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Note to reader: This essay was originally written as a term paper for a second course in scheme theory.
I found these topics enlightening mainly for two reasons:

• Illustrating the utility of representable functors: in the 27 lines, it is essential that we may treat the
Grassmannian both as a smooth projective variety and as a moduli space.

• A reason to care about fibers of morphisms and flatness: keeping track of the fibers in the incidence
variety is the main idea of the proof in the 27 lines. We apply Miracle Flatness in a concrete scendario,
and we learns about subtleties that must be addressed in these types of applications (e.g. nonreduced
fibers).

If these are topics that seem mysterious to you, then this essay might be worth a read. This paper mostly
follows Vakil’s outline of the proof, completing exercises that he sets out, so there is not much new content
if you are familiar with that already.

1 Introduction
Grassmannians are ubiquitous because they are moduli spaces of linear subspaces, which are of obvious
importance in many areas of mathematics. In geometric representation theory, they are a central object
of study—as a homogeneous space for GLn, the representation theory of algebraic groups may be studied
through the Grassmannian [Bri04]. In algebraic combinatorics, the Schubert calculus arises from the study of
the cohomology ring of Schubert varieties, which are subvarieties of the Grassmannian describing more spe-
cialized subspace data. More classically, the Grassmannian is indispensable in incidence algebraic geometry:
the study of the containment and configuration of linear spaces inside an algebraic variety.

In Section 2, we define the Grassmannian and discuss it in the scheme-theoretic setting, with the main
goal of proving its representability as a regular projective scheme. To accomplish this, we discuss the Zariski
criterion for representability and the Plücker embedding. We conclude the section by giving an explicit
description of Gr(2, 4), which is the first Grassmannian not isomorphic to projective space. In Section 3,
we prove the celebrated theorem of the 27 lines on a smooth cubic surface. The Grassmannian Gr(2, 4)
plays a central role in the proof, and indeed the fact that this moduli space may be represented as a smooth
projective variety is critical to be able to apply the machinery of flat morphisms. This justifies the discussion
in the previous section and illustrates the utility of representable functors generally.

2 Representability of the Grassmannian

2.1 The Zariski criterion for representability
Definition 2.1.1. A functor F : Schopp → Set is said to be a Zariski sheaf if it defines a sheaf on the
Zariski site of any scheme S. In more detail, this means that for any open cover {Si} of S in the Zariski
topology, we have an equalizer exact sequence
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{∗} F (S)
∏
F (Si)

∏
F (Si ∩ Sj).

If X is a scheme, then Hom(−, X) is a Zariski sheaf because morphisms glue. That is, if S has an open
cover {Si} and there exists morphisms fi : Si → X such that fi agrees with fj on Si ∩ Sj , then there is
a unique morphism f : S → X that restricts to the fi. Hence, a necessary criterion for a functor to be
representable is that it is a Zariski sheaf.

Definition 2.1.2. Let F : Schopp → Set be a functor. An open subfunctor of F is a functor F ′ equipped
with a natural transformation F ′ → F satisfying the following axiom: for any scheme S and any natural
transformation Hom(−, S) → F , the fibered product F ′ ×F Hom(−, X) is representable by some open
subscheme U ⊆ S. That is, the following is a Cartesian diagram:

Hom(−, U) Hom(−, S)

F ′ F

(The fibered product of functors F ′ ×F Hom(−, S) can be defined at the level of fibered products of sets.
That is, (F ′ ×F Hom(−, S))(Y ) = F ′(Y ) ×F (Y ) Hom(Y, S).) A collection of open subfunctors Fi are said
to cover F if for every natural transformation of the form Hom(−, S) → F , the corresponding Ui form a
Zariski open cover of S.

Any representable functor Hom(−, X) is covered by itself. By the Yoneda lemma, any natural transfor-
mation Hom(−, S)→ Hom(−, X) is induced by a morphism of schemes X → S, so the following diagram is
Cartesian:

Hom(−, S) Hom(−, S)

Hom(−, X) Hom(−, X),

as this is the Cartesian diagram obtained by applying Hom to the Cartesian diagram

S S

X X.

Hence we have demonstrated that a representable functor is a Zariski sheaf that can be covered by repre-
sentable open subfunctors. A useful criterion in proving representability is that the converse also holds:

Theorem 2.1.3. [Sta23, Tag 01JJ] A functor F : Schopp → Set is representable if and only if it is a Zariski
sheaf that has an open cover by representable functors.

2.2 The Grassmannian
Definition 2.2.1. [Sta23, Tag 089R] The Grassmannian functor Gr(d, n) : Schopp → Set is a contravariant
functor given on objects by sending a scheme S to the set Gr(d, n)(S) of isomorphism classes of surjections

O⊕nS → F .

where F is locally free of rank n − d. Here, a morphism between two surjections α : O⊕nS → F and
α′ : O⊕nS → F ′ is a morphism β : F → F ′ making the following diagram commute:

O⊕nS F

O⊕nS F ′.

