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The references for this talk at Papikian’s book Drinfeld Modules and Poonen’s note
Introduction to Drinfeld Modules.

1 Basics of Drinfeld modules

1.1 Algebraic theory

Let K be a characteristic p field, and let q be a power of p. We say that a polynomial over
K is Fq-linear if f(αx+βy) = αf(x) +βf(y) for all α, β ∈ Fq. One can easily show that the
Fq-linear polynomials are those of the form

f(x) =
n∑
i=0

aix
qi .

We denote the set of additive polynomials by K〈x〉, which we make into a noncommutative
unital ring by defining multiplication to be given by composition: f ∗ g = f(g(x)). We
also define the ring of twisted polynomials K{τ}, which is the set of polynomials in τ with
multiplication is given by τa = aqτ for all a ∈ K. The map sending τ i 7→ xq

i
defines

an isomorphism between these two noncommutative rings, and we will freely go between
whichever notation is easier.

Let X be a a smooth projective geometrically integral curve over Fq, and fix a closed
point ∞ ∈ X. Let A := O(X \ {∞}. For example, if X = P1, then A = Fq[T ]. Fix a field
K equipped with a ring homomorphism γ : A→ K.

Definition 1.1. A Drinfeld A-module over K of rank r ≥ 1 is a Fq-algebra homomorphism
φ : A→ K{τ} with

φa = γ(a) + g1τ + · · ·+ gnτ
n

where n = −rv∞(a). (For A = Fq[T ], this is just n = r deg(a).) Taking the constant term
γ defines a ring homomorphism γ : A→ K. If γ has nonzero (prime) kernel p, then we say
that φ has characteristic p; otherwise, if γ is injective, we say that φ has characteristic 0.
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To any Drinfeld module φ, there is an associated A-module structure on K given by
evaluation: we define a ∗ k = φa(k) for any a ∈ A, k ∈ K, where φa(x) ∈ K〈x〉 is the
polynomial that is the image of a under φ. We denote K with its A-module structure by
φK.

Very easy exercise: φ is always injective, so its image is an isomorphic copy of A inside
K{τ}. We will often conflate A with this image.

Example 1.2. The simplest Drinfeld Fq[T ]-module is the Carlitz module, denoted by φ = C
and defined simply by CT = t+ τ , so that C has rank 1. Then we have

CT 2 = (t+ τ)(t+ τ) = t2 + (t+ tq)τ + τ 2

CT 3 = (t2 + (t+ tq)τ + τ 2)(t+ τ)

= t3 + (tq+1 + t2q + t2)τ + (t+ tq + tq
2

)τ 2 + τ 3

and so on. Even for these small powers, the coefficients already start to look nontrivial.

Definition 1.3. Let φ, ψ be Drinfeld modules over K. Then a morphism φ → ψ (defined
over K) is a polynomial u ∈ K{τ} such that uφa = ψau for all a ∈ A. A nonzero morphism
is called an isogeny.

Composition of morphism is defined by multiplication of the corresponding u ∈ K{τ}
(or composition of polynomials if we treat u ∈ K〈x〉). Therefore, a morphism u is an
isomorphism if and only if u ∈ K{τ} is a nonzero constant.

Exercise: show how A ↪→ End(ψ) and how Hom(φ, ψ) is an A-module.

Example 1.4. All rank 1 Drinfeld modules (of a given characteristic) become isomorphic
over K. Rank 1 Drinfeld Fq[T ]-modules are always of the form φT = t + cτ . Letting
u = c1/(q−1), we have

(t+ τ)u = cq/(q−1)t+ cq/(q−1)τ

= u(t+ cτ)

so that u : C → φ is an isogeny, which has an evident inverse.

As in the case of abelian varieties, isogeny is an equivalence relation due to the existence of
the dual isogeny: for any isogeny u : φ→ ψ, there exists an isogeny û such that ûu = uû = φa
for some a ∈ A (which we can to require to be monic and of minimal degree to make the
choice of û unique).

Definition 1.5. Let a ∈ A. We write φ[a] = {k ∈ K : φa(k) = 0}, the “a-torsion submod-
ule” of K. More generally, if I is an ideal in A, we write φ[I] =

⋂
a∈I φ[a], or equivalently

φ[I] is the set of roots of the unique monic polynomial in L〈x〉 generating the principal left
ideal {φa : a ∈ I}.

In characteristic 0 or if the characteristic does not divide A, one can show that φa is a
separable polynomial, in the sense that its roots generate a separable extension of K. Hence,
φ[a] comes with a A/(a)-linear Gal(Ksep/K)-action. Moreover, one can show that φ[I] is
isomorphic to (A/I)r as an A-module.
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Definition 1.6. Let l be a nonzero prime ideal. Then the l-adic Tate module is

Tlφ = lim←−
n

φ[ln]

with transition maps given by multiplication by φl. That means φ[ln+1] → φ[ln] is given by
sending an element α ∈ φ[ln+1] ⊆ K to its evaluation under φl.

As long as l 6= p, Tlφ is a free Al-module of rank 2r. Therefore we can attach a 2r-
dimensional l-adic Galois representation to φ as long as l is not the characteristic.

1.2 Analytic theory

Perhaps surprisingly, the theory of Drinfeld modules admits an “analytic” theory very similar
to the abelian varieties case that “uniformizes” the algebraic construction.

Definition 1.7. Let X be a nice complete curve over Fq. We write C∞ for the completion
of the algebraic closure of F = K(X) with respect to the place ∞.

C∞ is again algebraically closed, and it will play the role of the complex numbers for us.
Again let A = O(X \ {∞}.

