
A Brief Mathematical Analysis of To the Moon’s Memento
Puzzles

CJ Dowd

September 21, 2023

1 Intro
To the Moon is short story-based adventure game about a pair of scientists enlisted to fulfill the dying wishes
of old man, Johnny Wyles. To do so, they travel through Johnny’s memories, with the goal of altering them
to restructure Johnny’s memory of his own life in a manner consistent with his wishes. They leap from
memory to memory via mementos, objects of great personal importance to Johnny. Upon finding each
memento, the player must solve a puzzle to proceed.

I’ve always found the existence of this puzzle minigame rather odd, since (a) the player’s performance
on the puzzle has no consequences whatsoever and (b) it seems stylistically out of place with the rest of the
game. However, I did find solving the puzzle interesting enough to make me think about how to solve it
algorithmically, so I began to analyze it mathematically. It turns out that the game is fairly easy to model
with linear algebra over Z/2Z.

The goal of this short essay is to outline an algorithm that solves any memento puzzle automatically
and efficiently. The maximum grid size reached in To the Moon is 5× 5, but we generalize to puzzle grid of
arbitrary size. We also demonstrate how to determine whether a given puzzle is unsolvable, though every
puzzle presented in-game is solvable.

2 Rules
The puzzle takes place on a rectangular grid of tiles containing an image. The size of this grid varies between
3× 3 to 5× 5 over the course of the game, and is not necessarily square. Each tile has two sides, with one
side blank and the other side containing the correct piece of the image; we’ll say the a tile is “facing up” if
the image is displayed and “facing down” if the blank side is displayed. On each move, the player can do one
of three things:

1. Flip every tile in a given row.

2. Flip every tile in a given column.

3. Flip every tile on the lower-left to upper-right diagonal (which from now on I will simply call the
“diagonal”).

Initially, some tiles are facing up and some tiles are facing down. The goal of the game is to transform the
grid from its initial configuration into a complete image using a minimal number of moves. That is, the
player must perform a sequence of moves as above so that every tile is facing up.

3 Analysis
A couple preliminary observations:

1



• Every move is reversible, since performing any move twice in a row undoes it.

• The order of the player’s moves does not matter.

• A given move never needs to be made more than once, since based on the previous two observations,
performing a particular move twice is the same as not performing it at all. Therefore we will assume
that any solution contains no repeated moves.

We model the game as follows. Suppose the game is being run on an n ×m grid. We model the current
state of the game as an element of the mn-dimensional Z/2Z-vector space V = Matn×m(Z/2Z), where
Z/2Z = {0, 1} is the field with two elements and Matm×n(Z/2Z) is the set of n ×m matrices with entries
in Z/2Z. We assign each tile a matrix coordinate in this vector space corresponding to its position on the
game board. If a tile is facing up, we associate the value 0, and if it is facing down, we associate the value
1, so that any given game state has a unique representation as an element v ∈ V .

Performing a move corresponds to adding an appropriate vector to the current game state. In contrast
to standard mathematical convention, we’ll order the matrix rows starting from the bottom in order to be
consistent with the notation in the puzzle, e.g. the first row of a matrix is the bottom row and the diagonal
goes from the lower-left to the upper-right.

• Let ei denote the n×m matrix whose i-th row consists of all 1’s and all other entries 0. Flipping the
i-th row in the puzzle corresponds to adding ei to the current game state.

• Let fi denote the n ×m matrix whose i-th column consists of all 1’s an all other entries 0. Flipping
the i-th column in the puzzle corresponds to adding fi to the current game state.

• Let d denote the matrix with 1’s on the diagonal and all other entries 0. Flipping the anti-diagonal
corresponds to adding d to the current game state.

Letting v0 be the initial game state, the goal of the game is to find the smallest subset I ⊆ {e1, . . . , en} ∪
{f1, . . . , fm} ∪ {d} such that

v0 +
∑
v∈I

v = 0,

or equivalently

v0 =
∑
v∈I

v,

recalling that we are working modulo 2. We may represent the latter equation in matrix form. Take an
ordered basis for V to treat V ∼= (Z/2Z)nm, so that the ei, fi, and d take the form of nm-tuples of 0’s and
1’s. Let M denote the column matrix

M =
(
e1 e2 . . . en f1 f2 . . . fm d

)
,

which has dimensions nm× (n+m+1). Solutions to the puzzle (not necessarily with the minimum number
of moves) correspond to solutions a ∈ (Z/2Z)n+m+1 to

Ma = v0.

A solution vector a corresponds to the following collection of moves. For every coordinate of a that is equal
to 1, if the index i of the coordinate is:

• 1 ≤ i ≤ n: Flip the i-th row.

• n+ 1 ≤ i ≤ m+ n: Flip the i-th column.

2



• i = n+m+ 1: Flip the anti-diagonal.