α

id β

α′
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Hence isomorphism classes of surjections are in bijection with the possible kernels of α. Given a morphism of
schemes f : T → S, we obtain a morphism Gr(d, n)(S)→ Gr(d, n)(T ) sending α : O⊕nS → F to the induced
morphism O⊕nT → f∗F , making Gr(d, n) a contravariant functor. Note that f∗ is a right-exact functor that
preserves locally free modules and their rank, and that f∗OS = OT .

While we tend to think of the Grassmannian as parametrizing subspaces, this definition instead appears to
parametrize quotients. But since the isomorphism class of a surjection O⊕nS → F is uniquely determined by
its kernel, we recover the original meaning. In particular, when S = Spec k for a field k, we may canonically
identify Gr(d, n)(k) with the collection of d-dimensional subspaces of kn, since a locally free sheaf on Spec k
of rank n − d is just kn−d and a surjection kn → kn−d is specified up to isomorphism by a d-dimensional
subspace of kn.

Theorem 2.2.2. Gr(d, n) is a representable by a scheme of finite type over Z of relative dimension d(n−d).

Proof. Suppose we are given an open cover {Si} of a scheme S and a collection of surjections αi : O⊕nSi
→ Fi

with Fi locally free of rank n−d. If αi and αj define isomorphic surjections when restricted to Si∩Sj , then
we may think of

Fi|Si∩Sj
∼= Fj |Si∩Sj

∼= O⊕nSi∩Sj
/ kerαi|Si∩Sj

∼= O⊕nSi∩Sj
/ kerαj |Si∩Sj .

This means that we may glue the Fi to get a locally free sheaf F defined on all of S, and moreover we
obtain a globally defined surjection α : O⊕nS → F by gluing all the αi. Thus the Grassmannian is a Zariski
sheaf.

We define open subfunctors Gr(d, n)I of Gr(d, n) for each index set I ⊆ {1, . . . , n} of size n−d by setting

Gr(d, n)I(S) = {α ∈ Gr(d, n) : O⊕n−dS →ι O⊕nS →α F surjective}

where ιI : O⊕dS → O⊕nS is the inclusion onto the direct summands indexed by I. The intuition from linear al-
gebra is that Gr(d, n)I parametrizes d-dimensional subspaces of n-dimensional space that are complementary
to the (n−d)-dimensional space spanned by standard basis elements {ei}i∈I . It is reasonable to think of this
condition as being open: perturbing a subspace slightly does not change the fact that it is complementary
to another subspace.

To show that the Gr(d, n)I are indeed open subfunctors, note that we have a natural transformation
Gr(d, n)I → Gr(d, n) given by inclusion of sets. If S is any scheme, a natural transformation Hom(−, S)→
Gr(d, n) yields a distinguished element α ∈ Gr(d, n) corresponding to the identity in Hom(S, S). Let α ◦ ιI :
Od−k
S → F . The locus where this composition is surjective is open: given x ∈ S such that (α ◦ ιI)x is a

surjection, we may choose an open neighborhood U 3 x on which F is free, say generated by s1, . . . , sn−d. By
the definition of surjectivity at a stalk, after possibly shrinking U we conclude that there exist tI ∈ O⊕n−dS (U)
such that (α ◦ ιI |U )(ti) = si, yielding surjectivity in a neighborhood of x.

Let SI denote the open locus of surjectivity, and suppose f : T → S is a morphism of schemes. A point
x ∈ S lies in SI if and only if (α ◦ ιI)|x : k(x)n−d → Fx ⊗ k(x) is a surjection on fibers, which follows by
Nakayama’s lemma. Given a point y ∈ T , the map (f∗α ◦ f∗ιI)|t is the base change of (α ◦ ιI)|x by the
extension k(x) ↪→ k(t), so by flatness of field extensions we obtain surjectivity at t if and only if we have
surjectivity at x. This means that f∗α ∈ Gr(d, n)I(T ) if and only if f factors through the open subscheme
SI . Hence, for all morphisms f : T → S, the following is a Cartesian diagram:

Hom(T, Si) Hom(T, S)

Gr(d, n)I(T ) Gr(d, n)(T ).

Thus each Gr(d, n)I is an open subfunctor. To show that these subfunctors cover Gr(d, n), we need to
show that the SI as above cover S. Again, by Nakayama, surjectivity of α ◦ ιI at x ∈ S can be checked
on fibers, so this statement amounts to showing that if kn → kn−d is a surjection, then the corresponding
(n− d)×n matrix has some subset of n− d columns that are linearly independent, with the choice of subset
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corresponding to a choice of I. But this is clearly true from linear algebra, so we conclude that the Gr(d, n)I
form an open cover of Gr(d, n).

