set K(¥) = (ker¢g)(k), i.e. the set of k-points under which & is
translation-invariant.

The idea behind Mumford’s construction of Pic% /i 18 to give K (.Z) the correct subscheme
structure and then define Pic% = A/K(Z). We will use what we know about A a
posteriori to give us a hint on what to do. For a given ample .& we set 4 := m*.Z ®
pri Lt @prs £~ on A x A. This line bundle has the property

Mieyxa=2L 0L =04
M axizy = 5L L = dp(x)

for any x € A(k). This ought to remind you of the Poincaré bundle on A x AV, the universal
bundle with

Plieyxav = Oav
and, if \ is the point on A (k) associated to a given line bundle .#”’ on A,
Plaxpy =2

In fact, we claim that (ida X ¢»)*P ~ M. This is another typical seesaw argument. We
have

((ida X ¢2) P)lieyxa = (@¢Plieyxav) = Oa
((ida x ¢2) " P)|axfzy = (d4Plax (s (2)}) = b2 (),

abusing notation to consider ¢ ¢ (z) both as a line bundle and as a point of AV (k). Setting
N = (ida X ¢2)*P @ A4, the line bundles A |14 and A |45,y are trivial for all
x € A(k). By the Seesaw Principle, triviality of .4/ Ax{z} everywhere implies .4~ = prj N
for some N on A. But then A |(cyxa =N’ = Oy, so A is trivial, whence the claim.

We can flip this relationship on its head: even if we don’t know anything about AV,
we can still write down .# (which lives on A x A) and hope to recover P from .Z. In
characteristic 0, all group schemes are reduced, so we may endow the finite closed subset
K(Z) C A with its reduced induced subscheme structure. In general, we can let K(.Z) be
the maximal subscheme of A such that .#|x(x)x 4 is trivial—for this, we need an upgraded
version of the Seesaw Principle, see [MumO08, I11.10]. Then set AV := A/K (%), which is a
smooth quotient group scheme since A is smooth.

The map idy x ¢y : Ax A — Ax AV is fpqc: it is generically flat, which implies flatness
for a homomorphism of group schemes, and it is surjective by our new definition of AV as

a quotient. We use this map to define a fiber product

AXAxpgxav AXA=AXxAXx K(Z).

We define a descent datum on the sheaf .# using the isomorphisms .# ~ (1 X 7,)*.#) and
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hence conclude that .# descends to a line bundle P on A x AV. Then one checks that this
P plays the role of the universal line bundle, and thus conclude that A really is the dual
abelian variety.

20.2 Symmetric definition of A

Definition 20.1. For abelian varieties A, B over k of equal dimension, a line bundle 2 on

A x B is a divisorial correspondence if 2|(.yxp ~ Op and Z|axfey ~ Oa.

Such 2 induces a morphism kg9 : B — AV sending e — e via b — 2| ax{ey—the
image is contained in AV = Pic) /i, because B is connected—so this morphism is in fact
a group homomorphism. Swapping the roles of A and B, we also get a homomorphism
koxg : A — BY, where 0 : A x B — B x A is the canonical switch morphism.

- ~

Example 20.1. For the Poincaré bundle P on A x AV, the map kp : AV — AV is
the identity, and ky«p is some homomorphism A — (AY)V.

Proposition 20.2. For any line bundle .£ /A, we have a commutative diagram

A Kg*x P

Proof. From our discussion of Mumford’s construction of the dual abelian variety in Section
that (ida x 0.2 )*P ~ m* L @pr; £ teprs £ 1. (Our proof of this via seesaw remains

true for general .Z, not just ample .Z.) For all z € A(k), we have

b2(0) =220 2"

Korp(T) = Plizyxav

hence

(bz.v%’("fa*?’(x)) = (bf?(P'{x}XAV)
= ((ida X ¢2)"P)|{z} x4

=t 0Lt
= ¢z (),
and this equality shows commutativity of the diagram because a morphism is determined
by its values on k-points. [ |
Corollary 20.3. 1. k,~P is an isomorphism, hence A ~ (AY)Y naturally.

2. The universal line bundle P4v on AY x (AY)Y ~ AV x A is 0*Pa.

Proof. 1. Take .Z ample. Then ¢« and ¢, are isogenies of the same degree by Corollary
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so by Proposition the homomorphism k,+P must be an isogeny of degree 1,

i.e. an isomorphism.

2. We have, for all x € A(k),

Pavlieyxa =04
Pav|avxizy = Lb. assoc. to kgp(r)
~ Pal{zyxav
0" Paleyxa = 0Oa

U*PA‘AV x{z} = KU*P(x)

so another typical seesaw argument shows c*Pav >~ Pyv.
]

Definition 20.2. We say that a homomorphism X : A — AY is symmetric if \Y = X under

the identification k«p : A — (AY)Y (a notation we will abuse from now on).

From Proposition we see that ¢o = (¢po)V; taking . ample, this shows that every
polarization is symmetric. In general, if .Z is a line bundle on B and f : A — B is a

homomorphism, then we have a commutative diagram

A%B

J/¢f"2 Lﬁz

AV fv B\/

In particular, when . is ample, f gives a morphism of (A4, ¢5+«) to (B, ¢») is a homomor-

phism of polarized abelian varieties (this just means that the diagram above commutes.)

Corollary 20.4. Isogeny between abelian varieties is an equivalence relation. In
fact, if f : A — B is an isogeny, there exists an isogeny g : B — A such that
go f =[deg f] on A (multiplication by deg f).

Proof. Reflexivity and transitivity are clear; the hard part is symmetry, which follows from
the existence of g.
Since f : A — B is faithfully flat and quasi-compact, by fpqc descent, for all k-schemes

X we have an equalizer diagram
X(B) =L X(4) == X (A xp A)

The slogan here is “representable functors are fpqc sheaves of sets,” which is a special case
of the full faithfulness of the fpqc descent datum functor for schemes in Theorem See
Thm. 6.2.14] for more details.

By Yoneda, this means that we contravariantly have a coequalizer diagram
Axp A —= A B

We know A xgp A ~ A Xj ker f. The group scheme ker f is a finite group scheme with
order deg f. By Theorem below, we know that deg f kills ker f. This implies that the
morphism [deg f] : A — A also coequalizes the diagram above—under our identifications,

73



the two morphisms A x ker f — A appearing in the coequalizer diagram are (1) the action
map (a, k) — ak and (2) the projection (a, k) — a, and post-composing with multiplication
by deg f makes these two maps equal. Hence by the universal property of the coequalizer,
we conclude there is some morphism ¢ : B — A with go f = [deg f], and such g is evidently

surjective with finite kernel, i.e. an isogeny. |

Theorem 20.5. (Deligne.) A commutative finite flat S-group scheme G of order m
is killed by m.

Proof. See [TOT0, §1]. [ ]

21 Finite commutative group schemes (03/06/2024)

21.1 Poincaré complete reducibility (algebraic category)

We can finally reprove complete reducibility in the algebraic setting over an arbitrary field.

Theorem 21.1. (Poincaré complete reducibility.) [Mum08, §19, Thm. 1] If B C A
are abelian varieties over k, then there exists a sub-abelian variety B’ C such that
B x B’ — A is an isogeny.

Proof. Pick an ample line bundle £ on A; then we have a commutative diagram

B—— A

ldﬁb* < l(bz

B\/ # A\/
Set
B = (ker(t¥ 0 ¢.2)) %,

which is another sub-abelian variety of A. The kernel of B x B’ — A is the scheme-theoretic
intersection B N B’ = ker ¢,« ¢, which is finite because 1*.% is ample on B. Therefore, to
show that B x B’ — A is an isogeny, we need only show that dim B + dim B’ > dim A
(implying surjectivity). But since the polarization ¢ is finite, we have

dim B’ = dimker:¥ > dim AY — dim BY = dim A — dim B.

Qualitatively, this is the same proof as in the complex case from [Mil86]; we just had to

do a lot to set up the algebraic theory of duality.

74



Corollary 21.2. Corollaries and [3.9) remain valid in the algebraic setting over
an arbitrary field: we may always decompose abelian varieties into simple isogeny
factors, and End’ (A) correspondingly decomposes into a product of matrix algebras

over division rings.

21.2 Etale and local finite group schemes

Definition 21.1. Let G be a finite group scheme over k, i.e. the spectrum of some finite-
dimensional k-Hopf algebra.

e We say G is local if G is connected.

e We say that G is étale if T'(G,O¢) is an étale k-algebra, i.e. a product of finite
separable extensions of k, equivalently Qé k= 0.

Example 21.3. u,, = ker([n] : G,,, — G,;,) is étale if and only if n is coprime to
p = char k, and it is local if and only if n is a p-th power.

Proposition 21.4. (E'tale—connected exact sequence.) For any finite k-group scheme

G, we have an exact sequence

1 Gloc G Gét ]-7

where G is local and Gy is étale.

Moreover, if k if perfect, then this sequence splits canonically: G >~ Gjoc X G-

This roughly says that G may be group scheme-theoretically decomposed as a product
of its “points” and the “fuzz near the identity.”

Proof. The idea is to take Gl = G°, which is certainly local, and show that G/G° is étale.

We require some preparation.
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Lemma 21.5. Letting k° denote the separable closure of k, the following categories

are equivalent:
e The category of finite étale k-algebras.
e The category of finite étale k-schemes.
e The category of finite sets equipped with a Gal(k®/k)-action.

The last equivalence is given by sending X — X (k*®), with the Galois action induced
by the Galois action on k*.
This equivalence of categories restricts to an equivalence of:

e The category of finite étale k-Hopf algebras.
e The category of finite étale k-group schemes.

e The category of finite groups equipped with a Gal(k®/k)-action.

Proof. (Sketch.) Given a Gal(k®/k)-set T, its associated finite étale k-algebra is

Gal(k® /k)
<H ks) 7

teT

(i.e. the subalgebra of this product fixed by Gal(k®/k)). Here we let v € Gal(k®/k) act on
the tuple (s¢):cr by sending it to the tuple with v(s;) as its y(¢)-th component. |

Example 21.6. Let charp { n. Then the group p, corresponds to the subgroup of
n-th roots of unity in £° with their natural Gal(k®/k)-action.

Proposition 21.7. Let X/k be a scheme of finite type. Then there exists a finite
étale k-scheme mp(X) and a morphism g : X — m(X) which is universal in the
sense that if ¢’ : X — Y is another morphism with Y finite étale, then there exists
a unique f : m(X) = Y with ¢’ = f o ¢. Moreover, q is faithfully flat and the fibers
of ¢ are connected components of X (justifying the notation my(X)).

Proof. (Sketch.) Using Lemma to define m(X) we need only write down 7o (X)(k*)
and endow this set with a Gal(k®/k)-action. So we simply take mo(X)(k®) to be the set
of connected components of Xs = X X Speck®, which is equipped with a natural Galois
action via the action on £°.

We construct the desired ¢ via Galois descent: we have a map upstairs qgs : Xps —
mo(X)s given by sending a connected component to its corresponding point in o (X )= (k%).
This morphism is Gal(k®/k)-invariant, hence descends to a unique ¢ : X — mo(X). The
properties of ¢ can even be checked after the k*®/k-faithfully flat base change. ]
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Corollary 21.8. For a k-group scheme G of finite type, mo(G) is a finite étale k-group

scheme and ¢ : G — 7y(G) is a group homomorphism.

Returning to the proof of the connected-étale exact sequence, Proposition [21.7] and
Corollary give us the exact sequence with G¢ = mo(G). When k is perfect, Gyea € G
is a k-subgroup scheme; the key point here is that Gyeq X Greq is again a reduced scheme
if kis perfectm Now note that the composition Gyeq < G — mo(G) is an isomorphism,

which can be checked on k*-points, yielding a section of the exact sequence. |

Definition 21.2. We say that a finite commutative group scheme G is étale-local if G is étale
and GV is local. We likewise define étale-étale, local-étale, and local-local group schemes

based on all possible combinations.

Corollary 21.9. If k£ is perfect and G is a finite commutative group scheme, then

we have a unique decomposition
G= Gét—ét X CVYét—loc X GlOC—ét X Gloc—loc

with the obvious notation.

Proof. Use the connected-étale exact sequence to first write G ~ Gg; X Gioc. By repeating
this for for G, and G).. and then (double) dualizing, we get our desired four-fold decom-
position.

Uniqueness follows from the fact that there is no non-trivial morphism between these

group types of groups:

e Etale — local is trivial because this is a map from a reduced scheme to a scheme whose

reduced structure has one point;

e Local — étale is trivial because the neutral connected component of an étale group
scheme is {e} ~ Speck. (The neutral component cannot be Speck’ for a finite sepa-
rable extension k'/k because the identity needs to be a k-valued point.)

The claim follows from these two cases and their duals. [ |

Example 21.10. Let char k = p. Recall that, in general, Z/nZ and pu,, are Cartier
duals. If (n,p) = 1, then both of these are étale-étale, whereas if n = p¢, then Z/nZ
is étale-local and p,, is local-étale.

The kernel of Frobenius ay, := ker F' : G — G, is local and self-dual, hence local-

local. (See Homework 3.)

17This is not true in general if k is not perfect. See [EvdGM24, Ex. 3.2] for a counterexample.
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Remark 21.11. When k = k, then there are not may possibilities for three out the

four types of finite group schemes we have defined:

o All étale-étale commutative finite k-groups schemes are products of p,, where
(n,p) # 1. (Note that this is isomorphic to Z/nZ if we work over the algebraic
closure via a choice of primitive root of unity.)

e All étale-locals are of products of various Z/p™Z.
o All local-étales are products of various pipn.

However, there is a huge variety of local-local group schemes, even with the simpli-
fication k = k.

Remark 21.12. If char k = 0, then G is always étale-étale, since all group schemes

are reduced in characteristic 0.

We will investigate building blocks of local groups, which will also be useful when we
study Frobenius actions. See also [MumO8, §ITT.11, §I11.14] for more theory.

The following may remind you of the Chinese remainder theorem:

Proposition 21.13. Let A/k be an abelian variety with chark = p. Let n be a
positive integer, and write n = n1p™ with p prime and p 1 ny. Then the natural
morphism A[n;] x A[p™] — A[n] : (a,b) — a + b us an isomorphism.

Proof. Since (n1,p) # 1, [n1] is separable and so A[n4] is étale. Likewise, A[n1]Y ~ AV[n4]
is étale, so A[nq] is étale-étale. On the other hand, by Remark since A[p™] has p-
th power order p?™9, it cannot have a nontrivial étale-étale component—all of those have
order coprime to p (after base change to k). So A[n;] N A[p™] C A[n] (scheme theoretic
intersection) is trivial; equivalently, A[n;] x A[p™] — A[n] has trivial kernel, so by comparing
orders we conclude this is an isomorphism. |

With notation as in the proposition, we must have A[n;]z ~ (Z/nZ)?. But A[p™] has

many possible structures.

22 Lie algebras of local groups (03/08/2024)

22.1 p-rank

Let chark = p. Last time, we discussed how A[p"]; decomposes as a group scheme. It has
no étale-étale part, only étale-local, local-étale, and local-local components. The étale-local
part is always of the form (Z/p™Z)", where Z/p™Z is a constant group scheme. The number
r is called the p-rank of A. Meanwhile, the local-étale part is always of the form (u,m)®,
and by duality s = r.

Proposition 22.1. The p-rank is an isogeny invariant.
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Proof. Let f : A — B be an isogeny, say with kernel of order n, i.e. dimy, I'(ker f, Oxer f) = 1.
To prove the claim, it suffices to look only at k-points, eschewing finer non-reduced structure.
Let r4,7rp be the respective p-ranks of A and B. Then we get a map on points

£+ Alp™|(k) — Blp™|(k)

which has kernel of order at most n, so we conclude p™"™4 < np™"8 for all m. Since n is
fixed, taking m — oo shows that r4 < rp.

Recall that isogeny is an equivalence relation: if an isogeny f : A — B exists, there
exists an isogeny g : A — B. So we may apply the same argument to show that rp < 74,

whence r4 = rp. [ |

Corollary 22.2. The p-rank r of A is equal to the p-rank s of AV.

Proof. Polarizations exist and are isogenies. |

22.2 Digression on Lie algebras

Recall that in the general setting, where we have an S-group scheme G — S of finite type,
an S-derivation of Og to a quasicoherent sheaf .#Z on G is a map D : Og — # satisfying:

1. Additivity;
2. For all a € im(f~'0s — Og), we have Da = 0 on sections; and
3. The Leibniz rule holds: D(ab) = aD(b) + bD(a) on sections.

One can show that there is a bijection Home,, (Qé/s, M) = Derg(Og, A ), where the latter
denotes the set of S-derivations and Qf, /s is the sheaf of relative differentials.

We justify the identification Lie G = T.G when S = Spec k. We define Lie G as the set of
left-invariant derivations in Derg(Og, Og) = Hom@G(QE/S, Ogq), i.e. such that D : Og —
Og satisfies Do L} = L* o D for all x € G(k), with L, denoting left-translation.

Proposition 22.3.LieG ~ T.G via D — D|. (recall we define T.G =
Hom(m./mZ, k), and that Qg /gle ~ m/m?).

Proof. See [Mum08, p. 92-94] for the case over C, which generalizes. He constructs D using

right-translations. u
Here are some more facts about Lie G:

1. It is a Lie algebra in the algebraic sense: the Lie bracket is given by the commutator
[D17D2} = D1 o D2 - DQ o Dl.

2. If chark = p, then D?») = DoDo---0D (p iterations of D) is also in Lie G for any
D € G. In general, iterating a derivation is not a derivation, but in characteristic p

one can show that the bad terms in the Leibniz rule all die.

That is, Lie G is a p-Lie algebra:
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Definition 22.1. A p-Lie algebra g over k is a Lie algebra (a k-vector space with a bracket
operator [-,-]) equipped with a unary operator (—)®) : g — g such that

1. (A2)®) = rz®) for all A € k, 2 € g;

2. Letting ad, be Lie algebra endomorphism sending y — [z, y], we have ad,» = (ad,)?

(where the right hand side denotes iteration as an endomorphism).

3. (z+y)P = 2@ +y® + F,(ad,,ad,)y, where F, is some universal noncommutative
polynomial defined solely by the characteristic p. You can look up what this is explic-
itly, although we won’t write it down here.

22.3 Height 1 local groups

Definition 22.2. A finite commutative local k-group scheme G is height 1 if P = 0 when-

ever £ € m = m, (the maximal ideal at e € G).

Lemma 22.4. For a finite local k-group scheme G of height 1, the coordinate ring
R =T(G, Og) is isomorphic to k[z1,...,z,]/(z],...,2P). In particular, dimy R is a
p-th power.

Proof. Let x1,...,z, € m, such that Zy,...,T,, form a k-basis in the cotangent space
m./m2. Since G is local, by Nakayama we must have k[z1,...,x,] - R. By the height 1
assumption, this surjection descends to k[z1,...,z,]/(2},...,22) - R.

Let Dq,...,D, € LieG be a dual basis of Z1,...,T, € m./m?, ie. so that D;(z;) =
d;; mod m, (Kronecker delta). Let v denote an n-tuple of integers in the range 0,...,p—1,
and let x* denote the corresponding monomial in the z; and D, := D{'o---0 D2~ and let
la| := >, ;. Here are some important facts that ensure the derivations D; behave roughly

as expected:

1. The Leibniz rule implies that D;m? C m’~! so these derivations induce well-defined

derivations D; of degree —1 the graded ring R := D, ,mr/mrt

2. We have D, (xo/) = [/, @i(a; —1) -+ (a; —a+1) mod m if |a| > |o/], and otherwise
this is 0 mod m. The second statement follows from (1), and the first statement follows

from the Leibniz rule by induction via

o af _ o ai—l o lal
Di(x; )Hms = o, ij mod m*.
1 s#j i

Di(x("/) = 4

J

n

In particular, Dy (x4/) = 0 mod m, if a # .