Therefore finding an arbitrary solution can be done efficiently using standard techniques in linear algebra,
e.g. Gauss-Jordan elimination.

As an example, consider the 5th memento puzzle in the game:

The grid is 4× 4, and the matrix M is the 16× 9 matrix

M =



1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0 1
0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 1 0 0 0 1 0 1
0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 1


The puzzle can be completed in 3 moves by flipping the first row, the fourth row, and the diagonal. The

3



corresponding initial state vector v0 and the solution vector a are

v0 =



0
1
1
1
0
1
0
0
0
0
1
0
1
1
1
0



a =



1
0
0
1
0
0
0
0
1


,

and indeed we have Ma = v0 mod 2.
However, we wish to find the solution with the minimal number of moves, which is equivalent to finding

a solution vector a that is as sparse as possible. Any two solutions a, a′ differ by an element of kerM , so we
turn to analysis of this kernel.

4 Optimizing the solution

4.1 General case
We’ll start with the case of a sufficiently large puzzle, when n,m ≥ 3. We claim that kerM is 1-dimensional,
spanned by the vector (1, 1, . . . , 1, 0) consisting of all 1’s except for the last entry. Any element of the
kernel corresponds uniquely to a sequence of moves, with no repetitions, that ultimately leaves the puzzle
unchanged. This means that every tile must be flipped an even number of times.

We’ll first assume that the puzzle is square, with n = m. Suppose that the sequence of moves is nonempty;
since flipping the diagonal alone is clearly not a solution, the solution must contain at least one row or column
flip. By symmetry, without loss of generality we may assume that this move is e1, flipping the first row. For
i 6= 1, there are only two ways to flip the (1, i) tile: the moves e1 or fi. Hence, all moves f2, . . . , fn must
also be contained in the move set. Since we are assuming n ≥ 2, this means in particular that f2 and f3 are
in the moveset, and from this we similarly deduce that e2, . . . , en−1 are also contained in the in the moveset.
Finally, the existence of e2 in the moveset similarly implies that f1 is also contained in the moveset. This
means that any nontrivial solution must perform every row and column move, which flips every tile exactly
twice, giving one nontrivial element of the kernel. We’ve shown that every nontrivial element of the kernel
must have its first 2n entries all equal to 1, so since the all 1’s vector (1, 1, . . . , 1, 1) is evidently not an
element of the kernel, we conclude that kerM = 〈(1, 1, . . . , 1, 0)〉.

If the puzzle is not square, say without loss of generality n ≥ m, then by considering the m×m subgrid
we conclude that the moves e1, . . . , em and f1, . . . , fm must all be part of the solution, from which we easily
conclude that the solution must also contain em+1, . . . , en. Thus the same conclusion follows.

Hence, assuming the puzzle is solvable, it has two solutions, differing by (1, 1, . . . , 1, 0). We can find the
minimal solution by comparing which of these contains fewer 1’s, which is easy to do by inspection. Note that
an arbitrary initial configuration need not be solvable. For n,m ≥ 3, the rank ofM ism+n+1−1 = m+n, so
the column space of M does not span all of (Z/2Z)mn. Of course, all puzzles given in the game are solvable.
It might have been an interesting addition by the developers to include an unsolvable puzzle for purposes

4



related to the story. Such a puzzle could be proven unsolvable by demonstrating that the corresponding
state vector v0 does not lie in the image of M , which is doable by standard linear algebraic techniques.

4.2 Case of small grids
Suppose either n = 1 or m = 1; without loss of generality m = 1. We can describe an optimal solution
directly: if strictly more than half of the tiles are facing down in the initial configuration, perform the unique
column move. Then, perform row moves to flip over the remaining face-down tiles one at a time. We can
ignore the diagonal move since it is the same move as flipping the first row.

Now suppose n,m = 2. We have

M =


1 0 1 0 1
1 0 0 1 0
0 1 1 0 0
0 1 0 1 1


We can verify directly that this matrix has 2-dimensional kernel kerM = 〈(1, 1, 1, 1, 0), (1, 0, 1, 0, 1)〉. Hence,
if any solutions exist, there are always exactly four solutions, and again finding the optimal one is a matter
of inspection, which is particularly easy in this case since the number of possibilities is small.

Now suppose, without loss of generality, that m = 2 but that n ≥ 3. By considering the 2 × 2 subgrid,
a nontrivial element of the kernel must include one of the move sequences {e1, e2, f1, f2}, {e1, f1, d}, or
{e2, f2, d}. But if not all of the columns are in the solution, there is no way to flip the tiles on rows 3 and
higher more than once, so we conclude that both column moves f1, f2 must be present, and therefore all row
moves must be present. This implies that the solution does not involve d, so we obtain the same result as
the general case with n,m ≥ 3.

5


	Intro
	Rules
	Analysis
	Optimizing the solution
	General case
	Case of small grids