Finally, we show that the Gr(d, n)I are representable. If α ∈ Gr(d, n)I(S), the composition α ◦ ιI defines
a surjective morphism between the two locally free modules O⊕n−dS → F of the same rank. This means
that, on sufficiently small affine opens, this morphism is induced by a surjection An−d → An−d for a ring A.
But any such surjection is an isomorphism [Sta23, Tag 05G8]! We conclude that α ◦ ιI is an isomorphism
globally, so we may split α as

O⊕n−dS ⊕ O⊕dS → O⊕n−dS

where the first component maps identically onto the image. Such morphisms are represented by Ad(n−d)Z ,
since a choice of α corresponds to an arbitrary choice of map O⊕dS → O⊕n−dS , which is given by d choices
of (n − d)-tuples of sections. Equivalently, we are choosing the entries of the right portion of the following
(n− d)× n matrix: 

1 0 . . . 0 a11 a12 . . . a1d
0 1 . . . 0 a21 a22 . . . a2d
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 an−d,1 an−d,2 . . . an−d,d


Hence, by Theorem 2.1.3, Gr(d, n) is representable. Since it has a finite open subcover by schemes of

finite type over Z, we conclude that it, too, is of finite type over Z, and has relative dimension d(n− d). �

In fact, Gr(d, n) is representable by a projective scheme over Z. We will show this in a moment by
describing the Plücker embedding, but we first illustrate with the following special case.

Lemma 2.2.3. For n ≥ 1, Gr(n, n+ 1) is represented by PnZ.

Proof. If S is a scheme, then by definition PnZ(S) consists of morphisms S → PnZ, and all such morphisms
are given by the data of an invertible sheaf L on S along with a set of n+ 1 global sections s0, . . . , sn that
globally generate L . To these data we associate the surjection

O⊕n+1
S → L : (a0, . . . , an) 7→

∑
aisi.

Conversely, an element of Gr(n, n + 1)(S) is a surjection α : On+1
S → L for some locally free sheaf L of

rank 1, i.e. an invertible sheaf. The image of the n+ 1 generators (0, . . . , 0, 1, 0, . . . , 0) ∈ Γ(S,On+1
S ) map to

global sections of L , and these global sections define a morphism S → PnZ. These two constructions define
mutually inverse natural transformations of functors. �

This corresponds to the intuition of n-dimensional subspaces of an (n + 1)-dimensional space as being
parametrized by lines, i.e. by taking the annihilator of such a subspace in the dual space.

2.3 The Plücker embedding
Given a surjection O⊕nS → F for F locally free of rank n− d on S, taking exterior powers gives a surjection

α : O
⊕(n

d)
S → det F

onto an invertible sheaf on S. The data of such a surjection is equivalent to a collection of
(
n
d

)
globally

generating sections of det F , so we associate to α ∈ Gr(d, n)(S) a morphism S → P(n
d)−1

Z , i.e. an element of

P(n
d)−1

Z (S). That is, we have a map Gr(d, n)(S)→ P(n
d)−1

Z (S) for every scheme S. It can be checked that this

is natural in S, so by the Yoneda lemma we conclude that we have a morphism of schemes Gr(d, n)→ P(n
d)−1

Z .
In fact:
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Proposition 2.3.1. The morphism Gr(d, n)→ P(n
k)−1

Z is a closed embedding, known as the Plücker embed-
ding.

Proof. We first show that the open subscheme Gr(d, n)I ' Ad(n−d)Z identified in the proof of representability

is the preimage of D+(xI) under this map, where we treat the coordinates of P(n
d)−1

Z as indexed by (n− d)-
element subsets I ⊂ {1, . . . , n}. This can be checked via the functor of points: if α ∈ Gr(d, n)I(S), then the
composition

O
⊕(n−d)
S O⊕nS F

ιI α

is surjective, so it remains surjective after taking (n− d)-th wedge powers, yielding a surjective composition

OS → O
⊕(n

d)
S → det F .

Let si be the images of the coordinate section ei ∈ Γ(S,O⊕nS ) in F , for each i ∈ I. Surjectivity of the
above composition means means that the wedge product s1 ∧ · · · ∧ sn−d does not vanish anywhere. By

the construction of the map to projective space, this means that the morphism S → P(n
d)

Z lies in the chart
D+(xI), as desired. Conversely, nonsurjectivity of α◦ιI implies that the wedge product s1∧· · ·∧sn−d vanishes
somewhere on S, so that point of S must be mapped to V (xI). Hence we conclude that the preimage of
D+(xI) is exactly Gr(d, n)I .