Now suppose we have a relation of k-linear dependence among the monomials in R, say

of the form

n
g Ca H x* =0,
a =1

with each ¢, € k. Then applying D, and reducing modulo m. leaves only the term

cor@’l mod me, where o'l = of!---- - al,! denotes the multinomial. But D, must respect
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the linear dependence, so we conclude cy a’! = 0. Since all of the «; are less than p, the
only way this can happen is if ¢, = 0. Hence the original linear combination is trivial.
This shows that the map k[z1,...,z,]/(2},...,2E) — R is injective, hence a k-algebra
isomorphism. |

See also [Tat97, Lemma 3.7.1].

Remark 22.5. Note that this lemma does not say anything about the group/Hopf al-
gebra structure; there are many possible group structures on height 1 group schemes,

despite the fact that their k-algebras all look similar.

Theorem 22.6. The category of finite local k-group scheme of height 1 is equivalent
to the category of p-Lie algebras over k via G — Lie(G).

Proof. See [Mum08, II1.14, p.130-131]. [ ]

Definition 22.3. Let G be a k-group scheme of finite type. The absolute Frobenius map
F¢, defined on sections by f — fP, is not a morphism of k-schemes. Instead, we define the
relative Frobenius F(!) (also denoted Fg /i) to be the map induced by the fiber product

Fg

GH —— @

l l

Fspeck

Speck —— Speck

G

where Fg, Fspect are absolute Frobenii, GW is the group scheme making the square Carte-
sian, and F(! is the morphism induced by the universal property of the fiber product.
Intuitively, the relative Frobenius morphism acts by p-th powers on the coordinate func-

tions, but also acts trivially on the base field.

Example 22.7. If G = G,, then we may identify the relative Frobenius map with
the k-algebra homomorphism klz] — k[z] : © + aP. Its kernel is denoted o, =
Spec k[x]/(xP), with comultiplication z — 1 ® z + z ® 1.

F®) is a group homomorphism, and ker F(!) is always a finite local k-group scheme of
height 1. Indeed, F(!) is always purely inseparable and T'(ker F"), Oy, p1)) = Og o /{2P, x €

Mg e}, as we have a diagram

Spec Og,. — Spec Og) .

| !

a__FY o

Corollary 22.8. Let p = chark. On a commutative finite local k-group scheme G
of height 1, multiplication by p is the zero map.
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Proof. Apply functoriality from Theorem and the fact that [p] = 0 on Lie G. Alterna-
tively, without appealing to this equivalence of categories, one can argue along the lines of
our proof of Theorem that [p] factors through Frobenius, which already kills the group
scheme. One final way to do this is to define the Verschiebung map V(! and then show
directly that [p] = V() o F() = F(1) 6 V(1) and similarly conclude. |

We can now prove Theorem for ourselves:

Corollary 22.9. If G has order m, then [m] = 0.

Proof. By base change to k, this statement is clearly true for the étale part, so WLOG
G is local. In this case, the order m is always a p-th power, say p”. We have inclusions
ker F(U < F(2) < ... < ker F(™ = G. Each quotient is a group of height 1, so by applying
Corollary repeatedly we conclude that [p"] = 0. |

23 Riemann-Roch for abelian varieties (03/11/2024)

23.1 Homogeneity of the degree map

Definition 23.1. Let k, K be field sand V/k a (not necessarily finite-dimensional) vector
space. A function f : V — K is a homogeneous polynomial of degree n if flw is a ho-
mogeneous polynomial of degree n, where W is any finite dimensional subspace of V' and
the polynomial variables are given by the coordinates associated to some (equivalently, ev-
ery) basis of W. Equivalently, for any fixed vy,vy € V, the function f(Ajv; + Ave) is a

homogeneous polynomial in A1, As.
Let A/k be a simple abelian variety of dimension g.

Definition 23.2. The degree map deg : End(A) — Z is defined by

deg f : f is an isogeny
0: f=0

These are the only two cases if A is simple, and deg is a ring homomorphism since deg(f o
g) = deg(f)deg(g) for finite morphisms f,g. We extend the degree map linearly to a
map End’(A) — Q: for any f € End’(A), there exists some nonzero n € Z such that
nf € End(A), and we define

deg(nf)

which is well-defined and independent of the choice of n since [n] has degree n29.

Theorem 23.1. For simple A/k, the degree map deg : End®(4) — Q is a homoge-

neous polynomial of degree 2g.
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Proof. See also [Mum08, V.19, Thm. 2]. It suffices to show that, for any fixed f1,f2 €
End(A) and all integers n,

deg(nfi + f2)

is a polynomial in n. We know already that deg(nf) = n29 deg(f), i.e. deg satisfies the
homogeneity criterion for integer scalars, so if deg is a polynomial function then it must be
homogeneous of degree 2g.

Pick a (very) ample line bundle .#/A, so that x(.#) # 0. Then by Lemma [23.2] below,

x((nfi + f2)* &)
x(Z) '

Set £, = (nf1 + f2)*Z. Applying the Theorem of the Cube to the map f x g X h :
AXx Ax A— Awith f =nf) + fo,9g =h = f1 yields

deg(nfi + f2) =

fn+2 = gnJrl ®g’n+1 & (2f1)*$ & gn_l ® fl*g_2
~ %®n(nfl)/2 ®:/V®n ®°@,

where 4, .4, 2 are line bundles independent of n (Exercise: write down these line bundles
explicitly).

The Snapper theorem states that for any projective variety X and any collection of line
bundles .%41,...,.%. on X, the Euler characteristic X(fl(g’m ® - ® L") is a numerical
polynomial in nq,...,n, of degree dim X. (See [Kle66, §I.1] for a proof of the Snapper
theorem in somewhat greater generality.) Hence x(.%,), and therefore also deg(nf; + f2),
is indeed a polynomial in n. |

Lemma 23.2. If f : A — B is an isogeny, then for all line bundles .¥/B we have
X(f*%Z) = (deg f) - x(£).

Proof. See [Mum08|, §12, Thm 2, p. 113] |

Remark 23.3. Observe the similarity to Proposition [I3.3] but N.B. that Lemma
is false for general varieties, even in nice cases. For example, if g is a morphism
of smooth curves A — B and .Z = Op, then the lemma is true only if ¢ is unramified,

since in this case the correct statement is given by the Riemann-Hurwitz formula

x(O4a) = (degg) - x(Op) — deg R

where R is the ramification divisor.
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23.2 Riemann-Roch for abelian varieties

Theorem 23.4. (Riemann-Roch for abelian varieties.) [MumO8| IT1.16] Let £ be a

line bundle on A (not necessarily ample).
1. x(£®") is a homogeneous polynomial of degree g. More precisely,

X(g@n) _ deg(f)ng )

2. If & = O(D) for a Weil divisor D, then x (%) = (D% where (DY) denotes the

gt
g-fold self-intersection number D.D.--- .D (g copies of D).

3. ¢ : A — AV has degree x(-£)?%. In particular, x(-£) # 0 if and only if K(.£)
is finite.

Proof. All of the formulas above remain unchanged if we base change to k, so we might as

well assume k = k.

1. e Claim 1: Let .£,.% be line bundles on A with .4 ® Z{l S PicO(A). Then
we claim x (%) = x(%). The condition on 47, % shows that .4 and % are
algebraically equivalent—recall Lemma |15.4—so we have a connected scheme T
and a line bundle £ /A x T with Z|;, ~ %4 and Z|;, ~ Z. Connectedness of
AT and constancy of the Euler characteristic in flat families implies the desired
equality.

e Claim 2: We claim that for any line bundle .#/A there exist line bundles %, %
on A such that . = £ ® %, £ is symmetric (i.e. [-1]*%4 = %), and
% € Pic’. To show this, we show . @ [~1]*.Z " lies in Pic’. We have

nZeFl'Y Hesr e Y=l o[- (1,2 02).
(8)

7, L' ® £ lies in Pic® by the theorem of the square. We change perspective:
we can view 7% .21 ® £ as a point on AV and pullback by [~1] as the map
[-1]4v. This is the morphism defined on points by sending a line bundle to its

inverse, so [8| may be rewritten as
YL e, Loyt

which is trivial—again by by the theorem of the square—proving translation-
invariance of . @ [—1]*.2~!, i.e. membership in Pic’(4) = AV (k).

Since AV(k) is a divisible group (here is where we use the assumption k = k!),
there exists a line bundle %, /A in Pic’(A) such that %2 = L@ [-1]*2~. We
set 4 = L ® % ' then

FA = LR G = e =20 =

s0 &) is symmetric, proving our claim. Again we use the fact that % € Pic’(A)
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to conclude [—1]*.% = %5 .

e Claim 3: We claim that it suffices to prove (1) in the case .Z is symmetric. If
A @ Lt e Pic®(A), then (L") = x(&P™). For £ and % lie in the
same component of the full Picard scheme Pic 4, so a slightly modified version
of Lemma shows that they are algebraically equivalent and we may apply
the same argument as in Claim 1. The degree of a line bundle is determined
by its Hilbert polynomial, so we conclude both sides of the desired formula (1)
are the same for %) and .%. By Claim 2, we can find a symmetric .£; with
Z @ £ € Pic’(A), so it suffices to prove the formula for . instead.

So we may assume .Z is symmetric. Then
X(Z2") = x([n]"Z) = degln] - X(2) = n*X(2).

where the middle equality is by Lemma m This is true for any square n?, but
X(£®™) is a polynomial in m that agrees with n?9x(¢) whenever m = n? is a
square. If two integer polynomials agree infinitely often, they are equal, so we conclude
X(Z£®") = nIx (&) even when n is not a square.

Homogeneity means that the only term in the Hilbert polynomial y(£®") is the

leading term, which, by the definition of degree, is deggi(!“%ng, giving the formula for

(1)

2. (Sketch.) If £ is very ample, then by intersection theory
deg(Z) = (D).

In more detail, since .Z is very ample, we can pick og,01,...,04 € I'(4,.£) with no
common zeros such that divisors of zeros div(ci),...,div(o,) intersect transversely.
Then (DY) = (divoy).--- .(divoy) is the number of points in the intersection. The
sections o; define a finite morphism ¢ : A — P9, and (DY) is the (multiplicity-free)
preimage of [1:0: ---: 0], so we conclude (DY) = deg ¢ and

deg(-Z) = deg ¢ - deg(Ops (1)) = deg ¢.

by Proposition '®| This lets us conclude (2) from (1).

In general, we can reduce to the very ample case by writing an arbitrary line bundle
as £ =L ® % " with L), % very ample.

3. We first prove the claim when K(.¥) is finite (this is implied by, but not equivalent

to, ampleness). Recall the Mumford line bundle
M=m"L pr L @pr, L7 = (id x d.¢)*P.

The map id x ¢ is an isogeny from A x A to A x AV, so Lemma [23.2]is applicable,

18But note that Lemma, is not applicable because P9 is not an abelian variety.
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yielding

X(A) = deg(p2)x(P).

Recall from the proof of Theorem that R’ pry . ./ is supported on the 0-dimensional
subscheme K (%) when .Z is ample. Using the Leray spectral sequence, we also had

H'(Ax A, .#)=T(AR'pr, , M).
By the projection formula,

Ripr, (m*Z@pi L @py £ =R pr,(m* L eprs L oL}
=R’ pry . (m*ZL ® pry zh

where we use the fact that this sheaf is supported on a finite set to conclude that

tensoring with a line bundle does nothing. Hence
H'(Ax A, #)=T(ARpr, ,(m*L@prs L") =H'(Ax Am*' ¥ @prs £71).
Note that (m,pry) : A x A — A x A is an isomorphism. By Kiinneth, we have
X(M) = x(m* & @pr; L71) =X (L) - x (L),

and by (1) this last expression is (—1)9x(¢)?. Mumford shows that x(P) = (—1)9
([Mum08, II1]), so plugging this into our formula for x(.#) shows that deggpy =
X(£)%.

If instead K (%) is infinite, then ¢ has infinite kernel, hence degree 0. Moreover,
K(%) contains an abelian variety of positive dimension, hence also contains a finite
subgroup F' of arbitrarily large order. The map id4y X ¢ : A x A — A x AV factors
through the isogeny ids x ¢: A x A — A x (A/F). We know that m*.¥ @ p3.£ 1 =
(ida x ¢)*)(P @ pri.¥). The fact that m*.Z @ p5.#~! is the pullback of some line
bundle on A x AV implies that it is also the pullback of a line bundle on A x (A/F), so
we conclude by Proposition that x(m*Z @ p5.# 1) is a multiple of |F|. Since we
can choose |F| to be arbitrarily large, we conclude x(m*.# @ p3.£~1) = 0. The same

argument as before, using the isomorphism (m,pry) : A x A — A x A and Kiinneth,
shows that y(m*.Z @ p3.Z 1) = (—1)9x(Z)?, hence x(£) = 0 too.

Corollary 23.5. The degree of any polarization is a perfect square.

\.

Proposition 23.6. If K(.%¢) is ample, then H'(A,¢) = 0 for all i > 0 and
H(A, %) #0.

Proof. (Sketch, assuming two major results from Mumford.) The Vanishing Theorem
[Mum08|, §16, p. 140] states that if K (%) is finite, then that H?(A,.¥) = 0 for all but
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one p, but that the remaining cohomology group, whose degree we define to be the index
i(Z) of £, is nonzero. [Mum08|, Cor. on p.148] tells us that i(.£) = i(£®") for any positive
integer n. If . is ample, take n large enough so that #®" is very ample. Very ample line
bundles always have global sections, so we conclude i(.£®") = i(£) = 0. ]

24 Tate’s theorem: injectivity (03/13/2024)

Next week’s RT'G seminar will be on purity for abelian 3-folds; it might be worth going to.
We started lecture by finishing part (3) of the Riemann-Roch theorem; this has been

moved to the previous section.

Theorem 24.1. (Injectivity part of Tate’s theorem) [MumO8), TV.19, Thm. 3, p. 164]
Let A, B be abelian varieties over k. Then Hom(A, B) is a finitely generated free

abelian group, and
Tg : }IOIII(A7 B) ®z Z@ — HomGal(ks/k) (Tg(A), Tg (B)) C HOIn(Tg(A), Tg(B))

is injective for all prime ¢ # char k.

\. J

Proof. We can reduce to the case A = B and with A simple. Via Poincaré complete
reducibility, A is isogenous to [[, A; and B is isogenous to [ ; Bj with A;, Bj simple, and

Hom(A, B) — HHom(Ai, Bj)
ij
Hom(A, B) @ Zy < | [ Hom(A;, By) @ Zs

0]

so it suffices to prove the claim for each of the Hom(A4;, B;), i.e. we can reduce to the case
A and B are simple.

If A and B are simple and isogenous, then we (noncanonically) get Hom(A, B) < End(A)
by choosing an isogeny g : B — A and sending @ — g o ¢ for ¥ € Hom(A, B), so it suffices
to prove the claim for A = B in this case. If A and B are simple and nonisogenous, then
Hom(A, B) = 0, so we can ignore this case.

Therefore let A be simple. The fact that the degree map is a homogeneous polynomial
of degree 2 dim A shows that End(A) is torsion-free. We claim that for all finitely generated
Z-submodules M C End(A), we have

QM NEnd(A) :={f € End(4) : In € Z,nf € M},

i.e. with the intersection occurring in EndO(A), is a finitely generated Z-module; this shows
that End(A) is not “infinitely divisible.” QM is a finite-dimensional Q-vector space, so
the homogeneous polynomial function deg|gas extends to RM. The open neighborhood of
0 € RM given by

U:={xeRM :|deg(x)| <1}

satisfies U N End(A) = {0} because all nonzero endomorphisms of A have positive integer
degree. Therefore, QM NEnd(A) — RM is discrete, i.e. a (not-necessarily full rank) lattice
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in a Euclidean space, hence of finite Z-rank, proving the claim.

To prove injectivity of Ty, it suffices to show that, for all finitely generated Z-modules
M C End(A), the map M ® Z, — End(TyA) is injective, since End(A) is a direct limit of
its finitely generated submodules. By the previous claim, we may even enlarge M so that
M = QM NEnd(A). For such M, which is always free, pick a Z-basis fi,..., f,. Suppose

we have a linear dependence

where a; € Zy. If this relation is nontrivial, by multiplying by an appropriate power of ¢ we
may assume that at least one of the a; lies in Z,. For each 4, pick a rational integer a; =
a; mod ¢. Then the endomorphism T;(>_ a) f;) maps T;(A) into £T;(A). By the definition of
Ty(A), this means that ker > " al f; DO A[{], so there exists f* € QM NEnd(A) = M such that
Stalfi = f'ol. Hence ¢ | al for all a}, hence £ | a; for all i, contradicting our assumption.
Hence Ty is injective.

Injectivity of any particular T, shows that EndO(A) is a finite-dimensional Q-vector space.
Therefore, there exists a finitely generated M C End(A) with QM = End°(A). Then we
have QM NEnd(A) = End(A), and this is finitely generated by our first claim. |

s ~

Remark 24.2. Theorem immediately gives a bound rkz (A, B) < 4dim A dim B,
since the Tate module has Zy-rank 2g. This is usually not an equality, but sometimes

is, for example in the case of supersingular elliptic curves.

Remark 24.3. If £ is finitely generated over its prime field, then in fact the injection
in Theorem is an isomorphism. The positive characteristic case was proven by

Zarhin, and the characteristic 0 case was proven by Faltings.

Corollary 24.4. The Néron-Severi group NS(A) C Hom(Ay, A%) is a finitely gen-

erated free Z-module.

Proof. By Remark n

Corollary 24.5. End’(A) is a finite dimensional semisimple algebra.

Definition 24.1. Let B/Q be a finite dimensional simple algebra. A map T : B — Q is said
to be a trace form if T is Q-linear and symmetric, i.e. T(ab) = T'(ba) for all a,b € B. A map
N : B — Qs said to be a norm form if N is a polynomial function and N(ab) = N(a)N(b)
for all a,b € Q.
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Proposition 24.6. [Mum08, IV.19, Lem. on p. 165] Let B/k be a finite dimensional
simple algebra with center K. Then there exists a canonical norm form Nm% /K
B — K such that any norm form on B/k may be written as

(Nmp/p, 0o Nm )

for some integer k > 0, where Nmg/; is the field-theoretic norm map. We likewise
have a canonical trace Tr% /i + B — K such that any trace form on B/k may be
written as

¢°’H%/K

for some k-linear map ¢ : K — k.

Definition 24.2. Nmg on%/K is called the reduced norm form of B/k and Trg /4, Tr%/K
is called the reduced trace form of B/k (where Trg  is the field-theoretic trace map).

Remark 24.7. When D is central simple, so that K = k, the reduced norm form
and the reduced trace form are descended from the determinant and trace map,
respectively, on D ®j k ~ M,, (k).

25 Weil pairing (03/15/2024)

25.1 Computations on the Tate module

Theorem 25.1. [Mum08, V.19, Thm. 4]

1. deg(f) = det(Ty(f)) for f € End’(A). (Determinant via treating Ty(f) as a
2g X 2g matrix.)

2. The characteristic polynomial P(x) of T;(f),i.e. P(x) = det(x—T;(f)) € Qelx],
actually has Z-coefficients. By (1), P(n) = deg([n]a — f) for integers n.

