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Introduction

An arborescence of a directed graph Γ rooted at a vertex v is a directed
spanning tree with edges directed toward v. We denote the sum of the weights
of all arborescences rooted at v by Av(Γ).

Fig. 1: A Z/3Z-voltage graph Γ (left) and its two arborescences rooted at vertex 2. A2(Γ) = bd + be

A k-fold covering graph Γ̃ of Γ is a graph equipped with a k-to-1 quotient
map onto Γ.

Fig. 2: The derived covering graph Γ̃ of Γ. How many arborescences can you find rooted at vertex 21?

If a vertex ṽ ∈ Γ̃ is a lift of the vertex v ∈ Γ, then Galashin-Pylyavsky [2]

showed that the ratio Aṽ(Γ̃)
Av(Γ) does not depend on the choice of v for strongly

connected Γ, but did not compute this ratio.

Main Question

How are the arborescences of a covering

graph related to the arborescences of the

base graph? Can we find an explicit for-

mula for the ratio
Aṽ(Γ̃)
Av(Γ)

?

Voltage graphs

One convenient way to construct a covering graph is to fix a voltage group G and
to label each edge e of the base graph with an element ν(e) of G. Then the derived
covering graph Γ̃ is defined to be a |G|-fold cover with edges defined by the group
law. The voltage Laplacian matrix L (Γ), due to Chaiken [1], is given by

`ij = δij
∑

e=(vi,w)

wt(e)−
∑
e=(vi,vj

ν(e)wt(e)

e.g.

L (Γ) =

(1− ζ3)a + b −b 0
0 c −ζ2

3c
−ζ2

3d −e d + e


Formula for ratio of arborescences

Theorem (Dowd-Zhang-Zhang): The ratio
Aṽ(Γ̃)
Av(Γ)

may be expressed in terms of the determinant

of a matrix:
Aṽ(Γ̃)

Av(Γ)
=

1

k
det[L (Γ)]Z

When Γ̃ is a regular cover, the matrix [L (Γ)]Z may be realized as the Z-linearization
of the voltage Laplacian matrix L (Γ) via restriction of scalars. As a corollary, if Γ̃ is
a regular cover of prime degree p, then this determinant may be expressed as a field
norm of the determinant of the voltage Laplacian:

Aṽ(Γ̃)

Av(Γ)
=

1

p
NQ(ζp):Q(det L (Γ)) =

1

p

∏
σ∈Gal(Q(ζp):Q)

σ(det L (Γ))

Proof Sketch

Let L(Γ) be the Laplacian matrix of Γ. The Matrix Tree Theorem says that Avi(Γ) =
Lii(Γ), the minor of L(Γ) obtained by removing the row and column corresponding
to vi. We found that L(Γ̃) may be triangularized nicely under a particular change of
basis S:

S−1L(Γ̃)S =

[
L(Γ) ∗

0 [L (Γ)]Z

]
Thus, we need to compare the minor of L(Γ̃) before and after the change of basis. It
turns out that the minor at any lift ṽ of v ∈ Γ after the change of basis is

∑k
i=1Aṽi(Γ),

the sum of all arborescences rooted at any lift of v. By symmetry, this is kAṽ(Γ); the
main result follows.

Vector fields

Arborescences are closely related to vector fields, which are subgraphs
such that every vertex has outdegree 1.

Fig. 3: The four vector fields of Γ from Figure 1.

Via deletion-contraction, we derived a novel proof of the following for-
mula, originally due to Chaiken [1]:

Let G be an abelian group, and let Γ be an edge-weighted G-voltage
graph. Then

∑
γ⊆Γ

[
wt(γ)

∏
c∈C(γ)

(1− ν(c))

]
= det L (Γ)

where the sum ranges over all vector fields γ of Γ, C(γ) is the set of
cycles in γ, and ν(c) is the product of the voltages of the edges of the
cycle c. The Matrix Tree Theorem is an easy corollary of this result.

In the case k = 2, we have [L (Γ)]Z = L (Γ), which leads to a combina-
torial interpretation of the right-hand side of the main theorem in terms
of vector fields. Does a similar combinatorial interpretation exist for cov-
ers of all degrees? If so, can we come up with an explicit combinatorial
bijection yielding the main theorem?
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