Hence, the morphism Gr(d, n) → P(n
d)−1

Z is obtained by gluing together the morphisms Ad(n−d)Z '

Gr(d, n)I → D+(xI) ⊂ P(n
d)−1

Z for various I. Since the distinguished opens D+(xI) cover projective space,
it suffices to prove that each of the morphisms Gr(d, n)I → D+(xI) are closed embeddings. Without loss of
generality, take I = {1, . . . , d}. The morphism Gr(d, n)I → D+(xI) is given by a ring homomorphism

Z
[
x′I
xI

]
I′
→ Z[{aij}]1≤i≤n−d<j≤n

where the subsets I ′ range over all d-element subsets of {1, . . . , n}. We must show that this ring homomor-
phism is surjective. As we did when proving the Gr(d, n)I is representable, we organize the variables aij into
a matrix, though we change the indexing slightly:

1 0 . . . 0 a1,n−d+1 a1,n−d+1 . . . a1n
0 1 . . . 0 a2,n−d+1 a2,n−d+2 . . . a2,n−d+1

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 an−d,n−d+1 an−d,n−d+2 . . . an−d,n


The identification Gr(n, d)I ' Ad(n−d)Z was made by identifying a surjection of the form O⊕nS → O⊕dS given
in the matrix form above with the coordinates aij . Taking (n− d)-th exterior powers and letting xI′ be the

wedge of the coordinates in I ′, we find the new morphism O
⊕(n

d)
S → det F is given by the row vector (MI′)I′ ,

where MI′ is the minor of the matrix above given by the columns indexed by I ′. Hence, we identify the ring
homomorphism as the one given by sending x′I

xI
to the minor MI′ . It follows that the ring homomorphism is

surjective, since MI′ = aij for I ′ = {1, . . . , î, . . . , d, j}. �

Corollary 2.3.2. For any field k, Gr(d, n)k is a smooth projective variety of dimension d(n− d).

Proof. The Plücker embedding shows that the Grassmannian is projective. The relative dimension, irre-
ducibility, and smoothness follow from the fact that Gr(d, n)k can be covered by copies of finitely many
copies of affine space Ad(n−d)k . �
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The Plücker equations are the polynomials that cut out the Grassmannian as a projective variety. The
(n − d) × (n − d) minors of any (n − d) × n matrix satisfy a quadratic relationship, so by our construction
of the Plücker embedding the Grassmannian will lie in the vanishing locus of the corresponding quadratic
relations among the xI . It turns out that these relations are sufficient; we omit the proof, instead turning
to the following example.

2.4 Gr(2, 4)

We have already seen that Gr(n, n+ 1) ' Pn for any n ≥ 1; by reasons of dimension, the Plücker embedding
also gives an isomorphism Gr(1, n+ 1) ' Pn. (In general, Gr(d, n) ' Gr(n− d, n), but we will not show this
here.) Therefore, the first geometrically interesting Grassmannian is Gr(2, 4).

The Plücker embedding realizes Gr(2, 4) as a hypersurface in P5, so it is cut out by one equation.
Let x12, x13, . . . , x34 be the six coordinates on P5 corresponding to the six choices of 2-element subsets of
{1, 2, 3, 4}. We claim that Gr(2, 4) is the vanishing locus

x12x34 − x13x24 + x14x23 = 0

This polynomial is irreducible, so it suffices to show that it vanishes on Gr(2, 4)—if Gr(2, 4) were smaller than
the vanishing locus, then it would have codimension greater than 1 in P5. We claim that the corresponding
relation among 2× 2 minors of a 2× 4 matrix is the relevant Plücker equation. That is, we claim that

M12M34 −M13M24 +M14M23 = 0

where Mij is the minor obtained from retaining columns i and j of the 2 × 4 matrix. If such a matrix is
given by (

a11 a12 a13 a14
a21 a22 a23 a24

)
,

then the purported identity is

0 = (a11a22 − a12a21)(a13a24 − a14a23)− (a13a23 − a13a21)(a12a24 − a14a22)

+ (a11a24 − a14a21)(a12a23 − a13a22)

which is true. By the construction of the Plücker embedding, the image of Gr(2, 4) satisfies any relations
that the minors satisfy in the variables xij , so we conclude that Gr(2, 4) is indeed cut out by the given
polynomial.

3 The 27 lines on a cubic
One classical application of the Grassmannian is its use in incidence geometry. To determine the configu-
ration of lines, hyperplanes, or some other type of linear subspace on an algebraic variety, working over the
Grassmannian is very useful. The Grassmannian does much more than merely providing a rigorous way of
keeping track of the data of linear subspaces: the fact that Gr(d, n) is itself a projective variety grants us
the full power of projective geometry. This is one illustration of why representability of the Grassmannian,
and indeed representability in general, is an important notion.