We will first need:

Lemma 25.2. For an isogeny f : A — B, we have an exact sequence of
Z|Gal(k® /k)]-modules

0 —— Ty(A) T,(B) (ker f(k*))¢ — 0.

Here, (ker f(k*®)), denotes the ¢-primary part of ker f(k*).
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Proof. (Sketch; see also [EvdGM24], §10.5-6].) By definition,
Ty(A) = lim A[£")(k®)
= Jim Hom (Z/£"Z, A(k"))
= Hom(Q¢/Zy¢, A(K®)).

Given an exact sequence 0 - N — A — B — 0 of fppf group schemes, we get an exact
sequence 0 — N(k*) — A(k®) — B(k®) — 0. Applying the functor Hom(Q,/Zs, —), we get

a long exact sequence
0 —— Ty(A) —— Ty(B) — Ext'(Qu/Z¢, N(k*)) — Ext"(Q¢/Ze, A(k*))

The last Ext group is 0 if k¥ = k, i.e. k is perfect, since in this case A(k®) is divisible, hence
an injective object in the category of abelian groups. (Additional arguments need to be made
in the imperfect case.) We may also write Ext'(Qy/Z¢, N (k*)) = Ext*(Q¢/Z¢, N(k*)), since
any homomorphism from Q/Z, must land in the ¢-primary part.

We also consider the exact sequence 0 — Zy — Q¢ — Q¢/Z; — 0. Applying Hom(—, N (k%),)
to this exact sequence, all of the Ext’(Qg, N(k*);) terms vanish because Qy is (-divisible, so
we get Ext' (Qg/Zg, No(k*)) = Hom(Zg, N (k*)¢) = N(k*)g, yielding the lemma. |

We prove Theorem [25.1

Proof. 1. Let f € End(A), and let |deg(f)|¢ be the f-adic valuation of deg(f) on Qp
(normalized so that |[¢|, = 1/¢). If f is not any isogeny, then deg(f) = 0, and Tp(T)
cannot be invertiblﬂ so det(Ty(f)) = 0 too. Otherwise, if f is an isogeny, then

| deg(f)]e = [#(ker(f))e(k*)le

since the f-torsion part of ker(f) is étale. By Lemma the right hand side is
| det Ty (f))|s—the determinant of a lattice endomorphism measures how large the cok-
ernel is. Therefore, for all f € End’(A) ® Q;, we have | degq, (f)]e = | det(Te(f))le-

But we want more than this: we want actual equality, not just equality of ¢-adic
norms. To get this, we may write Q; ®z End(A) = [[, D; a a product of finite
dimensional simple algebras over Qg; let K; be the center of D;. The maps degg,, det :
End(A) ® Q¢ — Qg both define norm forms, so by Proposition they are each of
the form

degg, (1, .-, an) = [ [(Nmy, g, oNmY, ) 5,) " (cvs)

7

det(ay,...,ap) = H(Nsz’/Qz ) Nm%i/m)wi(ai)

i
for some v;, w; € Z~o. We already proved that

|degg, (1, .., 4y, 1)]e = [det(1,.... 0, .... 1)

9 Taking a decomposition of A into simple factors, f must kill one of the factors, hence Ty (f) kills the
corresponding factor in the corresponding decomposition of Ty (A).
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(taking the endomorphism to be the identity on all components except one, where it

is multiplication by ), so
|(Nmg, /g, oNmp, /)" (€)]e = [(Nm, jg, o Nmp, /5, ) (£) e

for all 4. so that v; = w; for all i, hence det = degQ,. Since Nmg, /q, ONmODi/Ki is
homogeneous of positive degree, (Nmg, /q, © Nm%i / ) (£) has positive (-adic valuation,
so we conclude that v; = w; for all 4, yielding equality of degg, and det.

2. Since P(n) = deg([n]Ja — f) € Z for all n, we conclude that P(x) is a numerical
polynomial, so in particular P(z) € Q[z]. End(A) is finitely generated over Z, f
is satisfies some monic integer polynomial, so T;(f) also satisfies an integer monic
polynomial. We conclude that all eigenvalues of Ty(f) are algebraic integers. This
means that P(z) is a monic polynomial with Q-coefficients and algebraic integer roots.
Therefore the coefficients of P(x) must actually lie in Z, since P(x) is a product of
powers of the integral minimal polynomials of its roots.

|

25.2 Welil pairing

Definition 25.1. We let Zy(1) denote the Tate module of the multiplicative group:

Z((l) = Tg(Gm) = @ugn.

n

This is a rank 1 free Z,-module with Galois action by the cyclotomic character.

Definition 25.2. Let M be a finitely generated free Z,-module with a Gal(k®/k)-action.
The Tate twists of M are

M(n) =M Xz, Z@(l)®n

for n € Z>o, and M(n) := M ®z, (Z¢(1)V)®~" for n < 0. (Here Zy(1)Y is the rank 1 free
Z¢-module with Galois action by the inverse of the cyclotomic character.)

We want to construct the Weil pairing, which we want to be a pairing Ty(A) x T;(AY) —
Zy(1) that is nondegenerate, Z,-bilinear, and such that if ¢ is a polarization, then com-
posing (id, ¢¢) : Ty(A) x Ty(A) — Te(A) x Ty(AY) with the Weil pairing gives a sym-
plectic form Ty(A) x Ty(A) — Z¢(1). In particular, the pairing defines an isomorphism
Ty (AY) = (Ty(4)" (1),

Recall that AV[("] ~ (A[f"])V, so we already get a nondegenerate pairing A[¢{"] x
AV — pen for each power of £. We need to verify that this pairing is compatible with the

inverse limit defining the Tate module. That is, we want the following diagram to commute:

A" x AV[0"] ———

oed] i

A[ﬁ"-"_l} X Av[gn—i_l] — Uyn+1

To do this, we will give a more explicit description of Cartier duality.
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Let f: A — A be any isogeny, let z € (ker f)(k), and let £ € (ker fV)(k), which means
that there exists a trivialization § : f*.Z ~ O4 (choose one arbitrarily). There is a natural
isomorphism t;O4 — O4 sending 1 — 1@ we denote this with equality. Recall from the
proof of (ker f)¥ ~ ker(fY) that we have

ey o,

|
Pt Oa

| -
[z
Note that f(x) = e € A, so we obtain a certain automorphism 7*80 37! : Oy — 04, which
must be an element of k. Note that this morphism is independent of the choice of 3, since

any different choice 8 : f*.Z — 04 differs from 8 by another constant. We claim that the
pairing from Cartier duality is given by

ef(z,2)=t;B0B " €k
Verifying that this indeed the pairing we got from the proof of Theorem amount to
unwinding the descent datum we defined there; we omit these checks, but it is a good
exercise in descent theory to work this out.

The Weil pairing concerns the case f = [n]. With the explicit description in hand, we
can show compatibility with the inverse limit in the Tate module:

Lemma 25.3. Let ¥ € AY[m](k) C AY[mn](k) and = € A[mn](k). Then we have
emn (2, L) = em(nx, £). In particular,

eon (02, 0.L) = epnir (2, 0.L) = egnsr (z, L)*

when z € A[(" 1) (k), £ € AV["HY (k).

Proof. Pick an isomorphism 8 : [m|*¥ — O,4. Then we also get an isomorphism [n]*3 :

[mn]*Z = [n]*[m]*Z — Oy, so using the explicit description we may write

emn (@, 2) = t5([n]*B) o ([n]"B) ™"

(Here we are treating e, (nz, %) € k* as an automorphism of O, for this notation to

make sense.) [ |

20In general, if f : X — Y is a morphism and .% is a sheaf on Y, then we get a natural map
(Y, #) — T(X, f*%) defined affine-locally by s — s ® 1, using the identification f*M = M ®4 B when
X = Spec B,Y = Spec A. The canonical isomorphism 704 = O 4 we are using is the one induced by this
map on global sections.
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On the homework, you will show that if f : A — B is any homomorphism, then
eose (To(f)x,y) = epso(x, Te(f¥)y). That is, the dual (in the abelian variety sense) is the
adjoint for the Weil pairing.

26 Weil pairing continued (03/18/2024)

26.1 Alternative description of the Weil pairing

Let .Z € AY[n](k). Because abelian varieties are smooth, we may write . = O(D) for some
WEeil divisor D on A, and we get a corresponding embedding i : . < 4 into the constant
sheaf of rational functions on A. (We think of sections of £ as meromorphic functions
having poles “at worst of order D.”)

For z € A[n](k), we get

Hoa = [0 Hs o "2 L0,
where 3 : [n]:.¥ — Ox is a choice of trivialization. Then g := [n]*i o 371(1) is a ra-
tional function on A. By definition, div(g~!) = [n]~'D (preimage of the divisor D with
multiplicity).

Recall from the previous lecture that e, (z,.#) may be computed as 7230371 € k*. We
claim that this constant is % for all z € A, independently of the choice of z € A; this is
the generalization of how [Sil09] §3.8] defines the Weil pairing in the case of elliptic curves.
Indeed, we can pin down the constant e, (z,.#) by evaluating the action of 7730 7% on
any nonzero test function in .# (this endomorphism of O4 yields an action K(A) at the

generic point). We test on the constant function 1:
B0 TH1) =

26.2 (Anti)symmetry of the Weil pairing

We notate epee = 1&nn e¢n. This is a Z-linear nondegenerate pairing. We will notate the

group law on Zg(1) = ppe additively for the rest of this section.

Theorem 26.1. [Mum08, IV.20, Thm. 1] For all line bundles .Z’/A, the pairing

idxTe ()
—_—

EZ :Ty(A) x T,(A) Ty(A) x Ty(AY) =25 Zy(1)

is alternating. In particular, if ¢ is an isogeny, e.g. if .Z is ample, then E< is a

symplectic form (alternating and nondegenerate).

. .

Proof. We want to show that E< (x,2) = es (v, Te(¢.2)x) = 0 € Zy(1) for all x € A[¢"]—it
suffices to prove this for all finite n. Write £ = O(D). Then

bp(x)=t: 2oL ' =0t:D - D)= 0(t_,(D) — D)

Let g be as in the explicit description of the Weil pairing above. Then div(g~—!) = [(*]~1(t_, D—
D). We need to show tig = g, i.e. g(z+ x) = g(2).
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Pick y € A(k) such that "y = x. Then div(g~!) =t_,([("] 1D — [¢("]~'D), and

-1
div ( 11 tz;,<g1>) — t_.(¢"]'D) - ["]'D
=0

fl;lt;‘y(gfl)) is some constant

because z € A[¢("](k). We conclude that h(z) := div([]
function, so in particular h(z + y) = h(z), so g(z + z) = g(2). ]

For all ¢ : A — AV, we get a Z-bilinear form E? = egoo(—,Ty(¢)(—)). Then E? is

skew-symmetric if ¢ is a polarization.

Theorem 26.2. [Mum08, IV.20, Thm. 2 + IV.23] Let ¢ : A — A" be a homomor-

phism. The following are equivalent:
1. ¢ is symmetric (recall Definition .
2. E? is skew-symmetric.
3. 2¢ = ¢ for some line bundle .Z/A.

4. Over k, ¢ = ¢ for some .’/ Az

Proof. We will only do some of these. For (3) = (4), see [Mum08| IV.23, Thm. 3, p.214].
We already did (4) = (1) in Proposition[20.2 and (4) = (2) in Theorem 26.1] We will
prove (1) = (3) and (2) = (3).

On your homework, you will show that if f : A — B is a homomorphism, then
eose (To( )z, y) = eps (2, Te(fV)y). If £/B is a line bundle, then there is a commutative
diagram

A%B

l‘i’f*z Lﬁ:f

AY o B
so B % (z,y) = EZ(Ty(f)(x), Te(f)(y)). We also know that (A x B)Y = AY x BY, so in
particular (A x AV)Y = AV x A, and Ty(A x B) = T;(A) x Ty(B). Let P be the Poincaré
line bundle on A x AV.

Lemma 26.3. E ((z,2V), (y,y")) = e~ (2,9") — epe(y,2V) for all 2,y € Ty(A)
and zV,y" € Typ(AY).

Proof. Tt suffices to show E¥ ((z,0), (y,0)) = 0 = E¥((0,2), (0,y")) and E¥ ((x,0), (0,y")) =
€g (1"7 yV)
For the first claim, we have

idxe, v
A—2 Ax AY
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so E¥((z,0),(y,0)) = E94(z,y) = e~ (x,0) = 0; for the other part, use (e x id) : AY —
Ax AV,
For the second claim, we have

pp: Ax A 5 (AxAY)Y =AY x A
given by (z,z") t(m,zv)PQ@P_l > (t5. %V, ) via the restrictions AX eav,eq X AY. Then
EP(2,0),(0,5")) = er=((2,0), (y,0))
= er=(2,y")
on A. |

(1) = (3): Given ¢ : A — AV, set £ := (id x ¢)*P. For x € A, we have

¢z () = (1x¢)" 0 ppo (1l x ¢)(z)
= (1x )" (¢(x), )
= o(x) + ¢(x) = 20(x).

so .Z is the line bundle desired by (3).
2) = )

EZ (z,y) = EP(Tu(1 x ¢)(x), Te(1 x ¢)(y))
= e (@, Te(0)y) — evee (y, Te(d)(x))
= E¢($,y) - E¢(y,.7;) = 2E¢(m,y)

where the last step uses the fact that E? is skew-symmetric. Since ey~ is nondegenerate,
we conclude that ¢ = 2¢. [ ]

Remark 26.4. The image of NS(A4) = NS(A4;) — Hom(Ag, A%) is exactly the
sub-Z-module of symmetric homomorphisms. Recall that this embedding is given
by sending a class [Z] in NS(A) = Fl,aiic%(é‘)) to the homomorphism ¢g : A — AV.
Theorem [26.2] shows that the ¢« are precisely the symmetric homomorphisms A —
AY.

26.3 Rosati involution revisited

Definition 26.1. Given a polarization A : A — AV, we define the Rosati involution (—)*
on End’(A) by

st:)\ilod)o)\

for ¢ € End’(A).
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Remark 26.5. In this definition, A™! and ¢ are quasi-isogenies; multiplying by a
sufficiently large integer makes these into genuine isogenies. However, if A is a princi-
pal polarization, then the Rosati involution restricts to a well-defined endomorphism
on End(A).

Remark 26.6. The Rosati involution depends on the choice of A. However, if Ay =
Mg o f for some nonzero f € End’(A) with corresponding Rosatis 11,12 (so f €
End®(A)*), then

¢ = floglof

so the two Rosatis differ by conjugacy.

27 Albert’s classification (03/20/2024)

27.1 Facts about the Rosati involution
For any choice of polarization with associated Rosati involution, and any ¢, € End®(A):
o (p+u)f =l +of

o (po)t =T ol (for this reason the Rosati involution is sometimes called an anti-

involution)

Theorem 27.1. (Positivity of the Rosati involution.) For all nonzero ¢ € EndO(A),
we have

Tr(p o pt) = Tr(p' 0 ) > 0.

Here the trace is the usual trace on endomorphisms of the Qg-vector space Tp(A)RQy.
When A is simple, so that D = End®(A) is a division algebra, then this trace is the
reduced trace map Tr = Trg /g o Y /K Where K is the center.

Proof. WLOG k = k, and let A be the choice of polarization. Then A = ¢¢ for some ample
Z. Replacing . with a power of itself gives ¢ we» = [n]o ¢, and this factor of [n] cancels
itself out in the Rosati involution. Therefore we may assume £ is very ample and write
¥ = O(D) for an effective divisor DE

We claim that

Tr(po o) = (D7 (D))

21Tt turns out that all ample line bundles are already of this form, i.e. Theorem actually accounts
for all ample line bundles, but we never proved this.
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expressing the trace as an intersection product. This claim gives the theorem because
o (D) is also effective and D comes from a very ample line bundle, so the intersections
D97 t.o~(D) and (DY) are positive integers. (This is more or less point counting when we
cut down an effective divisor by hyperplanes.)

To prove the claim, we extract the trace from the characteristic polynomial of ¢! o ¢.
We have

deg([n] 0 bz — ¢pr ) = deg([n] 0 pr — 9" 0 pr 0 )
= deg(¢z o ([n] — ¢ 09" 0 bz 0 )
= deg gz - deg([n] — ¢} 0¥ 0 pr 0 p)
= deg ¢z - deg([n] — ¢ 0 )

The term deg([n] — ¢! o ¢) is the characteristic polynomial P(n) of ¢f o ¢ on Ty(A) by
Theorem 25.1] By the Riemann-Roch Theorem, we may rewrite the above as

_ deg([n]0 2 — dyo)

Pln) dog bz
B X((b*.iﬂ_l ®$®n)2
B x(£)?
_ (<nD - wl(D))9)2
(D9)
= (D19)2 (nYDY — gnglegflgofl(D) + ... )2
_ n9 _ 291 2g- D9 'p~1(D)
= (D%) (D%) + ...

We use part (3) of Theorem to get from the first line to the second line, and we use
part (2) to get from the second line to the third; note that in the third line, the additive
notation refers to addition in the group of Weil divisors, over which the intersection product
distributes. We extract the trace from the n29~!-term in the last line: it is %,

as desired. ]

27.2 Endomorphism algebras of simple abelian varieties

Let A/k be a simple polarized abelian variety, let K be the center of D, and let Ky := {z €
K : 2" = 2} be the fixed subfield of the Rosati involution.

Lemma 27.2. K, is totally real and either K = Ky or K is a quadratic totally
imaginary extension of Kj. (In the latter case, this means K is CM.)

Proof. (Sketch.) Split Kg®@R =Rx---XxRxCx---xC into the product of the archimedean
places of K. Total reality of Ky is equivalent to having all terms in this product be R.
Since 2 = x on Ky, we get Tr(za') = Tr(z?) =: ¢(x) is a quadratic form, where we view
Ky as a Q-vector space. By continuity on Ky ® R and positivity of the Rosati involution
restricted to Ky, gr is positive semidefinite. The kernel of ¢(z) is trivial and defined over

Q, so the kernel of ggr is also trivial, so gr is nondegenerate. Hence ggr is positive definite.
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If there are any factors of C in the decomposition of Ky ® R, then taking z = (0,0,...,0,1)
yields gr(x) = —1, so we conclude that there are no copies of C in Ky ® R.

Since K is a subfield of K fixed by an involution, we either have [K : Ky] =1 or 2. If
this extension is of degree 2, then write K = Ky(y/a) for some a € Ky, \/a € Ky. Then
(va)t = —\/a. Suppose embeddings i1,is : K — R exist with i;(v/a) = —iz(v/a) (iff K is
totally real). Then, restricting to the factors R x R of K ® R corresponding to i1, 2, we get

Te((z,y) - (z,9)") = Tr((2,y) - (y,2)) = 2ay.

But this is certainly not always positive, so we conclude K has no real embeddings if
[K : Ko =2. |

Definition 27.1. Let D be a non split quaternion algebra over a totally real field K = Kj.

The standard involution on D is z* = Tr%/K T — .

Example 27.3. If we write D as H(a,b), so that D has K-basis 1,4, j, k with i2 =
a,j? =b,ij = —ji = k, then the standard involution is z + yi + zj + wk — = — yi —
zj — wk.

Theorem 27.4. (Albert’s classification.) [MumO8, TV.21, Thm 2], [EvdGM24, §12.4]
Let D be a division algebra of Q with center K equipped with a positive involution
(=), and let Ky be the totally real subfield of K fixed by Kj.

e TypeI: D = K = Kj is a totally real field and (—)' is the identity map.

o Type II: K = Ky, and D is a quaternion algebra over K with D ®g R =~
[ g M2(R) (we say D is totally indefinite over R). Under an appropriate
choice of such an isomorphism, (—)' is given by transposition of matrices:
(X1,...,Xe) — (Xt,...,X!). Letting z — z* be the standard involution
on D, there is an element a € D with a2

2t = az*a=?! for all z € D.

€ K totally negative such that

o Type III : K = Ky and D is quaternion algebra over K with D ®g R ~
H (Hamilton quaternions; we say D is totally definite over R). The Rosati
involution ' = 2* is exactly the standard involution.

e Type IV: K is CM with totally real subfield K. For all finite places v of
K, we have inv, (D) + inv.,)(D) = 0, and moreover inv,(D) = inv.,(D) =
0 if v = ¢(v), where inv, is the Hasse invariant of the class of D in
Br(K,) = Q/Z and c denotes complex conjugation. There exists an isomor-
phism D®gR ~g,¢/ conjugation Ma(C) such that the Rosatiis (X1,..., Xe,) =
(Yﬁ, . ,YZO), where eg = [Kp : Q).

Unfortunately, we will not have time to prove Albert’s classification in this course; see
Mumford for a full proof. We will see next time that the subspace of End"(A) fixed by
Rosati (denoted End’(A)") is related to the Néron-Severi group.
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28 Applications of Albert’s classification (03/22/2024)

28.1 Restrictions on End"(A)

Let A/k be simple of dimension g. With notation as in Albert’s classification, write e =
[K : Q],ep = [Kp : Q] (so that either e = 2¢y or e = ¢p), and d = /[D : K] (always an
integer). We will show that the types in Albert’s classification impose various restrictions,
listed in Figure|ll (We only consider the last column when k = k.)

dimg NS ®20

Type | e char0 | char >0

d Timg End(4)
I ey | 1 elyg elyg 1
11 eo | 2| 2¢]yg 2e g 3/4
11 eo | 2] 2]y elg 1/4
IV |2 | d]ed®|g]| ed]|g 1/2

Figure 1: Numerical restrictions on End"(A)

Remark 28.1. If k = k, pick a polarization A : A — AY. Then NS(4) ® Q em-
beds into Hom(A4,AY) ® Q ~ End’(A)—using A to get this isomorphism—as the
submodule of symmetric homomorphisms; see Remark

Let N € NS(4) ® Q «— End"(A). Write N = Ao f for some f € End’(A). Since
N A — AV is symmetric, i.e. (N)Y = X, we obtain Ao f = fY oA ie. f =
fT (taking the Rosati with respect to ). This logic is reversible, so we identify
NS(A4) ® Q = End’(A)' (submodule fixed by 1).

Remark 28.2. In general, we do not know whether all (D, 1) with the dimension
restrictions required by Figure [I| show up as the endomorphism algebra of some
simple abelian variety. However, in characteristic 0, we do have a full answer: we
always get every possibility of type I and II, and we get all possibilities for type III
when g/2e > 3, and for type IV with g/eqd? > 3. For type III with g/2e < 2 or type
IV with g/egd? < 2, Shimura gives a more precise answer.

Recall that in characteristic 0, WLOG &k C C, we know End’(A) C End’(Ac). Under
this embedding, End’(A) is a Q-simple division algebra with d?e | 2¢ that acts faithfully on
the singular cohomology group Hsling(A((C), Q) ~ Q%.

We deduce some of the restrictions in Figure [I| from the following three results.

Lemma 28.3. Let k be any field and let A/k be a simple abelian variety. Then,

with notation as before, we have de | 2g.

Proof. Write D = End®(A) with center K. Recall that the degree function deg: D — Q is
a homogeneous polynomial function of degree 2¢g, and it is a norm form. Any norm form on
D is of the form (Nmg /g on%/K)m for some m € Z>o. The homogeneous form Nm%/K,

which is descended from a determinant map on a d-dimensional vector space, has degree d,
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and the form Nmp g has degree e, since the norm form on a degree e field extension always

has homogeneous degree e. Hence med = 2g. |

Proposition 28.4. Let L be a subfield of D fixed by Rosati. Then [L : Q] | g.
Hence, with notation as before, eq | g.

Proof. Let L C NS(A;) = End’(A;)T. Write the chosen polarization A : A — AV as
A = ¢ for a line bundle .Z/A;. By Theorem [26.2} under this identification every element
of NS(Ajz) is of the form ¢ 4 for some line bundle .#, so it makes sense to define f :

NS(A) @ Q — Q by ¢ — ’;((fg)) (extend by Q-linearity). Recall by Riemann-Roch that

X( A2 x(ZL)? = %. Since x is a homogeneous polynomial function of degree g, we

deduce f = x(#)/x(Z) is a norm form. (The sign ambiguity is resolved by testing the

case .# = £.) Using the reduced norm form on . in Nmy, /g, we have [L : Q] = g. |

[ Lemma 28.5. If char(k) = 0 and A/k is simple, then ed? | 2g. ]

Proof. (Sketch.) By finite generation shenanigans and the fact that dimg End®(X) divides
dimg End”(X/k), without loss of generality we may assume k = C. Then End®(A4/C) acts
on H;(X(C),Q), and this action must be free since End’(A4/C) is a division algebra, so
dimg End®(A) = ed? divides dimg H; (X (C),Q) = 2g. [

We assemble these results to get the divisibility requirements in Figure[l] First, we note
that the last column of Figure [1| can be deduced by identifying NS(A4) ® Q with End’(A)*
and using the explicit descriptions of + on D ®g R in Albert’s classification.

e For type I, we have e = g, so Proposition m gives e | g.

e For type II and III, we again have e = ey. In any case, Lemma m gives 2e | 2g,
hence e | g. In characteristic 0, we moreover get ed? = 4e | 2g by Lemma hence
2e | g. Finally, to deduce 2e | g also in the type II case of positive characteristic, we
have

NS(A)®Q  dimgEnd’(4)" 3

dimg End®(A)  dimgEnd’(4) 4

Since [D : K] = 4, we conclude there exists o € End’(A4)! \ K. For such a, the field
L := K(«) satisfies the hypotheses in Proposition m Since by the tower law we
must have [L : K| = 2, Proposition 28.4] gives 2e | g.

e For type IV we have e = 2eg, so in characteristic 0 Lemma gives 2ed? | 2g, hence
ed? | 2g. In positive characteristic, we only get 2ed | 29 = ed | g by Lemma m
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28.2 Examples in dimensions 1 and 2

Example 28.6. Let F be an elliptic curve. In characteristic 0, the endomorphism

algebra of an elliptic curve is commutative, so the only possibilities are:
e Type I with e = 1 and End’(E) = Q

e Type IV when E has complex multiplication, with d = ey = 1 and End’(E) a

quadratic imaginary field.
In positive characteristic:

e Type I cannot happen if E is defined over E, (equivalently, over a finite field),

since we get a Frobenius morphism. But it can occur when F is defined over,
say, F, ().

e If F' is ordinary and defined over Fp, then it is type IV with eg = d = 1, since an
appropriate power of the Frobenius morphism 7 does not lie in Z C EndO(E).

e Type II never occurs, since we cannot have 2¢ | g if g = 1.

e Type III occurs with e = ¢g = 1 and End’(E) a quaternion algebra ramified
only at oo and p. This is the case of a supersingular curve (necessarily defined

over F)2). To see the ramification conditions, we have for £ # p
D ®q Q¢ — EndGal(E/k) (TE(A) ® Ql)

is actually an isomorphism, since the left side has Qy-dimension 4 and the
right side has Q; dimension at most 4, hence exactly 4. This also implies that
the Galois action is by scalars, since these are the only endomorphism that
commute with everything. This gives D ®g Q¢ ~ End(T;(4) ® Q) = M2(Qy).
Since we are assuming that D is ramified at oo, it must also be ramified at
p, since the sum of the Hasse invariants must be 0 by the exact sequence of

Brauer groups from class field theory.
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Example 28.7. Let A/k be a simple abelian surface. In characteristic 0:
e Type I: Then either

— e =1 and End’(4) = Q. In the moduli space of polarized abelian sur-
faces Aj, this is the “open piece” away from a countable union of loci of

dimension < 2.

— e = 2 and End’(A) is a real quadratic field, and the moduli locus for a

fixed order in a field has dimension 2.

e Type II: ¢ = 1 and End’(A) is a quaternion algebra split at oo, with moduli

locus of dimension 1.
e Type III would require e = 1, but this case never occurs by a result of Shimura.
e Type IV:

— eo = 2: This is the case of CM abelian surfaces, where End”(A) is a degree
4 CM field.

— eg = 1: This case cannot occur if k = k. If it did, then WLOG k = C and
EndO(A) would contain a product of quadratic imaginary fields, which
implies that A = E? for an elliptic curve E, contradicting simplicity. But
it can occur for non-algebraically closed fields. For example, over Q, we
can take the Jacobian of y® = x(x — 1) modulo a copy of the Jacobian of
y* = x(x — 1); this has an action by Q((g).

Part 111

The Main Theorem of Complex
Multiplication

29 Néron models (04/01/2024)

Let R be a discrete valuation ring, e.g. Zj, let K := Frac(R), and let k be the residue field

of R. Let A/K be an abelian variety.

Definition 29.1. A Néron model o/ of A over R is a smooth separated R-scheme of finite

type such that:

1. o ~ A;

2. (Néron mapping property) For every smooth R-scheme 2 and a K-morphism wug :

X = Zx — A, there exists a unique map u : 2 — & extending ug.
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Remark 29.1. The Néron mapping property is a universal property, which implies

that Néron models are unique up to unique isomorphism if they exist.

Remark 29.2. The formation of Néron models commutes with étale base change,
i.e. if & is a Néron model of A and Spec R’ — Spec R is an étale morphism of DVRs
(e.g. an unramified extension of p-adic rings of integers), then &g/ is the Néron

model of Apyac(r). Unramifiedness is important for preserving smoothness.

Proposition 29.3. Let <7 /R be an abelian scheme. Then &/ is the Néron model of
A = .

Proof. We need only verify the Néron mapping property. Let £ be a smooth R-scheme with
X = 2k, and let X — A be a K-morphism. It suffices to demonstrate the Néron mapping
property for a finite-type connected open subscheme of X, since then the uniqueness of the
Néron mapping property and separatedness of o/ implies that the morphisms agree and
glue, so we may assume £ is finite type. Because everything is finite type, we may spread
out to obtain an R-scheme % C 2 such that #x = X and # C 2 is open dense and such
that there exists a unique morphism % — o that base changes to X — A.

We would like to extend the map % — & to a rational map 2 --» & defined in
codimension 2. Let 1 be a generic point of Z} (which is possibly reducible). Then Qg ,, is
a DVR. Since &/ — Spec R is proper, by the valuative criterion applied to Frac(Ox,,) — A,
there exists a unique morphism Spec O, — &/. This glues with our previously defined
morphism % — & to yield a rational map 2" --+ & defined in codimension 2.

Theorem 29.4. (Weil, [BLRI0, §4.4., Thm. 1], [Mil10, Lem. 6.5]) Let R be a DVR,
let G be a smooth separated R-group scheme, and let Z be a smooth R-scheme with
a rational map f : Z --» G defined in codimension 1 (i.e. the locus where f is not
defined has codimension at least 2). Then f: Z — G is actually defined everywhere.

Proof. (Sketch.) Consider F': Z xp Z --» G : (w,y) — f(x)f(y)~!. The f being defined at
a point x is equivalent to F' being defined at (x, z)—the reverse implication holds because
if F'is defined on (x,U), then there exists Uy C U such that f is defined on Uy, so that we
may set f(x) = F(z,y)f(y) for any u € Up.

Theorem 29.5. (Algebraic Hartog Theorem.) If Spec A is a normal scheme, then
A =), . 1 Ap, where the intersection is taken inside Frac(A) over all height 1 prime
ideals of A.

We have F is defined at (z,z) if Og . — K(Z x Z) factors through Oz z (5.). This

gives the theorem because F is defined on codimension 1. |

From Weil’s theorem, we conclude that 2  --+ & extends uniquely to a map £ —
o . |
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Corollary 29.6. Let o/, % be abelian schemes over R, with A := &/, B := Bk.
Then Hompg g, (27, &) ~ Hom(A, B) via f — fk.

Proof. Since & is the Néron model of B and ./ is smooth, the Néron mapping property
supplies a unique extension F': &/ — 2% to any homomorphism f : A — B. To see that this
is again a homomorphism, we again apply the Néron mapping property to the morphism
Ax A— B:(a1,a2) — f(a1 +a2) — f(a1) — f(az), which simultaneously lifts uniquely to
the trivial map & X & — % but also to F(x1 + 23) — F(z1) — F(x2). |

Theorem 29.7. [BLR90, §1.3, Thm. 14+§1.2 Prop. 6] Any abelian variety A/K ad-
mits a Néron model o/. Moreover, &7 is a smooth R-group scheme, and ([BLRI0,
§7.4, Thm. 1]) there exists a finite extension L/K such that the Néron model of A,
has semiabelian neutral component (an extension of an abelian variety by copies of
Gnm)-
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30 Proof of the Shimura-Taniyama formula (04/03/2024)

We began this at the end of lecture on 4/01, but most of the proof was done today.

s ~

Theorem 30.1. Let K be a number field, and let A/K be a CMAV with CM by
(E,®). Let p be a prime of K and let k = O /B. Assume that:

e K contains the Galois closure of F

e P is a prime of good reduction for A, i.e. the Néron model &/ /Of,, is an

abelian scheme [T
o Kg3/Qy is unramified, so that End(A) N E = Og.

Recall the Frobenius maﬂﬂ Frob : @, — & sending a function f +— f9, where
q = #k. Then:

1. There exists 1 € Og such that Frob = m, i.e. under the embedding O C
End(A) ~ End(%) — End(%).

2. For aplace v | p of E and a fixed algebraic closure Q,, write H, = Hom(Ev,@p),
so that Hom(E,@p) = Hvlp H,. A fixed embedding @p — C induces a bijec-
tion Hom(E,Q,,) = Hom(E, C), yielding an identification Hom(E, C) = [ H,.
Therefore it makes sense to define @, := & N H, C Hom(E, C).

Then with 7 as in part (1), we have

(m) = [] ¢ Nmk /o) B)

ped

where ord, is the normalized discrete valuation on FE,,.

%We know a Néron model always exists. We showed previously that if <7 /R is an abelian scheme,
then it is the Néron model of A/K, but the converse does not hold: it is possible for the Néron
model of A/K to fail to be an abelian scheme, and this is what bad reduction captures.

bThis is simultaneously the absolute and relative Frobenius.

We will soon see that CMAVs have everywhere potentially good reduction. We may
always pass to a finite extension K’/ K that yields good reduction, so the restrictions imposed

in our version of the formula are easily sidestepped.

Proof. For (1), we show that the reduction map End(«/) — End(%) is injective.

Lemma 30.2. For (m,p) = 1, we have A(K)[m] = A(Ky)[m] = . (k)[m]. In
particular, the reduction map induces a natural isomorphism Ty(A) ~ Ty(<;) when
¢ # p, and this identification is compatible with the Galois action of the decom-
position group Dy of PB. Here, we identify Dy /Iy C Gal(k/k), where Iy is the
inertia subgroup, noting that the action of Dy /Iy on Ty(A) is well-defined because
the ¢>°-torsion subgroups are defined over K"'.

. J

Proof. By the Néron mapping property, A(K%r) =0 K%r), and we have a reduction map
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A (Oxy) = (k). The map A(KE) — (k)[m)] is bijective by Hensel’s lemma and the
fact that [m] is étale on o7 (since [m] is given by multiplication by m on the Lie algebra).
Therefore, we have #A(K)[m] = . (k)[m] = m?> 34 = #A(K)[m], so all of the

m-torsion points are unramified. |

Corollary 30.3. If A/K has good reduction at 9, then End(A) = End(&/) —
End(«7) is injective.

Proof. If an endomorphism ¢ on End (<) has image contained in the kernel of the reduction
map &/ — &, then by Lemma m the image of ¢ has trivial intersection with o7 (K )[m)]
when (m,p) = 1. This means that ¢ kills the Tate module Ty(%/) for ¢ # p, hence the
corresponding endomorphism of A also kills T;(A). But we already know that the map
T, : End(A) — End(T(A)) is injective from Theorem 24.1] |

We prove (1) in Theorem We have End(A) = End(«) — End(%%), so we obtain
an embedding E C End”(¢%,) and

E®Q C End’() ® Q = Endg i) (Te() @z, Qo).

Ty (%) ®z, Q¢ has Q-dimension 2dim A, but F ® Qy is also a Qg-algebra of Q,-dimension
2dim A. We conclude Ty(#,) ®z, Qp =: Vi(o#) is a free rank 1 E ® Qp-module. Hence
Frobenius is an F ® Qy-linear endomorphism on a free rank 1 E ® Q-module, so it must
be scalar multiplication by some element of E ® Q,. Frobenius also lies in End(<%), so it
must lie in (F ® Q) N End(%,) C Of. Therefore we may identify it with some 7 € Op.
For part (2), since [q] factors through Frobenius on 7, (see Proposition 7 we may
write (m) = [[,,py"" as a product of prime ideals dividing p. Let h = # CI(E) be the
class number, so that p™+" is always principal, say equal to the ideal (v,) with v, € Og.
Consider 7, : &, — o, using O — E — End(«). We want to compute deg~,.

Lemma 30.4. For all @ € Og, the morphism « : @}, — % has degree Nmg g(a).

Proof. Consider a acting on Vy(#%) ~ E ® Q. Then dega = det(aly,(w,)) = Nmg/g(a).
Here, we use that the determinant of multiplication by « on the field extension F, treated

as a Q-linear endomorphism, is by definition the norm of a. |

By the lemma, we conclude that degvy, = Nmpg/q pe . since the ideal norm is compat-
ible with the field norm.

Lemma 30.5. Let & = k have characteristic p, let ¢ = p™, and let f : A — B be
an isogeny of AVs over k such that a*(k(B)) D k(A)? (fields of fractions). Then
deg f < q%, where d = dimker(f : Lie A — Lie B).

Proof. Sketch; see also Thm. 11.29] and §7). The proof idea is that ker f is
a local finite group scheme over k. Such a scheme always has coordinate ring of the form

klzq, ... ,acn]/(xﬁ’r1 v, 2P with r; < m (we saw something similar in the height 1 case in
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Lemma the general case follows by induction). Then deg(f) = [[i—,p" < p™™ = ¢"
for n = dimker(Tyf) = dimker(« : Lie A — Lie B) = d. [ |

By what we know from the analytic setting, Lie A admits a K-basis (e,),ca such that
any a € E act by a-(e,)pce = (p(a)ey)pecan. Since Ky /Q, is unramified, Lie o7 also admits
such an Of,,-basis (e,),ca, since unramifiedness gives

Op@z0ky = P Oy,
0:E— Ky

hence Lie o7, = Lie dOfos ® k has k-basis (€,),ca and
ker(y, : Lie @, — Lie #,) = Span{e,, : ¢(v,) € B}.

We have assumed that K contains all Galois conjugates of E, so choices of embeddings
Ky — Q, — C identify Hom(F, K) = Hom(F,Q,) = Hom(F,C). Under this identifica-

tion, we get

H, = Hom(E,,Q,) = Hom(E,, Ky) = {r € Hom(E,K) | 7" (B) = p,}
®,=®NH,={pc®|e ' (P) =p.},

where p,, denotes the prime of O, associated to the finite place v. We claim that €, € ker(y,)
if and only if ¢ € ®,. The element v, € O lies in p,, but it cannot lie in any other p,/,
since that would imply p"™ C p,, contradicting unique factorization. Hence, v, € ¢~ (B)
means that ¢~1(B) = p,—this preimage must be one of the p,., and the presence of ~,
rules out all the other possibilities. By our identification of ®,, this gives €, € ker(v,) if
and only if ¢ € ®,. Hence dimker(yy|Lie o7, ) = |®o|, and this is the critical observation that
lets us access the numerator in the Shimura-Taniyama formula.