Let k be an algebraically closed field of characteristic not 3.1 We will prove the following celebrated
theorem, known informally as “the 27 lines on a cubic surface”:

There are 27 distinct lines on any smooth cubic surface in P3
k.

1The theorem remains true even in characteristic 3, but in the proof the Fermat cubic surface must be replaced by some
other less pleasant smooth cubic surface. We omit this case for the sake of cohesion.
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The wording is literal: we obtain 27 genuine distinct lines on the smooth cubic surface, with no caveats
such as having to “count lines with correct multiplicity.” We complete Vakil’s outline of the proof ([Vak23],
Chapter 27). There is more to say beyond the mere existence of the 27 lines—the configuration of the 27
lines is related to the Lie algebra E6, and every smooth cubic surface is a plane blown up at 6 points—but
we limit ourselves to discussing just the existence statement above.

3.1 Most surfaces of degree more than 3 have no lines
We illustrate the general setup by first showing what happens in degree > 3. This introduces the Grassman-
nian’s typical role in an incidence correspondence.

Theorem 3.1.1. A generic surface of degree d > 3 in P3
k contains no lines.

A degree d surface in 3-space is specified by the
(
d+3
3

)
coefficients of a degree d homogeneous polynomial

in 4 variables, up to rescaling. Hence, P(d+3
3 )−1

k parametrizes degree d surfaces. The precise claim of the

theorem is that a Zariski dense open subset of P(d+3
3 )−1

k has closed points corresponding to surfaces with no
lines. Note that we may interpret Gr(2, 4) as parametrizing the set of lines in P3

k, since this is equivalent to
parametrizing 2-dimensional subspaces of 4-dimensional space.

Proof. Let N =
(
d+3
3

)
−1. We construct a closed subvariety X of PNk ×Gr(2, 4) whose closed points measure

the incidence

X = {(S, `) : ` line in P3
k, S surface of degree d, ` ⊂ S}.

To make this explicit, we consider the open coordinate patches Gr(2, 4)I ' A4
k that cover the Grassmannian.

Take without loss of generality I = {1, 2}. Recall that, in these coordinates, a point of Gr(2, 4) is given by
a matrix of the form (

1 0 a b
0 1 c d

)
and the corresponding 2-dimensional subspace of k4 is the kernel of this matrix. This kernel is spanned by

a
c
−1
0

 ,


b
d
0
−1

 .

Hence, the set of degree d surfaces containing the line corresponding to this space in P3
k are those given by

degree d polynomial f(x0, x1, x2, x3) satisfying

f(λa+ µb, λc+ µd,−λ,−µ) ≡ 0 (1)

identically as a cubic polynomial in λ and µ. Thus, we obtain d+ 1 relations involving the N + 1 variables
of PNk and a, b, c, d—one relation for each of the four possible monomials λiµj with i + j = d. These d + 1
relations cut out X. Hence we realize an open subset of X as a closed subvariety of PNk × Gr(2, 4)12.
Patching these open subsets together over the six open subschemes Gr(2, 4)I that cover Gr(2, 4) realizes X
as a projective variety.

In fact, the projection X → Gr(2, 4) realizes X as a PN−d−1-bundle over Gr(2, 4). Fix a specific line
`, say identified with (a, b, c, d) with coordinates in Gr(2, 4)I ' A4

k as above. Then the four relations that
descend from equation (1) are all linear equations in the N + 1 variables corresponding to the coefficients of
a degree d in 4 variables.

Lemma 3.1.2. The d+1 relations described by (1) are always linearly independent with respect to the N+1
variables corresponding to the N + 1 coefficients of a degree d surface.
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Proof. For each of the d+ 1 relations, there is a variable that appears only in that relation and in no others.
These are the variables corresponding to the coefficients of xi2x

j
3, i + j = d; each of them appears in one

equation with coefficient (−1)d and coefficient 0 in all others. The independence of these variables implies
the independence of all the relations. �

HenceX is a PN−d−1k bundle over Gr(2, 4), since the lemma shows that this is true fiberwise. In particular,
X is a smooth projective variety. Since dim Gr(2, 4) = 4, this implies thatX has dimension N − d+ 3. Hence
the image of the projection X → PNk has positive codimension as long as d > 3, so the complement of this
image contains a Zariski dense open set. But the image of this projection parametrizes degree d surfaces
containing at least one line, yielding the theorem. �

We summarize the important facts about X we found during the course of this proof, since they will be
relevant later for the 27 lines:

Proposition 3.1.3. For d ≥ 1, the incidence variety X ⊂ P(d+3
3 )−1

k ×Gr(2, 4) is a P(d+3
3 )−d−2

k -bundle over
Gr(2, 4). Hence X is a smooth projective variety of dimension

(
d+3
3

)
− d+ 2.