We apply Lemma to v,. By construction, the ¢"-th power Frobenius 71'1}}1 factors
through 7,, i.e. 7% = a o1, as endomorphisms of . for some other a € Op. Since
() (k()) = k‘(.ssz)qh, essentially by the definition of Frobenius, we conclude that
Vi (k(e%)) 2 k(a%)4". Therefore Lemma yields deg(v,) < ¢"1®+l. Taking h-th roots,

Nmg/qpy” < q'®!

for all v | p. We wish to show that this is an equality. The degree of Frobenius is

deg(Frob) = Nmpq(r) = Nmpg | [[pm | < [[¢® = ¢* = 94,
v|p vlp
noting that [[®, = ®. But we also know a priori that Frobenius has degree at least ¢4i™ 4
by considering its effect on a transcendence basis of k(< ), so the above inequality must

actually be an equality. We conclude

Nmz /g pr = q\fbul _ (NmK/Q fﬁ)l‘pv"
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which equals

Nmg/q H ¢ (Nmg /o) B) | = H(NmK/@‘B)
ped, ped

so in fact pie =[] cq, ¢ H(Nmp /() B). Then finally (2) follows by taking IL,- [ |

Proposition 30.6. Frob o Frob" = Frob! o Frob = [g].

Proof. Let A : A — AY be a polarization defined over F, inducing a Rosati involution f.
Then

Frobir4 oFroby = A~! o Frob oA o Froby = A™! o Frob'j o Frob4v o),

noting that A is Frobenius-equivariant. So it is equivalent to show that Frobx oFrobyv =
[qlav.

We will show this equality on the functor of points. Let T be a scheme and .Z a line
bundle on A x T such that [L] € AV. Write ¢ = p™. Then

Frobuv ([£]) = [(id x F\™)*.2]

FrobY; o Frobv ([£]) = [(Froba xid)* o (id x F\™)*.Z]
= [(Frob 4 x E\™)*.2).

We claim that this is [(£®1].

The endomorphism Frob 4 XF}m) on A x T is its g-th power (absolute and relative)
Frobenius endomorphism over k. In general, a line bundle . on a scheme X is defined
by a collection of trivializing charts U; and cocycles ¢;; describing the transition functions
between charts. If f:Y — X is a morphism, the line bundle f*.# is the line bundle on Y
with trivializing charts f~1(U;) and cocycles f*(p;;). In the case where f is the Frobenius

morphism F' )((m), we have F)((m)’*(oij) = Ufj. After all, cocycles are just sections of the struc-

q
ij

the cocycles of the line bundle #®9 essentially by the definition of the tensor product.
Hence, we conclude [(Froba xF}m))*f] = [£®9]. This means that Frob} o Frobsv acts

by multiplication by ¢ in the group law on the functor of points, hence it also acts so as a

ture sheaf, and Frobenius sends a section to its g-th power. The cocycles o} are precisely

morphism on AY by the Yoneda lemma. ]

31 Main Theorem of Complex Multiplication (04/05/2024)

31.1 Reflex norm

Let (E, ®) be a CM type (E not necessarily a field). We let E* denote the reflex field, which

is always a CM field. We will think of ® C Hom(FE, Q)—recall that we have shown that all
CMAVs are already defined over Q. Let K be a field containing all images of E < Q, so
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that F* C K by Lemma [7.4} if F is a field, then we may take K to be the Galois closure
of E in Q. Then we may write F ®g K ~ ngHom(E K) K,. By Galois descent for vector
spaces, there exists a unique £ ®g E*-module Vg such that Vo @p« K >~ [] cq Kop.

Definition 31.1. The reflex norm Ng : (E*)* — E* is defined by a — det(alv, ), viewing
Vs as a free E-module and aly, as a linear transformation on this space.

More generally, for any K O E*, we have Ng ¢ : K* — E* via a — det(alvyg,-K),
and we have the compatibility Nx o = No o Nmg,g-.

Proposition 31.1. If K contains all images of homomorphisms E — Q, then for all
a € K*, we have Ni.o(a) = [[,ce ¢~ '(Nmg,u(p) a).

\. 4

Proof. See Prop. 1.26]. [ ]

Remark 31.2. Proposition [31.1| gives a more concrete way to think about the reflex
norm. It is similar to the usual norm map, except that instead of taking into account
all embeddings, it only uses the embeddings from the CM type @, giving us only one
half of the usual norm.

Corollary 31.3. For any a € E*, Ng(a)Ng(a) = Nmpg- g(a). In particular, this
element lies in Q. (Here the notation of complex conjugation is unambiguous since
E 5 Ng(a) is CM.)

Proof. Norms are transitive, so Nmpg-/g(a) = Nmg,o(Nmg-,g(a)). We may expand this

as
NmE*/Q(a> = H (P_1<NmE*/<p(E) (a))
LpGHom(E C)
= [ o' Nmp jomy(@) [T ¢ (Nmp- () ()
ped 0ED
= No(a)No(a)
since Hom(E,C) = @] ®. [ |

By tensoring No and Nk ¢ with Q; and R, we get an induced map on ideles
NK@ : AIX( — AE7
which also induces a similar map on fractional ideals.

31.2 Statement of the Main Theorem

Now let A/Q be a CMAV with CM by (E, ®) and reflex field E*. Consider o € Gal(E*/E*).
Let A := A X $pec Do SpecQ, which is again a CMAV with CM by ¢® = & since o fixes
E*. (Recall that the reflex field is precisely the fixed field of all ¢ € Gal(Q/Q) such that
o® = &.) We have a map = — o(x) giving an isomorphism o : A — 7 A compatible with
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the E-action. Since we have two CMAVs with the same CM type, by our classification of
CMAVs (Proposition there exists an isogeny « : A — 7 A compatible with the E-action
that is unique up to multiplication by E*.

The content of the main theorem of complex multiplication is to compare the the two
maps 0 : A — A and o : A — 7 A. The first of these maps arises arithmetically, from the
Galois action, and the latter arises geometrically, from an isogeny of abelian varieties.

To make our comparison, we “adélicize” the Tate module: write T'(A) := [I,Te(A) and
V(A) = T(A) ®z Q. Then the two maps o, : A — ° A induce maps o, : V(A) = V(°A),
which are both E® Ay = A g-linear, where Ay = [ Z, denotes the finite adeles over Q
and A ¢ denotes the finite adeles over E. We have seen previously that each V(A) is a rank
1 free E ®g Q-module, and from this it follows that V(A) and V( A) are rank 1 free Ag f-
modules. Therefore there exists some (o) € Ag’f such that a(n(c)x) = o(z) for all x €
V(A), yielding a well-defined group homomorphism 7 : Gal(Q/E*) — AE f /E*, necessarily
factoring through Gal(E**P/E*) since the image is abelian. (This homomorphism is only
well-defined as a homomorphism to the quotient AE’ f /E*, rather than A}XE’ £ because «
itself is only well-defined up to a multiple in E*.)

From global class field theory, we have the global Artin map

Ap- ;/(E*)* — Gal(E*/E*),

and we claim that the map 7 : Gal(Q/E*) — Ag 7/ E* we have just defined corresponds to
the reflex norm
No: A% /(E")* — A% JEX,

in the sense that the following diagram commutes:

Gal(Q/E*) —— A} ,/E~

7w

Gal(E***/E*) «x— Ap- 1/(E")

Commutativity of this diagram is the Main Theorem of Complex Multiplication.

Theorem 31.4. (Shimura-Taniyama Main Theorem of Complex Multiplication.)
The well-defined map 7 is given by 1(c) = Na(s), where s € Ag. /(E*)* is such
that Artg«(s) = o|g=an.

Equivalently, for any o € Gal(Q/E*), and any s € AF p. with Art(s) = o
exist a unique E-isogeny « : A — oA such that a(Ng(s)-x) = o(z) for all z € V(A).

b, there
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Remark 31.5. Such an s always exists. In contrast to the global function field case,
the Artin map for number fields Artx : A% — Gal(K*’/K) is always surjective.
Its kernel contains K* - Hv‘ « K, where v ranges over the infinite places and K,
denotes the connected component of K¢ containing 1. The field E* is CM, so it has
no real places and the the Artin map kills all of the infinite places in Ag«. Therefore
it descends to a surjective homomorphism Ag. (/(E*)* — Gal(E*2b E*).

In the second statement of the isogeny o depends on the exact choice of s €
A%, 2
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Remark 31.6. Let A : A — AV be a polarization that is compatible with the
E-action in the sense that the associated Rosati involution t induces complex con-
jugation on E. Using the Weil pairing/Riemann form and this polarization, we have
a symplectic map 1 : V(A) X V(A) — Aj(1) obtained by amalgamating all of the
Weil pairings Ty(A) x T¢(AY) — Z¢(1). This pairing is A s-bilinear, and the Rosati
involution again acts as an adjoint for the pairing.

We state one consequence of the main theorem. We choose « so that a(n(c)z) = o(x)
exactly, i.e. adjusting o by a constant in £ so that these two things agree exactly,

not just up to E*. Define another pairing

T V(TA) x V(TA) — As(1)

Equivalently, since o acts on the target of the Weil pairing by the cyclotomic character

X, wWe write

“P(ox,0y) = x(0) - Y(ox, 0y).

The main theorem lets us substitute: if Artx(s) = o, then

(o, oy) = “PY(a(Ne(s)z), a( Na(s)y))
= 79 (Ng(s)No(s)a(x), a(y))
= ”w(NmE*/@(S)Oé(u’U), Oé(y )

= Nmg-/g(s) - “9(a(@), a(y)).

Here we use Corollary to get No(s)Na(s) = Nmpg,q(s)—since this lies in AJT,
we may use the Ag-bilinearity of the Weil pairing. We conclude that 9(x,y) and

(a(x), a(y)) differ by the factor ¢ := N;‘*(/‘z(s).

x(o) “
~ v y) = T(a(@), aly))
Ng-/q(s)
It turns out that the ratio ¢ lies in QZ,. The kernel of the Artin map Art : A; —
Gal(Q**/Q) is Q, since the kernel of “full” Artin map A* — Gal(Q**/Q) (includ-
ing the real place) is the closure of Q* -R+¢. By class field theory, Art(Nmpg q(s)) =
0|gan—this follows from functoriality of the Artin map, which is commutativity of

the diagram

Artg=
=

Ap./(E") Gal((E")**/E¥)

leE* /Q J{res

AX QX —2, Gal(Qb/Q).

Another property of Art : AF — Gal(Q*/Q) is that it sends x(o), treated as an
element of Z C AF, to o|gar. Therefore, since (o) and Nmp- /g(s) map to the same
element under the Artin map, they must differ by a factor in Q%. See also
Rmk. 9.11].
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We will postpone the proof of the main theorem until the end of the semester. Before
doing this, we will discuss another important application of the main theorem. Whereas
much is unknown about L-functions of general abelian varieties, the main theorem lets us
say quite a lot about L-functions of CMAVs. In particular, we get the existence of an
analytic continuation and functional equation by expressing this L-function as a product of

Hecke L-functions; see Theorem [33.5

31.3 Review of the Artin map

See [Ked21l, §6.4] or [Mil20} §I.1, §V.5] for more on the statements of class field theory.

Let K be a number field with maximal abelian extension KP. There exists a map Art :
A% /K* — Gal(K*®/K) known as the Artin map which is a continuous homomorphism
such that, for all finite abelian extensions L/K and all places v of K, the following diagram

commutes:

Artbr,, /1,

K, Gal(L,,/K,)

l l

A% /KX AU Gal(K*P /K) —— Gal(L/K),

where Arty ,x, is the local Artin map, which is the unique continuous homomorphism

satisfying the following properties.
e If v is finite, then

— If m, is a uniformizer of O, and L, /K, is unramified, we have Arty /x, (7,) =
Frob! . € Gal(L,/K,).

— The kernel of Arty, i, is Nmp, /k, (L), inducing an isomorphism KX/ Nmy, /x, (L) —
Gal(L,/K,).

e If v is real, then the composition R* — Gal(C/R) = {£1} is the sign map.
e If v is complex, C* — Gal(C/C) = {1} is the trivial map.

Moreover, for any finite extension L /K, the Artin map descends to an isomorphism Arty,/x :
Ak /(K* -Nm(Ar)) — Gal(L/K).

- )

Remark 31.7. Beware that there are two common conventions for the local, hence
also global, Artin map: one can require it to either send 7, to Frob, ,k, (“arithmetic
Frobenius”) or to Frobii /K,
which agrees with [Mil10] but disagrees with [Con05], so make note of which conven-

(“geometric Frobenius”). We use the latter convention,

tion holds if you are looking at the references, since it changes some of the formulas

slightly.

32 The homomorphism A, (10/08/2024)

We will discuss L-functions of CM abelian varieties and their relationship with Hecke L-

functions. We will make some simplifying assumptions. Let K be a number field, A/K
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an abelian variety with CM by E C EndO(A)7 and let B* C K C Q. We have a Galois

representation
p:Gal(Q/K) — AutAE,f(V(A))

and the image of this commutes with E since £ C End’(A/K). We also know that V(A)
is a rank 1 free Ag p-module, hence AutAE’f(‘A/(A)) ~ A} ;. This is an abelian group, so p
factors through Gal(K®P/K). From the main theorem of CM, for all s € A% s there exists
a unique \s € E* such that

p(Artic(5) = Na(Ni/- () - A,

That is, the homomorphism X : A} f— E %, 8 — As measures how far the Galois represen-
tation p differs from the reflex norm, where we identify the two domains using the Artin
map, and the main theorem tells us that this difference lies in E*.

By the functoriality of the Artin map, the following diagram commutes:

Artg

ALK 2 Gal(K*/K)

leK/E* J{

A%, JEs* AU Gal(Erab ) B)
where the map on the right is induced by abelianization of the inclusion Gal(Q/K) —
Gal(Q/E™).
Our goal for this section is to prove that A is a continuous homomorphism, which will
be Proposition [32.

Proposition 32.1. [Mum08, §21, Prop. on p. 188] Let A be a polarized abelian
variety, and let a € End(A) satisfy af o = a € Z. Then Q[a] € End’(A) is
semisimple and « acts semisimply on Ty(A). Letting {w;} denote the roots of the
2 =

characteristic polynomial of « acting on Ty(A), we have |w;|* = a for all 4, and

moreover these roots satisfy the symmetry {w;} = {a/w;} as multisets.

Proof. Setting of = a-a~! € Q[a], the Rosati involution restricts to Qo] C End®(A). The
space Q[a] carries a positive definite quadratic form Tr(x o ). If a C Q[a] is an ideal, let
at be its orthogonal complement with respect to this quadratic form. Then a @ at = Q[a]
and anNat = {0}, so Q[a] satisfies complete reducibility into ideals, so we may write
Qo] = K1 x -+ x K, as a product of fields. Again using positivity of f, we have { acting
on each K, so each K; is either totally real or CM by Albert’s classification, with { acting
by the identity or complex conjugation accordingly.

The statement about semisimplicity of the action of a follows from the fact that if A is a
semisimple algebra (i.e. a direct sum of simple algebras), then any A-module is semisimple,
and semisimplicity of a Q[a]-representation implies that the element « acts semisimply; see
IMil20] §IV.1] for more details.

The w; are the images of a via all homomorphisms ¢; : Q[a] - K; — C. But for all
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such homomorphisms, since a € Q we have

a=p;(a) =g oa)=p;a) p;a)=|w*

Corollary 32.2. (Riemann hypothesis for abelian varieties.) Let A/k be an abelian
variety over a finite field & of order q. Then Frobenius acts semisimply on the Tate
modules Ty(A), ¢t ¢, and all the roots of the characteristic polynomial of Frobenius
have absolute value /g.

Proof. Apply Proposition to the Frobenius morphism, which satisfies Frob' o Frob = [q]
by Proposition where q¢ = #k. |

Remark 32.3. Corollary is the starting point for Honda-Tate theory, which we

will discuss later.

Remark 32.4. Abelian varieties are essentially the only case where we know how to
show that Frobenius acts semisimply on étale cohomology. The Grothendieck-Serre
conjecture states that Frobenius action is semisimple on the étale cohomology of any

smooth projective variety.

\. 4

Definition 32.1. Let A be an abelian variety with polarization ¢ = ¢ for ample Z.
Then the group of automorphisms preserving the polarization Aut(A,¢), also written as
Aut(A,.#), is the set of automorphisms a of A such that a¥ o ¢ o a = ¢. Equivalently,

afoa=1.

Proposition 32.5. If A/k is any abelian variety with polarization ¢ : A — AV and
M > 3 is an integer, then Aut(A4, ¢) — Aut(A[M]).

Remark 32.6. This a theorem attributed to Serre; see [Mum08|, IV.21, Thm 5]. This
means that, although Aut(A) may be infinite, Aut(A4,¢) is finite and more easily
controlled, which makes it much better suited for moduli problems. In particular,
the moduli space of polarized abelian varieties of a given degree is representable as

a scheme, whereas the moduli space of all abelian varieties is not.

Proof. All of the eigenvalues w; of « are algebraic integers, and by Proposition afoar =1
means that all |w;| = 1. If all conjugates of an algebraic integer have absolute value 1, then
that algebraic integer is a root of unity, so the w; are roots of unity.

Suppose that « lies in the kernel of Aut(A4, ¢) — Aut(A[M]). This means that o —1 kills
A[M], so we may write & — 1 = [M] o § for some 8 € End(X), so that each w; — 1 = Mwn;
for some algebraic integer n; arising as a root of the characteristic polynomial of 3.

To finish the proof, it therefore suffices to show that if n is an algebraic integer and
w =14 Mpn is a root of unity, then in fact w = 1. This would imply that all of the w; are
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1, hence « is the identity map (recall that « acts semisimply on the Tate module). For any
n > 0, the expression (1 + Mn)™ is again of the form 1+ M7’ for an algebraic integer 7', so
if w # 1 then by raising to an appropriate power we may assume that w is a primitive p-th

root of unity. Then 1 —w = Mn has norm

p—1
[[( - ') = M7~ Nm(n).
i=1

The expression on the left is ®,(1), where ®,, is the p-th cyclotomic polynomial Ef:—ol Xt
which evaluates to p. We conclude that p is divisible over the integers by MP~!, which can
only happen if p = 2, but that would imply M | 2, contradicting the assumption M > 3. B

Proposition 32.7. [Con05, Thm. 3.2] The group homomorphism X : A% F E* is

continuous for the discrete topology on E*.

Proof. We want to show that that for s € AIX{JC sufficiently close to 1, we have A\; = 1—
equivalently, the kernel of A is open. Since p, Artg, the norm maps, and inversion are all
continuous, we do at least know that A is continuous as a homomorphism A]X(y ;o AE Iz
or equivalently as a homomorphism AIX(’ ;> E X where E* is endowed with its subspace
topology in Af f Therefore we take s sufficiently close to 1 such that A\; € Of, Ay =
1 mod M for a fixed integer M > 3, and \* € Og N End(Ag), since all of these conditions
are open in the subspace topology for E* < AE -

Our assumptions mean that A; € Op N Aut(A4g), so we may and do treat Ay as an
automorphism of A@. The assumption Ay = 1 mod M means that A\g; acts trivially on
A(Q)[M]. By Proposition we are done if we can find a polarization ¢ : A — AV such
that A\s € Aut(A,¢) is an open condition on s € A% .