3.2 The Fermat cubic surface
In the proof of the 27 lines, we will bootstrap up from the assertion that at least one smooth cubic surface
has 27 lines. Therefore, we first construct one such surface explicitly.

Definition 3.2.1. The Fermat cubic surface is the surface cut out by the polynomial

x30 + x31 + x32 + x33 = 0

in P3
k. In characteristic not 3, this is easily checked to be a smooth surface over k.

Proposition 3.2.2. The Fermat cubic surface has exactly 27 distinct lines.

Proof. Let S denote the Fermat cubic surface. We claim that the lines contained in S are

x0 + ωxi = xj + ω′xk = 0

where {i, j, k} is some permutation of {1, 2, 3} and ω, ω′ are two cube roots of unity (possibly equal to 1,
distinct, or the same). In all cases, we can rewrite the polynomial defining S as

(x0 + xi)(x0 + ωxi)(x0 + ω2xi) + (xj + xk)(xj + ω′xk)(xj + ω′
2
xk)

This polynomial lies in the ideal (x0 + ωxi, xj + ω′xk), so we conclude that S contains the corresponding
line.

Before proving that these are the only lines lying on S, we count how many distinct lines we have
described. Recall that we are assuming k algebraically closed of characteristic not 3, so there are three
distinct cube roots of unity. There are 9 choices for the plane x0 + ωxi corresponding to the three choices
for ω and xi, respectively. For each choice, there are exactly three distinct planes of the form xj +ω′xk = 0:
there are two ways to order xj and xk and three choices for ω′, but xj + ω′xk = 0 defines the same plane
as xk + ω′

2
xj = 0. Hence there are 27 distinct pairs of planes of the given form. The line given by the

intersection of such a pair of planes uniquely determines this pair: on this line, there is a relation x0 = −ωxi
but no relation between x0 and xj or xk, so ω and xi are determined, and likewise xj , xk, ω′ are determined
up to the symmetry we have already observed. Hence there are exactly 27 distinct lines of the given form.

To show that no other lines are contained in S, let ` be some line in P3. By eliminating parameters and
possibly permuting coordinates (which leaves S unaffected), we may assume without loss of generality that
` is given by x0 = ax2 + bx3, x1 = cx2 + dx3 for some a, b, c, d ∈ k, so that the line ` is parametrized by the
free variables x2, x3. Therefore, in order to have ` ⊂ S, we must have

(ax2 + bx3)3 + (cx2 + dx3)3 + x32 + x33 = 0.
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for all values of x2, x3 ∈ k, and over an algebraically closed field this means that this polynomial must be
the zero polynomial. Taking coefficients of each monomial term, we obtain the relations

a3 + c3 + 1 = 0

3a2b+ 3c2d = 0

3ab2 + 3cd2 = 0

b3 + d3 + 1 = 0.

We claim that at least one of the variables a, b, c, d must be zero in order for this to be solvable. Else, we
deduce

(
a
c

)2
= −db and a

c = −
(
d
b

)2
simultaneously, hence both a

c and d
b are cube roots of −1. But we need

a3 + c3 + 1 = 0 ⇐⇒ 2 +
(a
c

)3
= 0,

contradiction. Hence, without loss of generality d = 0. We deduce from the fourth equation that b is a cube
root of −1. Then the second equation gives a = 0, and first shows that c is also a cube root of −1. Thus
the line is of the form x0 = −ωx3, x1 = −ω′x2, which up to permutation of coordinates is one of the lines
already described. �

3.3 Proof of the 27 lines
We repeat the setup in the proof of Theorem 3.1.1. Let X ⊂ P19

k ×Gr(2, 4) be the incidence variety for cubic
surfaces containing lines in P3

k. We have already shown that X is an irreducible smooth variety of dimension
19, being a P15-bundle over Gr(2, 4).

Lemma 3.3.1. The projection π : X → P19
k is surjective: every cubic surface contains at least one line.

Moreover, there exists an open set in P19
k on which the fibers are 0-dimensional: most cubic surfaces contain

finitely many lines.

Proof. X and P19
k are projective varieties over k, so by the cancellation property for projective morphisms

we conclude that π : X → P19
k is a projective morphism. A projective morphism is closed, so the image π(X)

is a closed subset of P19
k . This image is irreducible since X is irreducible.

Let P ∈ P19
k be the point corresponding to the Fermat cubic surface. We have seen that the fiber π−1(P )

is 0-dimensional. We cite:

Theorem 3.3.2 ([Vak23], Theorem 12.4.3). For any closed morphism of varieties, the dimension of the
fibers is upper-semicontinuous on both the source and the target.