We take ¢ to be an E-linear polarization ¢ : A@ — /%, i.e. compatible with the action of
E < End® on both sidese may take s € Alx(yf sufficiently close to 1 such that Artg(s)
fixes the number field of definition L/K of ¢. More precisely, we can take s such that
Artg(s) € Gal(K?P/(K* N L)), so that there exists a lift of Artx(s) to Gal(Q/L).

Let Artg(s) = o. By the definition of Ay, o acts on V(A) by the scalar Ng (Ng/p~(s)) -

A; 1. Using the results from Remark [31.6] there exists ¢ = #‘T/L(S) € Q* such that

(@, y) =", AT Ny).

Since o acts trivially on the field of definition for ¢, unwinding definitions shows that
T (x,y) = ¥(x,y), hence rearranging the above gives

cMp(x,y) = v(Asz, Asy) = V(A sz, ).

Since the Weil pairing is nondegenerate, this means that in fact A\, = ¢ € Q%. We've
chosen )\, to lie in O, so by positivity of the Rosati involution A;As must be a positive

integer. However, we have also ensured that A is invertible (as an element of O N Aut Ag),

22This subspace topology is not discrete since we’ve removed the archimedean places, so we have more to
prove.
23Such a polarization exists by the complex analytic theory—the Riemann form trg/q(€e(z)y) works.
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which forces AsAs = ¢ = 1. That is, A\, € Aut(A, ¢). Yet we have chosen s such that A, acts
trivially on A[M], so by Proposition we conclude Ay = id 4. |

33 L-functions (04/10/2024)

33.1 Hecke L-functions

Definition 33.1. A Hecke character is a continuous homomorphism x : Ay /K* — C*,

where K is a number field.

Remark 33.1. Some authors require Hecke characters to be unitary, i.e. with the
image of x contained in the unit circle. These two definitions are essentially the same,
since there is a unique factorization of x = xo @ || - |7, where x¢ : A% /K> — St is
unitary, 0 € R, and ||-|| : A*/K* — K* is the norm map = — []_ |z|,, where {|-|,}
is a compatible collection of v-adic norms such that the product formula holds. This
factorization comes from the decomposition A* /K> = A% /K> x R, where A

denotes the norm 1 ideles.

Definition 33.2. Let A/K be an abelian variety with CM by E C End’(A), and let 7 :
E — C denote the various embeddings of E into C. Let Ng g  : Az — EZX denote the
| EX = .E><

(projection onto the product of all archimedean places, all of which are complex since E is

composition of the maps No x : A — Aj and the projection Ay — []
CM). Recall the continuous homomorphism A : A};) F o E X by projecting onto the finite

places, we abuse notation and extend A to Ay. The Hecke characters associated to A are

1
. AXN‘I’rKvOO.)\EX X T X
QD Ap o) T .

That is, we get one Hecke character per 7. The recipe Ng 1K oo - A should be thought of
as incorporating information from both the archimedean and nonarchimedean places. We

prove that o” is indeed a Hecke character, i.e. it satisfies:

[ Lemma 33.2. a7 is continuous and o |gx = 1. ]

Proof. For s € Ay write sy € AIX(J for the finite part of s. From the definition of A; we
have have A, - Ny ' (Nmp - (s5)) = p(Artz'(s)). (Recall that Ng 4 = Ng o Nmy,p-.) For
s € K*, we have Art'(s) = 1-—the Artin map kills K*. We also have

(No o (Nmg/p- (7)) "' = Nea(sp) ™" = Nglp oo (9),

hence Nk ¢ 0o(s) ™1 - As = 1.
Continuity of a7 is clear from continuity of A, the reflex norm, and the various projection

maps. |

If x is a Hecke character, write xoo := X]| i x for its restriction to the archimedean places.

Tov

Definition 33.3. A Hecke character x is algebraic if Xoo (Too) = [ ], rea1 0 I 1 complex Ty T
for some n,,n.,n=, € Z. Another way to state this is that this is a group scheme homo-

morphism Resg ;g G, — Gy, over Q.
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We can check that the a” are algebraic. We will not need this fact, or even the definition
of an algebraic Hecke character, but we mention it because this is a common feature of all
Hecke characters associated to motives (whatever that means). More interestingly, it turns
out that the converse is true: all algebraic Hecke characters arise from motives! See [Sch8§],

especially Theorem 4.1, for more discussion.

Definition 33.4. The (incomplete) L-function associated to a Hecke character y is

L(x,s) == [ J(1 = xp(p) Nmgcsg(p)~") "
pim

the product ranges over (finite) primes p C Ok (uniformizer @, € O, ) not dividing the
conductor m of y. This is the smallest integral ideal m = Hp p™* such that

X[, ey = 1,

where all the my are finite and almost always zero by the continuity of x and the topology
on Aj. In particular, if p { m, then x,(w)) is independent of the choice of uniformizer w,
of K.

Theorem 33.3. (Hecke, Tate’s Thesis.) After completing L(x,s) to a function
A(x, s) by adding a suitable factor Lo (X, s), L(x, s) admits a meromorphic continu-
ation to C, satisfying a functional equation, and it is an entire analytic function if xq
(the norm 1 part of x) is nontrivial, analogous to how a Dirichlet L-function L(x, s)

is holomorphic if x is not the trivial Dirichlet character.

Proof. See [Neu99, §VIL.8], or [Bum97, §3.1] [ ]

Definition 33.5. Assume for simplicity that an abelian variety A/K has good reduction
everywhere. The (Hasse-Weil) L-function of A is

L(A,s) := H det(1 — Frob, (Nmg /q p)_s|w(A))_1.
pCOK

We can make a similar definition using Hélt(A@, Qy) instead of V, when A has good
reduction at p, but for this we need to use the geometric Frobenius rather than the arithmetic
Frobenius, since Hélt(A@7 Qy) is dual to V. More generally, geometric Frobenius acts on
Hyg (A@, Qq)%r, where I, p is the inertia subgroup, which already acts trivially if we have good

reduction.

Proposition 33.4. Let A/K have CM, and let p be a prime of K.
. L . P X
1. If A has good reduction at p, then A, := /\|pr is trivial on (DKP.

2. Ap(wy) € OF acts on () as Froby,, where @, is the special fiber of the

Néron model of A over Ok, .

Proof. 1. Recall from local class field theory that I, C Gal(K*"/K) is the image of
O}X(p under the local Artin map. Choose any prime ¢ not equal to the residue char-
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acteristic of p. By the criterion of Néron-Ogg-Shafarevich (Theorem [34.3), good
reduction means that I, acts trivially on Ty(A), so for s € (’)IX(P C Ay we get
p(Artk(s)) = Nk.o(s)A\;' = 1 acting on V(A). But Nk o(s) also acts trivially be-

cause sy = 1, so \g acts trivially.

2. We have w, € K, C Ag. Again choose / as in part (1), so that Nk ¢(s) again acts

trivially on Ty(A). Then A\,(wy) = p(Artg(w, ') = p(Froby), acting on Ty(A) ~

T (Hyy(p))—recall that Artg(co, ') = Froby is part of the unique characterization of
Artin map.

|

Theorem 33.5.1f A/K has CM, then for Re(s) > 3 we have L(4,s) =

[I,.5cL(a”,s). In particular, L(A,s) has an analytic continuation and functional

equation via Tate’s thesis.

Intuitively, we expect the L-function of A to decompose into a product of Hecke L-
functions because the Galois representation on the Tate modules is abelian. Indeed, one
could argue that the fact that the Galois representation attached to a CMAV is one of the
main reasons why they are the easiest case to work with, since number theorists know a lot
about abelian extensions by now...

We won’t prove the fact about the half-plane of convergence, but the reason that it is

Re(s) > % is that the eigenvalues of Frobenius all have absolute value ¢'/2 = NmK/Q(p)l/Q.

Proof. To simplify notation, write X = (Nmpg /g p)~*. Since Vy(A) is a rank 1 free E' x Q-
module, we have

det(1 — Frob, X | V;(A)) = Nmpg,q(1 — Frob, X),

where on the RHS we treat Frob, as an element of £ — V;(A). By Proposition this

equals

= Nmp/g(1l — Ap(wp)X)
= I (- ap(@)X).

T:E—C

Hence the Euler product for L(A,s) matches that of [[_.5_ - L(a7,s). [ |

34 Criterion of Néron-Ogg-Shafarevich (04/12/2024)

34.1 Potentially good reduction of CMAVs

We have frequently been using the assumption that a CMAV has everywhere good reduction.
It turns out that this is not overly restrictive.

Definition 34.1. Let A/K be an abelian variety over a number field K, and let p be a prime
of K. We say that A has potentially good reduction at p if there exists a finite extension
L/K, such that A;, has good reduction at p. That is, we have a good integral model after

passing to a finite extension.
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Remark 34.1. If K is a number field, then A always has good reduction at all but
finitely many primes p. Therefore, if A has potentially good reduction at all primes,
then there is a finite extension L/K such that A has good reduction everywhere—
take the compositum of all of the individual extensions giving good reduction for

each prime, since good reduction is stable under field extension.

Proposition 34.2. If A/K is a CMAV over a number field K, then A has potentially

good reduction everywhere.

Proof. See also Prop. 7.12]. We use the criterion of Néron-Ogg-Shafarevich:

Theorem 34.3. (Criterion of Néron-Ogg-Shafarevich.) [Mill0, Thm. 6.12] Let R
be a DVR with fraction field K and residue field k. Let ¢ # char(k) be a prime, and
let A/K be an abelian variety. Then A has good reduction if and only if the inertia
group I C Gal(K/K) acts trivially on Ty(A).

Proof. (Sketch.) We have already seen that good reduction means inertia acts trivially
from Lemma [30.2] This is the fact that all {-torsion points are defined over an unramified
extension of K.

For the reverse direction, we use Néron models. Let «7/R be the Néron model of A/K.

We have isomorphisms
A (K" [0"] ~ o (Opcar ) [0"] =~ o (k) [£"]

using the Néron mapping property for the first isomorphism and Hensel’s lemma for the

second condition. We may also write
ur mn 74 m I
o (K™)[en] = (« (K)[e")

so inertia acting trivially means that this is just A(K)[¢"]. So all of these groups have order
an dim A .

., is a smooth finite type commutative group scheme, although not a priori an abelian
variety. There is a classification of such groups (see also [Mill5]): <% /47 is a finite group,

and we have exact sequences
1-U—= o - G—1,

where U is unipotent and G is semiabelian, i.e. an extension of an algebraic torus by an

abelian variety:
1-T—-G—-B—-1
for some torus 7" and abelian variety B. Then

dim A =dim.«%, = dimU + dim T + dim B.
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We have

#BI[("]
#T[E"]
#U[C"]

E) _ €2n dim B

—

dim T

A
Bl
N—

n
0,

A
Bl

N—
Il

using the fact that T3 = G:i’%T and a general result about lack of torsion in unipotent

groups. Since we must have
#li (") (k) = #B[(")(k) - #T ("] (k) - #T[0"] (k)
letting n — oo and comparing asymptotics shows that
2dim A =2dim B 4+ dim T

Comparing this with our previous dimension formula, we get 2dimU = —dim T, so since
dimension is nonnegative we conclude that U = T = {1} are both trivial. This means that
2 = G = B is an abelian variety, so &/ is an abelian scheme. ]

Applying this in the case of CM, we have #k(p) < oo and the image of p, : Gal(K /L) —
Aut(Ty(A)) is an abelian, where L/K is a finite extension such that all CM endomorphisms
are defined; WLOG L = K for ease of notation. This Galois representation restricts to
K Gal(K;*b/Kp) — Aut(Ty(A)). We have a diagram

I, —2— Aut(Ty(A)) +—— 1+ (End(T,(A))

T
ArtT /,/’/

OIX( —s 1+pOKp

where the left upwards arrow is the local Artin map, both inclusions are finite index, and
all arrows are continuous homomorphisms. The group 1 4+ ¢End(Ty(A)) is a pro-£ group,
but the group 1+ pOk, is a pro-p group.

Definition 34.2. For a prime p, a pro-p group is a topological group that is the inverse
limit of finite p-groups, equipped with the Krull topology.

Lemma 34.4. For distinct primes ¢, p, there are no nontrivial continuous homomor-

phisms from a pro-p group to a pro-£ group.

Proof. Suppose we have a continuous homomorphism p : G — H for a pro-p group G and
a pro-f group G. Let K an open normal subgroup in H such that H/K is a finite ¢-group,
which always exists by the construction of H as an inverse limit. By continuity, p~1(K) is
open, hence a normal open subgroup of G. Open subgroups are finite index, and one can
show that the quotient of a finite index normal subgroup of a pro-p group is a p-group (this
is an alternative definition of a pro-p group). Therefore the homomorphism p descends to
a well-defined homomorphism G/p~!(K) — H/K between a p-group and an f-group—but
the only such homomorphism is the trivial one by finite group theory. We conclude that the

image of p is contained inside K. But this is true for an arbitrary normal open subgroup of
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H, and such subgroups form a basis of open neighborhoods of the identity, so we conclude
that p(G) = {1} C H since profinite groups are Hausdorff. |

Therefore the image of 1 + pOg, in Aut(7;(A)) must have trivial intersection with
1+ ¢End(Ty(A)), so that this image is finite in Aut(7;(A)), since it descends injectively to
the finite quotient Aut(7;(A))/(1+ ¢End(T;(A)). Since 1 + pOk, has finite index in O,
we conclude that the image p(I,) € Aut(T;(A)) is also finite. Therefore, there exists a finite
extension K, such that the inertia group of that field acts trivially on T;(A), so the criterion
of Néron-Ogg-Shafarevich tells us that A has potentially good reduction. |

34.2 Honda-Tate theory

Let ¢ be a p-th power. We wish to classify isogeny classes of simple AVs over F,.

Definition 34.3. A Weil g-number is an algebraic integer 7w such that for every embedding
Q(7) — C, we have |7(7)| = ¢*/2. We will also refer to these as Weil numbers when g is
fixed.

Given two Weil numbers 7, 7/, define an equivalence relation m ~ 7’ (7 is conjugate to
7') if 7 and 7" are Galois conjugates over Q, i.e. they have the same minimal polynomial
over Q.

Recall that for an abelian variety over A/F,, we have the ¢-th power Frobenius auto-
morphism 74 := Frob4 and Q[m4] is semisimple (from Proposition, hence a field when

A is simple. We also previously showed that 74 is a Weil g-number (this is the Riemann
Hypothesis for Abelian Varieties, Corollary [32.2)).

Theorem 34.5. (Honda-Tate theorem.) Taking eigenvalues of Frobenius induces a

bijection

{isogeny classes of simple AVs/F,} <> {conj. classes of Weil g-numbers}

A*—)TFA

\. J

This is a great tool for classifying abelian varieties over a finite field, since in general
working with integer polynomials is easier than trying to wrangle unknown geometric ob-
jects, and the characteristic polynomial of Frobenius is already an important invariant.

Injectivity of the map in the Honda-Tate theorem follows from Tate’s isogeny theorem:

Theorem 34.6. (Tute’s isogeny theorem.) Let ¢ # p, and let A, B/F, be abelian

varieties. Then

Hom(A, B) @z Z¢ = Homgy s, /e (Te(A), To( B))-

This is often just called Tate’s theorem@ We already showed that this map is injective
(Theorem [24.1)). Unfortunately, we omit the proof of surjectivity.

24Not to be confused with Tate’s theorem on Tate cohomology.
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Remark 34.7. When we deal with L-functions or other similar objects, the Galois
representation is easier to work with than the geometric objects. Tate’s theorem
allows us to work abstractly with Tate modules rather than abelian varieties, where

constructing homomorphisms is easier.

Corollary 34.8. For A, B/F,, the following are equivalent:
1. A~ B over F,.
2. For at least one £ # p, we have Vy(A) ~ Vy(B) as Galois representations.
3. For all ¢ # p, we have V;(A) ~ Ay(B) as Galois representations.

4. P4(t) = Pgp(t), where Py4, Pp are the respective characteristic polynomials of
Frobenius.

Proof. (1) = (2) = (3) == (4) are on your homework. For (4) = (3),
we know Frobenius acts semisimply, so P4 = Pp implies we have a Frobenius-equivariant
isomorphism V(A) ~ V(B) by standard linear algebra. In more detail, we know that the
Frobenius actions are at least conjugate over Q,, so by a descent argument and Hilbert
Theorem 90 we find that this is actually already defined over QQg. This is in fact a Galois-
equivariant map because Frobenius topologically generates the Galois group. (3) = (2) is
trivial, and (2) = (1) is immediate from Tate’s isogeny theorem [34.6] —an isogeny A — B
exists if and only if there is an isomorphism V;(A) ~ V;(B). ]

Injectivity of the map in the Honda-Tate theorem is then immediate from (4) = (1)
in Corollary

35 Honda-Tate theorem: surjectivity part I (04/15/2024)

Somewhat more is true than Corollary

Corollary 35.1. : For A, B/F,, the following are equivalent:
1. There exists a morphism A — B that is an isogeny onto its image.
2. For all/at least one £ # p, V;(A) is a Galois subrepresentation of V(B).

3. P4(t) divides Pg(t), where P4, Pg are the respective characteristic polynomials
of Frobenius.

Remark 35.2. We can conclude that isogenous abelian varieties have the same

characteristic polynomial by looking at the local invariants of End®.

Given Ag/F,, there exists a CMAV A over some number field (constructed using ma,)
such that A mod p lies in the isogeny class of Ay, for a finite extension k/F,. See [CCO14]

§1.7.6] for some more information without passing to the isogeny class. We can also have
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CM liftings with extra endomorphisms and algebraic cycles, originally done by Kisin ‘17
and Kisin-Mudapusi-Shin. To get the CM field associated to the lifting, we will use local
invariants of the endomorphism algebra, and to get the CM type we will apply the Shimura-
Taniyama formula “in reverse.”

- )

Lemma 35.3. Let m be a Weil g-number. There are three possibilities for Q[n]:
1. (Even case) ¢ = p*™, 7 = +p™, Q(7) = Q.
2. (0dd case) ¢ = p*" 1,1 = £/p?+1, Q(n) = Q(/p).
3. Q(n) is a CM field.

Note that in the first two cases Q(7) is totally real and the last case is totally
imaginary.

Proof. Suppose neither (1) nor (2) holds. Then every embedding 7 : Q(7) < C is complex,
since £,/q are the only real numbers with absolute value ¢*/2, i.e. Q() is a totally imaginary
field. Since |7(7)| = y/q for any embedding 7, we conclude 7(m) = q/7(x), so that 7 + q/=
is totally real. Then Q(7)/Q(m + ¢/7) is a quadratic extension of a totally imaginary field

over a totally real field, so Q(r) is CM. [ |

Theorem 35.4. Let A/F, be simple, and let D := End’(A), K the center of D,
d=[D:K]'?e=[K:Q)|. Then:

1. K=Q(ma)

2. de = 2dim A.

3. For a place v of K, we may compute inv,(D) = O;f(’;f&‘;)[Kﬂ : Q) if v | p,

inv, (D) = 1/2 if v is real, and 0 otherwise.

Remark 35.5. We will have P4 = (min. poly of )¢, where the order d is the lem
of all denominators of all invariants. This comes from class field theory.

Proof. 1. By Tate’s isogeny theorem, for £ # p, we have D ®q Q¢ = Endg(x,)(Ve(A)).
We apply the Double Centralizer Theorem (see [Mil20, §IV, Thm. 1.14] for this, and
also for other results on central simple algebras):

Theorem 35.6. (Double Centralizer.) Let k be a field. If B is a k-algebra and
V is a faithful semisimple B-module, then C(C(B)) = B, where C(—) denotes
the centralizer of (—) in Endg (V).