This tells us that the set V = {Q ∈ P19
k : dimπ−1(Q) ≥ 1} ⊂ π(X) is closed. This set is a proper subset

of the irreducible set π(X) since it does not contain P , so we conclude that it has codimension at least 1
inside π(X).

Suppose π is not surjective, so that π(X) is a proper subvariety in P19
k . Then the map X → π(X) is a

morphism from a 19-dimensional variety to a variety of dimension at most 18, but a dense open subset of
π(X) is supposed to have nonempty finite fibers. That this is a contradiction is made precise via:

Theorem 3.3.3 ([Vak23], Theorem 12.4.1). Suppose π : X → Y is a finitely presented dominant morphism
of irreducible schemes such that K(X)/K(Y ) has transcendence degree r. Then there exists a nonempty
open subset U ⊆ Y such that for almost all q ∈ U , the fiber over q has pure dimension r, or is empty.

None of the fibers over π(X) are empty, so if dimπ(X) ≤ 18, hence K(X)/K(π(X)) of transcendence
degree at least 1, we must have a dense open subset of π(X) with fibers of dimension at least 1, contradicting
the fact that a dense open subset of π(X) has fiber dimension 0. We conclude that π is surjective and that
a dense open subset of P19

k has 0-dimensional fibers. �
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Thus far we have not used anything critical about smooth cubic surfaces. Let ∆ ⊂ P19
k denote the (closed)

locus of singular cubic surfaces. We wish to show that π is a finite flat morphism over P19
k \∆. While this

lets us deduce that all the fibers have height 27 (the height must be constant, so it must match the Fermat
cubic surface), this alone is not yet enough to conclude the 27 lines. A priori, some of these fibers might
be nonreduced, in which case the cubic surface would have fewer than 27 distinct lines (but would, in some
sense, have a “multiple line” through it). The intuition is that lines might “come together” or “split apart”
as we vary the cubic. Proving that this does not happen for smooth cubics is technical, so we delay its proof
for the moment and assume the necessary result:

Lemma 3.3.4. If ` is a line on a smooth cubic surface, then ` is a reduced isolated point in the fiber of π
over P19

k \∆.

We may use this lemma to quickly conclude the proof of the 27 lines. Let U = P19
k \ ∆ be the locus

of smooth cubic surfaces, which is a dense open subset, hence of dimension 19. By surjectivity of π, the
restriction π|π−1(U) : π−1(U) → U is a morphism of regular varieties of the same dimension. Lemma 3.3.4
states that the fibers over closed points consist of isolated points, hence these fibers are 0-dimensional. By
Miracle Flatness ([Har77], Exercise III.10.9), this is a flat morphism.2 Therefore the height of the fibers of
π over the closed points of U , i.e. the number

dimk π∗(OX)⊗OU,Q
κ(Q)

for closed Q ∈ U , is constant ([Mum99], §III.10, p. 218). Since the Fermat cubic surface lies in U , this
constant height must be 27. Since all fibers are reduced and consist of isolated points, we conclude that
these fibers consist of 27 distinct closed points, corresponding to 27 distinct lines lying on a smooth cubic
surface.

3.4 The points corresponding to line in the fibers are isolated and reduced
We conclude by proving Lemma 3.3.4. Let ` be a line in P3

k and let S be a cubic surface containing
it, say cut out by the cubic polynomial f in four variables. By change of coordinates, we may assume
that ` corresponds to the point (0, 0, 0, 0) in the coordinate chart Gr(2, 4)12 ' A4

k as described previously.
Unraveling the construction of the Grassmannian, this means we assume ` ⊂ P3

k is cut out by {x0 = x1 = 0}.
Let P ∈ P19

k be the point corresponding to the cubic f . Based on our description of the incidence variety
X, the portion of scheme-theoretic fiber π−1(P ) lying over Gr(2, 4)12 is cut out in X by the four equations
that describe the relation

f(λa+ µb, λc+ µd,−λ,−µ) ≡ 0,

vanishing identically as a polynomial in λ, µ. More precisely, we recall that the portion of X lying over
Gr(2, 4)12 is cut out as a subset of P19

k × A4
k by four equations involving the 20 coefficients of a cubic

polynomial as well as the 4 variables corresponding to the coordinates of Gr(2, 4)12. In the fiber above, we
set each of the 20 coefficients to the value they take for f , so we may also think of this fiber as lying over
Gr(2, 4)12 ' A4

k.
We need to show that ` corresponds to a reduced isolated point of this fiber. Letting g1, g2, g3, g4 be the

four equations cutting out the fiber, this means that we need to show that the origin is isolated and reduced
in

Spec k[a, b, c, d]/(g1, g2, g3, g4).