We take k£ = Q¢, B = Q(74) ®q Q¢, V = Vi(A). The statement D ®q Q; =
Endg(r,)(Ve(A)) is the same as saying C'(B) = D®Qy so C(D®Qy) = Q(1) ®q Q¢ by
the Double Centralizer Theorem. Meanwhile, the center of D is C(D® Q)N D = K,
so since Q(7) ®qg Q¢ is already contained in D ® Qg we conclude that K = Q(m4).
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2. Write K ® Q¢ = K, x --- x K,,_, where the v; are the places of K above ¢. The
ring K, X --- x K, acts faithfully on V;(A), which we may decompose as V;(A4) =
Vi@ @V, with K,, acting on V;.

Writing D ® Q¢ = Endg (Ve(A)) = [[; End,, (V;), we can compute its Q,-dimension

as

d’e = Z e;d?

where ¢; = [K,, : Q¢ and d; = dimg, V;. However, we have e = Y _; e; from

K ®Q; =[], K.,, and we also have 2g := 2dim A = dimg, Vi(A) = > e;id; as a
general fact about Tate modules. Hence,

r 2
(29)% > (de)? = (Z eid3> <Z ei> > (Z eidz) = (29)°

A A i=1

where the first inequality comes from ed | 2¢g in Albert’s classification, the second
inequality is an application of Cauchy-Schwarz. Therefore all of the inequalities are
in fact equalities, so taking square roots gives 2g = de. (Also note that the equality

condition on the Cauchy-Schwarz inequality implies that all of the d; are equal to d.)

3. For v | £ # p, the proof of (2) shows that D ®,, K., = Endg, (V;) = Ma(K,,). Hence

i

inv, (D) = 0. For v | oo, Albert’s classification gives, by type:

I:e|lg,d=1
IT : 2¢e| g, d=2
III : e|g,d=2
IV :e|lg,d=2
The first three cases are totally real. The first two cases contradict (2), so they do
not occur, and Type III gives the correct invariant 1/2 for real places, since D ® R

is nonsplit in this case. Type IV means that K is CM, so there are no real places to

worry about.

We will only be able to prove the formula for the invariant at v | p later, using

Dieudonné theory, so we omit this for now.
|

Lemma 35.7. Given a Weil number 7, let F' = Q(7). Then there exists a division
algebra D/F satisfying all of the local invariant conditions in the conclusions (1),
(2), (3) of Theorem [35.4]

Proof. See also [Mil20]. Such D exists and is unique up to isomorphism iff ) inv, = 0,
using the exact sequence from global class field theory. To check this condition, there are

two cases:

1. The case F' where is totally real is on your homework.
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2. If F is CM, we have 7 - T = ¢ (under any complex embedding), and the only possibly

nonzero contributions to ), inv, come from places v | p. For v | p, if v # T, then

ord, (7) + ord, (7)
ord,(q)

inv, +invg =

[Ky : Q¢ =0 mod Z

and if v = U, we have

ord, ()
ord,(q)

=1/2
but Y . [y : Q] is even ([L : Q] is even and the v with v # T come in pairs), so
the overall contribution to the global invariant is 0.

36 Honda-Tate theorem: surjectivity part IT (04/17/2024)

Let m be a Weil g-number. Recall that we showed that F' := Q(n) is either totally real or
a CM field. Using local invariants, we got a division algebra D with center F' and local
invariants as prescribed in Theorem in particular with D, split if v { poo and D,

nonsplit if v is a real place.

Proposition 36.1. There exists a CM field L O F such that D ®p L splits at all
places of L. For such L, we have [L: F| = +/[D : F].

Remark 36.2. See [Mil20, §IV , Cor. 3.7]. If [L : F| = \/[D : F}, splitting of D®p L
(everywhere) is equivalent to the existence of an F-algebra embedding L < D.

Proof. The totally real case is on your homework; the answer will be L = F'(/p). So assume
F is CM, and let Fy := Q(7 + ¢/7) be its maximally totally real subfield. There exists a
totally real extension Lg/Fy of degree d such that all places v of F' dividing p are totally
inert in Lo/Fp, i.e. such Ly is unramified at p, has one place above any given v | p, and
the splitting polynomial defining Ly has all real roots@ In particular, this means that
[Lo,w : Ko,,] = d for the unique place of L lying above v. Then L := FLj is a CM field, and
[L:F]=[Lg: Fo] =d.

Local invariants satisfy the compatibility inv,,(D®p L) = inv,(D)[L,, : F,] for any w | v
(IMil20}, §TV.4, Rmk 4.4.(c), §II1.2, Thm. 2]). Since we already have inv, (D) = 0 for all

v | p, we conclude automatically that
inv,(D®p L) =0-[Ly : F,] =0

for all w { p for all w | v. In the case v | p, inv,(D) is a multiple of 1/d and we have
specifically chosen L so that [L,, : F,,] = d. Hence we also get inv,,(D ®p L) = 0 when w | p.

250ne way to do this is to find a degree d integer polynomial f that is irreducible in the residue fields of
Fy,» for all v | p and then adjust the coefficients by multiples of p suitably to ensure f has all real roots.
Then let Lo be obtained by adjoining a root of f to Fp.
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Since we are assuming F', hence also L, is CM, there are no real places to consider. |

Proposition 36.3. There exists an abelian scheme &7 over Ok, where K’'/Q,, such
that /i, admits CM by L as in Proposition and %, has Frobenius conjugate
to 7V for some N € Z.

Proof. We will use the Shimura-Taniyama formula to reverse-engineer exactly the CM type
¢ we want. Let A := o7;,. Recall the formula: let L®Q, = Hw‘p L, and ® C lep H, =

Hom(L,@p) a CM type, ®,, = ® N H,,. Then Frobenius 74, of A is descended from some
ordy (Tag) _ #®,,
ordy #k — #Hy '

element of O and

Lemma 36.4.1f 7, my are a Weil ¢- and gg-numbers, respectively, with

Q(m),Q(my) C L such that zigz((gg)) = z’;iz((;r)) for all places w | p of L, then there

exists N, Ny € Z>; such that 7% = 7.

Proof. We have 77 = ¢ and w79 = qo. Pick N’, Nj such that & = qé\"l). We may
assume by raising m and m to a suitable power that ¢ = ¢/. Then it suffices to show that
/7o is a root of unity. This will follow if we can show that 7/mg is an algebraic integer,
since |m/mo|r = 1 for all embeddings 7 : L — C, and the only algebraic integers with all
embeddings of absolute value < 1 are the roots of unity. For integrality, it suffices to show
that |7 /mo|w = 1 for all finite places w—but this immediately follows from our hypotheses

on the w-adic absolute values of 7wy and . |

We choose subsets ®,, C Hom(Lw,@p) - Hom(L,@p) such that
w | p of L. This is possible because

#®P,, _ ordy(m)
e = ordi(a) for all

ordy(m) _
#Hy - ordu(q) (Lo : Q)

ord, ()
ord,(q)

ord, ()
ordv(q)

= [Ly : FJ][Fy : Q) = [Ly, : F,]inv,(D) € Z.
We have 7 - 7, and ord,,(7) = ord, (7) = ord,(q), so that #®, + #0z = #H,, = #Hzw.
This means that we may actually choose each pair ®,,, ® so that ®,, is the complement of
® in Hg. (There are no cases where w = W since L is totally imaginary.) Therefore, we
get a CM type ® = |J P, where the union is appropriately understood under some fixed
embedding Q, <+ C. (Note that the ®,, < Hom(L, C) are disjoint.)

Now let o7 have CM by (L, ®)—certainly we can construct such an abelian variety over
a number field, and CMAVs have potentially good reduction everywhere. By the Shimura-
Taniyama formula, we have

ordy(ma,)  #Pw  ordy(m)
ord, (#k) — #H, ordy(q)’

Then by Lemma we conclude wgg = 7V for some integers N, Ny, and we may replace
L with a deg Ny totally ramified extension to in fact get 74, = 7. |

We finally prove the surjectivity part of Honda-Tate. We have done the hard part of
showing that there exists an abelian variety that is close to what we want, only off by a

power: we have an abelian variety Ag/k with 7 = 7 4, for a finite field k. Then then formula
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ordy, (ﬂ'Ao ) _ordy(m)

ord G = ord(q) Shows that [k :F,] = N. Consider the Weil restriction Resy,r, Ao—this
is an abelian variety over I, of dimension N - dim Ay.

Definition 36.1. Let k be a ring, let k' be a k-algebra, and let X be a k’-scheme. Then
Resy /i, X is the k-scheme representing the functor of points R ~» X (R ®y, k') for k-algebras

R. (This doesn’t always exist, but it does when X is an abelian variety and k/k is a finite

field extension.)

On the homework, you will show that Vy(Res/r, Ao) = Inngig‘;g") Ve(A) (induced Ga-
lois representation). When we induce a representation and then restrict it back to the origi-
nal representation, we get a direct sum of copies of the original representation. Therefore, as
a Gal(k/k)-representation we may identify V;(By) = EBfVZI Ve(Ap), with Iﬁrobg0 = Frobg, ,
acting by Frobs, on each component. Hence 7y ~ ma, and Pp,(t) = Pa,(t"), so that
= Wﬁfo is a root of Pp,. We conclude that there exists a simple factor of By over I, with

Frobenius conjugate to m by Corollary

37 Local invariants at p (04/19/2024)

37.1 Dieudonné theory

We will only be able to give a brief outline of the local invariants at p that we ignored in
our proof of the Honda-Tate theorem, specifically in Theorem See [CCO14, A.1,81]
and [CO19| if you are interested in more about Dieudonné theory and p-divisible groups.
Let D = End"(A) for an abelian variety A/k with k a perfect field of characteristic p > 0.
The p-divisible group A[p*°] is the inductive system {A[p"]},>1, where each A[p"] is a finite
group scheme over k with a natural embedding A[p"] < A[p"*!] identifying A[p"] with the
kernel of [p"] : A[p"t1] — A[p"+i].

Theorem 37.1. (Tate, see also Milne-Waterhouse.) Let A, B be abelian varieties
over a finite field. Then Hom (A, B) ®z Z, — Hom(A[p>], B[p>°]) is an isomorphism.
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Theorem 37.2. (Dieudonné theory.) Let k be a perfect field of positive characteris-
tic p, and let W := W (k) be its ring of Witt VectorsEl There is a (dualfl equivalence
of categories between:

e p-divisible groups

e Dieudonné modules, i.e. finite rank free W-modules with semilinear actions by
Frobenius F' and Vershiebung V', subject to the relation FV = VF = p[] The
Frobenius action on k lifts uniquely to an action o on W (k). The semilinearity
requirement is that F is o-linear and V is o~ !-linear, i.e. F(ax) = a’ F(z) and
V(az) = a® V(z) for a € W(k), z an element of the Dieudonné module.

We write X ~» D(X) for the (contravariant) Dieudonné functor. This functor is
Frobenius- and Verschiebung-equivariant, and satisfies other various nice compati-
bilites.

“We won’t define these here, but the Witt vectors are a natural lifting of k£ to a characteristic 0
complete DVR with residue field k. An important example is that for ¢ = p™, W (Fy) is the ring of
integers of the unique degree n unramified extension of Q.

bThere are covariant and contravariant versions of the Dieudonné functors; both define equiva-
lences of categories. We will use the contravariant version.

¢We showed that [p] factors through F = F(1) : A — A1) on abelian varieties; this is also true
for p-divisible groups. The Vershiebung is the morphism V : A1) — A such that V o F = [p].

Remark 37.3. Some more details on p-divisible groups: we will always have a in-
ductive (a.k.a directed) system of finite groups schemes {X,,, t, }n>0 of rank p” for
some fixed h (called the height) with ¢, : X,, — X, 11 a closed embedding. We
additionally require [p] : X,, — X, to factor as m, o ¢,_; for a faithfully flat map
T i Xpn — Xp_1.

Let A/k be an abelian variety with D = End’(A) with Frobenius 7, and recall that
Q(w) =: K is a number field. Using Dieudonné theory, we have D®gQ,, = End(A[p™])°PP®
W(1/p], and Qp ®g K = ][, , Kv gives a decomposition A[p>] ~ [[,, G in the isogeny
category. We correspondingly get

D(A[p™]) @w W[1/p] = P D(G,) @w W[1/p]
v|p

Now set D, := D @k K, = End(D(G,) @w W][1/p])°PP. These are W[1/p] linear maps of
the W[1/p]-vector space D(G,) @w W[1/p] compatible with the Frobenius action.

Let g € Z[t] be the minimal polynomial of w4, so that g = Hv|p gy in Qpt] for the
minimal polynomial g, of w4 in K,. Then w4 acts on D(A[p™]) as F", where ¢ = p", and

we claim:
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Theorem 37.4. inv, (D, ) is the same as the local invariant of W[1/p][F]/(g,(F")),

which is Z((Z)) (K, : Q).

This is the local invariant we were hunting in our proof of the Honda-Tate theorem; we’ll
leave this at that.

37.2 Proof of Main Theorem: tori

We will spend the remainder of the course proving the Main Theorem of Complex Multipli-
cation. Our presentation generally follows that of [Mil10]

For o € Gal(Q, E*), or really o € Gal(E*2P/E*), pick s € Ag. ¢/E** mapping to o
under the Artin map, i.e. with Artpx(s) = o[g«a». We defined elements n(c) € Af, ; and
Na(s) € Ag ;/E*. Recall that the claim of the Main Theorem of Complex Multiplication
is that these two elements are the same modulo E*.

For a number field K, we notate T = Resg Gy, which is an algebraic torus over Q.
Recall that T¥ is the Q-scheme representing the functor of points R ~ (R ®g K)* for
Q-algebras R.

Definition 37.1. Let F' be the maximal totally real subfield of E. Then set T := G,, Xpr
TE.

T ——TF

l leE/F

G,, —— TF.
Here Nmpg,p : TF — TF is the group scheme homomorphism induced on points via
(ReqE)" - (R®q F)* :r®@x—r®@Nmg/p(z),

and the homomorphism G,, — T* is given by the inclusion R* < (R ®q F)*.

More concretely, we can identify the functor of points of T" as
T(R)={r e (R®qE)" :Nmg/p(r) € R*}
for Q-algebras R, so in particular

T(Q) ={a€ E* :Nmg/p(a) € Q*}
T(Ay)={a€ Ay ;:Nmg/p(a) € AT}

We topologize T'(A ) by its subspace topology in Ay s using this description of T'(Ay) as a
subset of AE’ 2 The reason why we bother with all of this is that we can look at idelic points
on T rather than attempting to directly analyze ideles. This is useful because T'(Af)/T(Q)

is much nicer than A} f J/E* due to the following:
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Lemma 37.5.

1. The map T — T induces an injective map T'(A;)/T(Q) — TF(A;)/TF(Q) =
AJXEV f /E*, and a closed embedding as a topological subspace.

2. T(Ay)/T(Q) is Hausdorff.

Therefore, to see that two elements in T'(Af)/T(Q) are the same, we can compare

them using arbitrarily small open neighborhoods U C Ag’ f-

Note that A} 7 /E* is not itself Hausdorff—omitting the archimedean places means
that E* is no longer a discrete subgroup. If we include the archimedean places, then
Art : AX/EX — Gal(E*P/E) is not injective.

Proof. 1. The map T — TF is defined using polynomials over Q, so if we have z € T'(A )
with 2 mapping to T%(Q), then x € T(Q). The topological assertion is an easy check.

2. We prove T(Q) C T(Ay) is discrete; since T(Q) is also closed, this implies that
T(Ay)/T(Q) is Hausdorff. Since T'(Ay) is Hausdorft, it suffices to show that there
is an open subset U of T'(A¢) such that T(Q) N U is finite. We take U = O}, which
is open in T'(Ay). By the Dirichlet unit theorem, O has finite index in Oj—the
signatures of F' and E are ([F : Q],0) and (0, [F : Q]), respectively, so the free parts
of OF and Of both have rank [F : Q] — 1 by Dirichlet. Therefore T'(Q) N O} is finite
iff 7(Q) N OF is finite, so it suffices to show that the latter is finite. We have

T(Q)NOj ={acOf :Nmg/p(a) € Q*}

However, the restriction of the norm map Nmg,p to F'* is just squaring, so the
requirement is that a? € Q. Since a is a totally real unit, this implies a? = 1, hence
a==+1andso |[T(Q)NOZ| =2

|

38 Proof of the Main Theorem: preliminaries (04/22/2024)

Recall our conventions: F is a CM field with reflex field £* and maximal totally real subfield
F,TF = Resg G, and T := G,,, X7, TF. Let A be an abelian variety with CM by E. Also
recall a key fact we have used repeatedly: V(A) is a rank 1 free Ag,_-module.

38.1 Proof the main theorem: norms

Lemma 38.1. Let o € Gal(Q/E*) and s € Ag. ;/(E*)* such that Art(s) = o|ge.an.
Pick an isogeny oo : A — 7 A, and let n = (o) € A};f be such that a(n(z)) = ox for
all z € V(A).

Then §A% € T(Af)/T(Q) € TP (Af)/TF(Q).

Recall that we ultimately wish to show that n(0) = Ng(s) mod E*, so Lemma is a

partial result in this direction.
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Proof. We take advantage of the polarization . Using the same computations and notation
as in Remark we have

Xeye(@)(z,y) = T¢(ox, oY)

Il
Q
<
—
Q
—
3
—~
8
N
=
Q
~
3
=
<
=
~—
=

Both 1 and “¢(a(—),a(—)) are polarizations on A/Q compatible with the E-action. In
the complex analytic setting, these correspond to two different Riemann forms on A/C.
From our discussion of Riemann forms over C with compatible E-action (all the way back
in Lemma, we know that these are both of the form trg g (£Zy) for a totally imaginary
¢ € E, treating the Riemann form as a form on H; (A(C),Q) ~ E. Changing the polarization
is equivalent to changing £ by a totally positive element b € E, necessarily lying in F. This
implies that 7(o)n(c) = Xeye(o) - b for some totally positive b € F. On the other hand,

Corollary implies

Na(s)Na(s) = Nmy . /a,(s) = 0|gsr mod Q* = x(0) mod Q*

where we use the Kronecker-Weber theorem Q* = Q(({,,) to observe that o|gav acts through
the cyclotomic character, which we may identify as having image in Z* C A; acting on

- S .o 7|ga L
oo =~ Z. By positivity, we know that the ambiguity WN}JT(S) actually lies in Q.
Write t := ]\7;2) Then our work shows that ¢ - ¢ is a totally positive element of F* —

Ag’f. We cite:

Theorem 38.2. (Hasse Norm Theorem.) Let L/K be a cyclic extension of number
fields. If z € K is a local norm at all places, i.e. for all places v of K and all places
w | v of L, there exists y,, € L, such that Nmy, ,x, (yw) = @, then z is in fact a
global norm, i.e. there exists y € L such that Nmp,/x(y) = =.

Proof. See [Mil86, §VIII, Thm. 3.1]. [ |

The element t is, a priori, an element lying in AE fr80t- t is visibly a local norm at all
finite places. Since we’ve also shown that ¢ - ¢ is totally positive, ¢ - ¢ is also a local norm
at all archimedean places—an element of R* is a norm from C* if and only it is positive.
Since E/F is cyclic of degree 2, by Theorem there exists e € E such that ee = tt. We
conclude t mod E* € T'(Ay)/T(Q), since t/e has norm 1 € Af. [ |

Indeed, by definition, we already know that Ng(s) lies in T'(A;)/T(Q). Lemma then
shows that 7 : Gal(Q/E*) — Aj ;/E* factors through Gal(E**"/E*) — T(A;)/T(Q) —
AL ;/E*.

38.2 Review of ray class groups

See also [Mil20, §V.1, §V.4]; note that when we refer to a “prime,” we mean a finite prime,
whereas Milne allows this to refer to an arbitrary place.
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Let K be a totally imaginary number field. A modulus m = Hp p™®) is a product of
finitely many primﬂ ideals in Og. We let S(m) denote the support of m, i.e. those p such
that m(p) > 0, and we let I5(™) be the subgroup of the group of fractional ideals coprime
to S(m).

Definition 38.1. The ray class group is
Cn(K) =TI /Ky 1,

where
Kpi:={a€e K*:a,€1 —|—pm(p)(9Kp},

which we map inside I°(™) by taking principal ideals. The subgroup Kn1 € K* should
be thought of as elements that are sufficiently p-adically close to 1 for all p; exactly how
close is dictated by the multiplicity of p in S. If p & S(m), i.e. m(p) = 0, then there are no
conditions at p. We also define an idelic analogue of Ky 1:

/
Mg =T KX < [[1+p0¢0k,,
vtm v|m

where as usual the primed summation notation means that all but finitely many components

lie in O. We also write

Wa(K)= [ EXxJJa+emt20x)x [ 0%

vim,v|oo v|m vtm,vfoo
which is an open subgroup of A% = C Aj%. We can re-express the ray class groups as

Cm(K) = AE'm/l(m,l Wi = Ag,m,f/Um . Km,17

where Un(K) = ][ ,jm(1+ pB‘(’”’)OK) X T Lopm,vro0 Ok,
Finally, if m = (m) for an integer m, then we will also use the notation KmJ?AIX(’m, etc.

The ray class groups are all finite, and the images of the sets {Up, (E)NT(Af) }mez., form
a basis of open neighborhood of the identity in T'(A;)/T(Q). The maps 1 : Gal(Q/E*) —
AL ;/E* and Ng : Af. /(E*)* — Af ;/E* are continuous, so for any m their composi-
tions with Az , — Cp,(E) have open finite index kernel.

38.3 a-multiplication

Definition 38.2. Let a be an ideal of O C End(A). A surjective homomorphism A : A —
B is said to be an a-multiplication if:

1. For all a € a, the homomorphism a : A — A factors uniquely through A : A — B.

2. The homomorphism A\ is universal for this property, meaning that if A’ : A — B’ also
satisfies (1), then there exists a unique map B’ — B making the diagram commute:

26Since K is totally imaginary we need not worry about archimedean places.
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Fact: for every ideal a C O, there exists an abelian variety B and an a-multiplication
A : A — B. More specifically, B = A/ ker(a) where

ker(a) := ﬂ ker(a).

aca
(This intersection may be taken to be finite since a is finitely generated.) We can also write
B=A Ko a"t.
38.4 Statement of the ideal-theoretic version of the Main Theorem

We will first prove a version of the Main Theorem stated in terms of ray class groups rather
than ideles, and from this we will eventually deduce the idelic version. For a modulus m of
a field K, we let Ly, denote the ray class field for the modulus m and we let

recim : Cm(K) — Gal(Ln/K)

denote the ideal-theoretic version of the Artin map for the modulus m, again normalized to
send a geometric Frobenius to its corresponding prime.

Theorem 38.3. (Shimura-Taniyama Main Theorem of Complex Multiplication,
ideal-theoretic version.) Let A/Q have CM by (E, ®). Assum(ﬂ that End(4A) N E =
Og. Fix 0 € Gal(Q/E*) and m € Z~(, where E* is the reflex field.

Then

1. There exists an ideal a(c) of O, coprime to m, and an isogeny o : A — ? A such
that a(z) = o(x) for all z € A[m] and « is a a(o)-multiplication. Moreover,
the class [a(0)] in Cy, (E) is uniquely determined by o.

2. For a sufficiently divisible modulus m of E*, [a(o)] only depends on o|r,,,. More
specifically, for such m we have [a(c)] = [Ng(a*)71], where [a*] € Cn(E*) is
the ideal class such that recg« w([a*]) = o|L.,-

%This assumption is harmless because there is always a representative of the isogeny class of A
with this property, and the theorem will be invariant under isogeny.

39 Finishing the proof of Main Theorem (04/24/2024)

39.1 Properties of a-multiplication

We will omit some details about the Serre tensor construction, which is apparently mostly

formal and not hard in characteristic 0. Here is the definition:

Definition 39.1. (Serre tensor construction, CM case.) Let A/k be an abelian variety with
CM by a field E, and assume that O C End(FE). Then for a fractional ideal a of E we
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denote by A ®p,, a the scheme representing the functor S ~» A(S) ®c,, a for k-schemes S.

That is, we treat A as an Og-module, so that the idea of tensoring with another Og-
module makes sense. Fact: A ®p, a always exists, i.e. the given functor is representable.
See also §I1.7] and §1.7.4] for more details.

Let A have CM type (E,®) and let Op C End(A). If A: A — B is an a-multiplication,
then B ~ A/ker(a), which is also isomorphic to A ®o, a~!. If A= C9/®(A), then we can
write B = C9/®(a"1A).

Proposition 39.1. Let A : A — B and M : A — B’ be a- and o-multiplications,
respectively. Then there is an E-isogeny f : B — B’ such that fo X = )\ if and only
if a O a’. In particular, there exists an E-isomorphism f : B — B’ with fol =\ if
and only if a = a’.

Proof. If a O d’, then the existence of f is immediate from the universal property of \'.
Conversely, suppose such f exists. Then choose an a + a’-multiplication \” : A — B".

We have X\’ oa = N\’ for either a € a or a € d/, so by the universal property of A and \’

we get unique morphisms B” — B and B” — B’ making the upper-left and upper-right

triangles in the diagram commute:

A

)\/
A A
B"

0N

B— B

Note that the outer triangle commutes by assumption. We deduce that the bottom triangle,
hence the entire diagram, commutes by chasing universal property.
The diagram shows the inclusion
kera ker o’

——  _ —¥ker(B”" - B)Cker(B" -+ B)= ———.
ker(a + a’) er(B" = B) € kex(B" = B) ker(a + a’)

But this implies that % is trivial: we have ker(a) N ker(a’) = ker(a + a’), hence

ker a ker a’ _ ker a ker a’ : . ker a _ .
ker(a+a’) N ker(a+a’) O’ hence ker(a+a’) = ker(a+a’) 1mphes ker(a+a’) 0. Equwalently,
B"” — B is injective, which implies a C a'. |

Proposition 39.2. If A : A — AN : A — A" are a- and o’-multiplications
respectively, then X o A : A — A" is an aa’-multiplication.

Proof. Omitted; the idea is that we write A’ = A ®p, a~!. |

[ Proposition 39.3. If A is an a-multiplication, then deg A = [Og : q].
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Proof. (Sketch.) The idea is that over C, we use deg A = [a™ 1A : A] = [Of : d]. In general,
for a € O, we first note that [a] : A — A is an (a)-multiplication of degree

Ok : (a)].

Then we use the principal case to get the general one by finding \’ with degree coprime to
A such that A" o A = [a]. [ |

Proposition 39.4. Let A, B/Q have CM by E with O C End(A), End(B). If there
exists an E-isogeny A — B, then there exists an ideal a C O and an FE-isogeny
A — B that is also an a-multiplication.

Proof. Proofidea: We may assume A, B/C, so that A(C) = CY9/®(b;) and B(C) = C9/P(b2)
for fractional ideals by, bs of E. We can adjust by by multiplying in elements in E in order
to arrange by C bg, so we get an F-quasi-isogeny A — B that is a b1 b5 Lmultiplication with
b1 52—1 C Og an integral ideal. [ |

Proposition 39.5. Let A, B be FE-isogenous CMAVs over a number field K with
with Op C End(A),End(B) with good reduction at a prime p of K. Let Ao, By

denote their reductions modulo p.

1. The reduction Ag : Ay — By of any a-multiplication A : A — B is another

a-multiplication.

2. Let \g : A9 — By be an E-isogeny. Then Ag lifts to an a-multiplication
A: A — B for some ideal a C O after taking a finite extension of K. Hence

by part (1), Ao is also an a-multiplication after taking a finite extension.

. J

Proof. 1. Let a € a. Then there exists a unique « such that a = a o A by the definition

of a-multiplication:

The maps A, a, a all extend uniquely to the Néron models &7, # of Ay, By over Ok,

giving a diagram

od -2 B

I
X« I
<+

o

and by the Néron mapping property this diagram descends uniquely to diagram

A()LBO

I
X =[P
+

A
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Since this holds for any a € a, we conclude g : Ay — By satisfies the universal

property of a-multiplication.

2. (Sketch.) Proposition tells us that there exists some b-multiplication X' : A — B
for some ideal b C OF after possibly taking a finite extension of K. By part (1), its
reduction Aj is also a b-multiplication. By properties of the Serre tensor construction,
we have Home, (A4, B) ~ b~! with the isomorphism given by sending A\ + 1, and
likewise Home,, (Ao, Byg) =~ b~! by sending \), — 1. Hence the reduction map

HOIHOE (A, B) — HOmoE (Ao, Bo)

is an isomorphism. Thus any given Og-isogeny Ao : Ag — By lifts to an isogeny

A: A — B, which is an a-multiplication for some ideal a.

Proposition 39.6. Let o : A — B be an a-multiplication, and choose identifications
T(A) ~T(B) ~]] OF.- Then
under this identification, o : T(A) — T'(B) is given by multiplication by an element

vtoo OB, » Which is unique up to multiplication by [,

z € A ; with v(z) = v(a) for all finite places v of E.

Proof. The universal property of a-multiplication tells us that a : A — A factors through
. Take some identification T(A) ~ T(°A) ~ [1ito0 OF, . the choice of which is unique
up to a multiple of [[,, Op. . Then, up to a multiple of [Toreo Op. , we may identify
a: T(A) — T(°A) with multiplication by its image in []
Og,. Since this is true for all a € a, we conclude that

Og,. Therefore, « acts by

vfoo

some element dividing a in vaoo

a acts by an element x € Agﬁf with v(z) < mingeq{v(a)} = v(a) for all finite places v.
Conversely, we know from Proposition that « has degree [Og : a]. If an isogeny has
degree d, then its determinant on Ty (as a Qg-linear map) has valuation v,(d). Therefore
[OF : a]¢ = detg, (Te(a))e = [ L #k™) | where #k, denotes the order of the residue field

of the place v. But we also have the formula

Op ol = ] #k5,

v[(£)

so by comparing the two expressions we conclude the inequality v(z) < v(a) must actually

be an equality for all places v. |
|

See |[Mil10, §11.7] for more details on the properties of a-multiplication.

39.2 Proof of ideal-theoretic Main Theorem part (1)

After all this setup, we can prove Theorem [38.3] By Proposition [39.4] there exists an ideal
a = a(o), with a depending on o, such that there exists an a-multiplication

a: A=A
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compatible with the F-action. By Proposition deg(a) = [Og : a]. We may choose
a € a~! such that [Of : aa] is prime to m. Then aa : A — 7 A is an (aa)-multiplication, an
FE-isogeny, and of degree coprime to m, so without loss of generality we may choose a and
a with deg oo = [Of : a] coprime to m.

Therefore a defines a class in Cy,(E) and o : A[m] — 7 A[m] is an isomorphism; we
also know that o : A[m] — 7 A[m] is an isomorphism. The fact that V(A) is a rank 1 free
Ap j-module implies that A[m] is a rank 1 free Og/(m)-module, which implies that any
two Og-endomorphisms differ by some element of Op. We conclude that there exists some
b € O, coprime to m, such that (a0 b)|am] = 0|am]- Therefore, replacing o with a0 b
and a with ba, we may further assume that a|apm) = o|apm-

We know that any two E-isogenies «,a’ differ by an element of E*. However, only
multiplication by elements of E,,; will preserve the property a|apm) = o|ajm), since these
are precisely the elements of E* that act by 1 on A[m]. We require a to induce this
property, so we conclude that all choices for a with this property differ by an element in
E,.1. Therefore, we have produced a canonical ideal class [a(c)] in 190 /E,, ; = C,,(E)
that depends only on o. This is part (1) of Theorem [38.3]

39.3 Ideal-theoretic Shimura-Taniyama formula

We will need to determine the ideal class [a(0)] € Cy,(E) in terms of 0. The key to doing
this is the Shimura-Taniyama formula! We prove a formula for [a(c)] when o is a Frobenius
element associated to some prime 3/p in K/E*. Since the Frobenii exhaust any given finite
Galois group by the Chebotarev density theorem, this will let us identify [a(o)] in general.

Theorem 39.7. (Shimura-Taniyama Formula, ideal-theoretic version.) Let A/K
have CM by (E,®), let K be Galois and contain all Galois conjugates of E, and
assume Op C End(A). Let ‘B/p/p be primes of K/E*/Q such that Ky/Q), is
unramified, and assume A has good reduction at B. Let o € Gal(K/E*) be a lift of
the arithmetic Frobenius Frob € Gal(k()/k(p)). Then:

1. The lift oo : A — 7 A of the #k(p)-th power Frobenius morphism Ag — Ay is
an a-multiplication for
a = Nmg (p)

2. The ideal a(o) in part (1) of Theorem has ideal class [a(0)] = [Neo(a*)]7! €
Cy(E), where [a*] is the ideal class such that recg- wm([a*]) = oz,

Proof. 1. Let o € Gal(K/E™) be the lift of Frobenius from Gal(k(*B)/k(p)). Let 7 € Op
be an element that lifts the #k(3)-th power Frobenius morphism Ag — Ap, which

satisfies

(m) = [ ¢ ' (Nmg oz B) = Ne.o(B) = No(p)/ F/P
ped

where the first equality is the Shimura-Taniyama formula (Theorem [30.1) and the

second is Proposition and f(P/p) is the residue index. By Proposition
there exists an a-multiplication « : A — °A that lifts the #k(p)-th power Frobenius
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map Ag — “Ag. This is arranged so that the two maps m and

AR e a (9)

are both endomorphisms on A that descend to the #k(3)-th power Frobenius endo-

morphism on Ag. Therefore, by the Néron mapping property, these two endomor-

phisms are equal.
Immediately from the definition of a-multiplication, 7 is a (7)-multiplication, and
the endomorphism @ is a af F/P)_multiplication by Proposition m Therefore,

since these two endomorphisms are equal, by Proposition we conclude that the
corresponding ideals are also equal:

No(p)/F/P) = (7) = a/ B/,

Therefore, by unique factorization of ideals, we conclude that a = Ng(p), as desired.

2. Part (1) tells us that [a(c)] = [Nme(p)]. But p is the image of o|£i under the Artin
map, which sends a geometric Frobenius element to its corresponding prime ideal
under our conventions (i.e. the conversion from arithmetic to geometric Frobenius

introduces the inverse in this formula).
]

39.4 Proof of ideal-theoretic Main Theorem part (2)

Let 0,0’ € Gal(Q/E*). By part (1) of Theorem we have isogenies o : A — “A,a/ :
A — 7 A that are a(0)-, a(o’)-multiplications, respectively. Then %a/oa: A — A — 77" A s
an a(o)a(o’)-multiplication by Propositionm Thus the map Gal(Q/E*) — C,,(E) given
by o +— [a(0)] is continuous group homomorphism. By continuity, there exists a modulus m
of F* such that we have the following factorization:

Gal(Q/E*) =l o (B

A
lres

Gal(Ly/E*) === Co(E*)

where recg« n is the Artin reciprocity map for the modulus m. Hence [a(c)] only depends
on o, , and we have defined a homomorphism Cy, (E*) — C),,(E) determined by

recgs m(o|r,,) = [a(o)].

Recall that we wish to show [a(c)] = [N (recp+ m(o|L, ) ']. Theorem mtells us this
is true whenever o is the Frobenius element associated to an extension K/E* unramified over
a given prime p. By the Chebotarev density theorem (or Dirichlet’s theorem), such p exhaust
Cw(E*), so we have proven part (2) of Theorem for all 0|z, € Gal(Ln/E*). Since
[a(o)] depends only on o]y, , this prove part (2) of Theorem for all o € Gal(Q/E*).
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39.5 Idéelic version from ideal-theoretic version

Proposition 39.8. Theorem [38.3| implies Theorem |31.4

Proof. Let 0 € Gal(Q/E*) and let s € Aj. /(E*)* such that Art(s) = o|g-.», and let a
and a(o) be as in Theorem Recall that n(o) € A}:i’f is defined to be the unique idéle
such that

a(n(o) - x) = o(z)

for all x € V(A), which is well-defined up to multiplication by E* since « is also unique up
to multiplication by E*.
From Lemma B8.1] we know that

~Aac A% Nmpg/p(a) € AX}

(o) T(As)/T(Q) = {a € BEx : Nmpr(a) € Q"]

Na(s)

<—>A§7f/EX.

Therefore, by Lemma to check that n(o) and Ng(s) are the same, it suffices to
check that an arbitrarily small open neighborhood of 7(o) contains Nq;(s)E Recall that
the subgroups U,, C AE’ 7 restrict and descend to a basis of open subgroups at the identity
for T(Ay)/T(Q) ranging over m € Zxg.

Fix m > 0, and adjust o by a multiple of E* so that a|s[m) = o]} as we did in Section
so that « is an a(o)-multiplication (unique up to multiplication by E,, 1).

We need to relate n(o) to a:

Lemma 39.9. The image of (o) in C,,(E) is [a(o)71].

Proof. We may choose an isomorphism V(A) ~ V(°A) ~ Apg ¢ such that the action of
o: A — 9A is identified with multiplication by 1 € AE, #» since o induces an isomorphism
on the Tate modules. By Proposition « acts on the Tate module by an idele x € AEJ
with v(z) = v(a(o)) for all finite places of E. Therefore, the idele n(o) such that

for all y € V(A) must satisfy v(n(c))+v(a(c)) = 0. Hence (o) maps to the inverse of [a(c)]
in Cpn(E). (Note also that the assumption | [m) = 0|4}y implies that n(o) € Ag,,.) W

Let 7' = noArt : Ap. /(E*)* — Ag ;/E*. For any fixed m, we have continuous

compositions
N
Af. 1J(B*) == A} /EX —» Cu(E)
7’ '

both of which have open kernel. Therefore, we can find some open subgroup of the form
Um C Aj. ; contained in this kernel. This gives two factorizations

2"This is the reason why we went through the trouble of introducing the torus 7 while T'(Af)/T(Q) is
Hausdorff, A}j f/ E* is not, making this sort of approximation argument via the ray class groups impossible

if we were to only work in A7 f/EX.
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(one for each of " and Ng).

Theorem and Lemma tell us that the two maps Cn(E*) — Cpn(E) agree
whenever o restricts to a Frobenius element in Gal(Ly,/E*) (note that the negative signs
from these two results cancel each other). By the Chebotarev density theorem, we conclude
that these maps are in fact equal for all o € Gal(Q/E*).

Hence Ng(s) and 7'(s) map to the same element [Ng(s)] = [a(0)] in Cp,(E) for any
s € Ap. ¢/(E£*)*. This shows that ](7,;(8) = ]\7,’4()‘2) lies in U,,. Since the U,, define a basis of
open neighborhoods at the identity, this means n(o) and Ng(s) are arbitrarily close inside
T(A)/T(Q), so by the Hausdorff property we conclude that n(c) = Ng(s) as elements in

AE 7 /E*. This statement is Theorem ]
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