That the origin is isolated is clear, since (a, b, c, d) is a maximal ideal, so it remains to show reducedness. If
there are any nilpotents in the stalk at the origin, they will remain after quotienting by the ideal (a, b, c, d)2,
so we may instead prove reducedness of the origin in

Spec k[a, b, c, d]/((a, b, c, d)2 + (g1, g2, g3, g4)).

2Note that Miracle Flatness can be proven using only the condition on the fiber dimension at closed points, since then
flatness at the nonclosed points follows from the fact that flatness is stable under localization.
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Therefore we need only consider terms in the gi of degree 0 or 1 in the variables a, b, c, d. The linear terms
are those coming from the coefficients of the following monomials of a general cubic surface:

x0x
2
2, x0x2x3, x0x

2
3, x1x

2
2, x1x2x3, x1x

2
3.

Let the coefficients of these terms in f be αijk, e.g. α022 is the coefficient of x0x22. The constant terms are
those coming from the monomials:

x32, x
2
2x3, x2x

2
3, x

3
3.

However, the fact that ` lies on the surface S implies that f(0, 0,−λ,−µ) ≡ 0. Therefore, the coefficients
of x32, x22x3, x2x23 and x33 in f must all be 0—that is, f lies in the ideal (x0, x1) inside k[x0, x1, x2, x3]. We
deduce that, modulo (a, b, c, d)2, the four relations gi = 0 corresponding to the vanishing of the λ3, λ2µ, λµ2

and µ3 terms in order are

α022a+ α122c = 0 (∗)
α023a+ α022b+ α123c+ α122d = 0

α033a+ α023b+ α133c+ α123d = 0

α033b+ α133d = 0

If we can show that the linear system (∗) in the variables a, b, c, d has full rank, the proof is complete, since
this implies

k[a, b, c, d]/((a, b, c, d)2 + (g1, g2, g3, g4)) ' k,

hence the origin is a reduced point of the fiber.
We finally invoke smoothness of the surface S. In particular, S is smooth at all points on ` = {[0 : 0 :

s : t]}. The derivatives ∂f
∂x2

and ∂f
∂x3

always vanish along this line, recalling that f lies in the ideal (x0, x1).
Hence, the fact that S is smooth at the point [0 : 0 : s : t] ∈ ` implies that

∂f

∂x0
= α022s

2 + α023st+ α033t
2

and
∂f

∂x1
= α122s

2 + α123st+ α133t
2

do not simultaneously vanish for any [s : t] ∈ P1
k. That is, the two sets of roots of these two polynomials are

disjoint. The linear system (∗) may be rewritten suggestively as

(as+ bt)
∂f

∂x0
+ (cs+ dt)

∂f

∂x1
≡ 0,

vanishing identically as a polynomial in k[s, t].
First suppose that neither ∂f

∂x0
nor ∂f

∂x1
are perfect squares, so that each has two distinct roots. Let [s′ : t′]

be a root of ∂f
∂x0

. Then we have

(cs′ + dt′)
∂f

∂x1
(s′, t′) = 0,

but [s′ : t′] is not a root of ∂f
∂x1

, so we conclude that cs′+dt′ = 0. If c and d are not both 0, this is equivalent
to saying [c : d] = [−t′ : s′]. However, we may repeat this for the other root [s′′ : t′′] of ∂f

∂x0
to conclude

[c : d] = [−t′′ : s′′] unless c = d = 0. Since we assume [s′ : t′] 6= [s′′ : t′′], we conclude that c = d = 0. The
same argument applied to the roots of ∂f

∂x1
shows a = b = 0.

Now suppose that one of these derivatives, say ∂f
∂x0

, has a double root, but ∂f
∂x1

does not. We may perform
a change of coordinates in P3

k to assume that the double root occurs at the point [0 : 1], so that ∂f
∂x0

= α022s
2,

11



i.e. α023 = α033 = 0. (Note that a change of coordinates preserving the line ` does not affect any previous
parts of the proof.) Since the two derivatives do not share roots, we conclude that α133 6= 0. The same
argument as the previous case goes through to show that a = b = 0. From the linear system (∗), we deduce
that d = 0, and since at least one of α123 or α133 is not zero, we conclude c = 0.

Finally, suppose that both derivatives have double roots. We may again make a change of variables in
P3
k, scaling and shifting the line ` so that the double roots occur at [0 : 1] and [1 : 0], respectively. Hence all

of the αijk vanish except for α022 and α133, which do not vanish. From linear system (∗), we immediately
conclude that a = b = c = d = 0.

In summary, our work shows that a = b = c = d = 0 always in k[a, b, c, d]/((a, b, c, d)2 + (g1, g2, g3, g4)).
Hence the origin is a reduced point, concluding the proof of Lemma 3.3.4.
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