Definition 1.8. A lattice Λ ⊂ C∞ is a submodule such that {λ ∈ Λ : |λ| < r} is finite for
all r ∈ R≥0. If F = Frac(A), the rank of Λ is

rk Λ := dimF (FΛ) = dimF∞(F∞Λ)

A surprising difference from the classical case:

Theorem 1.9. Let Λ ⊂ C∞ be an A-module of finite rank. Then C∞/Λ is analytically
isomorphic to C∞, in the sense that there exists a power series e(z) = a0z+α1z

q+α2z
q2 +. . .

with a local inverse defining a surjective Fq-linear map C∞ → C∞ with kernel Λ.

This power series ends up being the Carlitz-Drinfeld exponential

eΛ(x) := x
∏
λ∈Λ

′ (
1− x

λ

)
which converges absolutely and is Λ-periodic. (Sort of analogous to a Hadamard product
expansion, except nicer in the non-archimedean setting because we don’t need to worry about
exponential factors.) This power series is Fq-linear. Consequently, the (standard) A-module
structure on C∞/Λ transfers to a new A-module structure on C∞, much in the same way a
Drinfeld module defines a new A-module structure on a field K. In fact, this is more than
just a similarity:
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Proposition 1.10. (Uniformization.) Let Λ have rank r over A. Then multiplication by
a on C∞/Λ transfers to a map φa : C → C given by an Fq-linear polynomial of degree
r deg(a). Consequently, the map a 7→ φa ∈ C∞〈x〉 defines a Drinfeld module over C∞ of
rank r, with the homomorphism γ : A→ C∞ given simply by inclusion A ↪→ C∞, so that the
characteristic is 0.

Conversely, every Drinfeld module over C∞ (with γ : A → C∞ the standard embedding)
arises in this way. Given Drinfeld modules φ, ψ over C∞ with corresponding lattices Λ,Λ′ ⊂
C∞, morphisms φ → ψ correspond bijectively to elements c ∈ C∞ such that cΛ ⊆ Λ′, so
isomorphisms correspond to homotheties of lattices.

2 Explicit geometric class field theory

2.1 Actions of ideals

Let K be a global function field (for a curve X) with ring of integers A = O(X \ ∞). Let
I,P , and PicA := I/P denote groups of nonzero fractional ideals, principal fractional ideals,
and class group, respectively.

Proposition 2.1. PicA is in bijection with rank 1 A-lattices in C∞ up to homothety, sending
an ideal class [I] to the homothety class of the lattice I ⊂ C∞. hence with rank 1 Drinfeld
modules over C∞ up to isomorphism.

Now let γ : A→ L be an A-field, let I be a nonzero ideal in A, and let A be a Drinfeld
A-module over L. Then we can define a new Drinfeld module, denoted I ∗ φ, over L,
characterized by φI : L{τ} → L{τ} being an isogeny φ → I ∗ φ, where φI is the monic
generator of the left ideal in L{τ} generated by {φa : a ∈ I}. We can also think of this as
the quotient of Ga by φ[I].

If I = (a) is principal, then φI = u−1φa is monic for some u ∈ L. Then I ∗ φ is u−1φu,
which is isomorphic to φ over L.

Proposition 2.2. The operation ∗ defines an action of I on the set of Drinfeld modules
over L, which descends to an action of PicA on the set of isomorhpism classes of Drinfeld
modules over L.

Example 2.3. If C∞/Λ corresponds analytically to φ, then φ[I] ' I−1Λ/Λ, and so I ∗
(C∞/Λ) ' C∞/I−1Λ.

Corollary 2.4. The set Y (C∞) of isomorphism classes of rank 1 Drinfeld A-modules over
C∞ is a principal homogeneous space under the action of PicA, where [I] acts by multipli-
cation by I−1 on rank 1 C∞-lattices.

2.2 sgn normalization

We’ll mostly blackbox the following discussion. It is useful to pick out a specific Drinfeld
module from each isomorphism class. sgn-normalization is the way of doing this. One can
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define a homomorphism sgn : K+
∞ → F×∞, depending on a choice of uniformizer at ∞, and

a sgn-normalized Drinfeld module is essentially a Drinfeld module whose coefficients are
compatible with this homomorphism.

Some facts:

Theorem 2.5. Every rank 1 Drinfeld module over C∞ is isomorphic to a sgn-normalized
one.

We let Y +(L) denote the set of sgn-normalized rank 1 Drinfeld A-modules over L, P+ =
{(c) : c ∈ K×, sgn(c) = 1} ⊆ P , and Pic+A := I/P+, which we call the narrow class group
of A.

Theorem 2.6 ((a)). 1. For any subfield L ⊂ C∞, if φ ∈ Y +(L), then StabIφ = P.

2. Moreover, the action of I on Drinfeld modules makes Y +(C∞) into a principal homo-
geneous space under Pic+A.

2.3 Narrow Hilbert class field

Let φ ∈ Y +(C∞) be a sgn-normalized Drinfeld module. Let H+ be the field extension of K
obtained by adjoining all coefficients of φa for a ∈ A, i.e. the “minimal field of definition”
for φ. Since the action of I is transitive on Y +(C), and I ∗ φ is also defined over H+, we
conclude that H+ is independent of the particular choice of φ, so it is intrinsically defined
from (A, sgn).

Definition 2.7. H+ is the narrow Hilbert class field of (A, sgn).

Theorem 2.8. (Explicit narrow Hilbert class field theory for function fields.)

(a) H+ is a finite abelian extension of K unramified above every place except possibly ∞.

(b) There is an isomorphism Gal(H+/K)→ Pic+(A) sending Frobp 7→ [p]. This map agrees
with the map Gal(H+/K) ↪→ Aut(Y +(C)) ' Pic+A.

Proof.

Aut(C∞/K) acts on Y +(C∞), so this maps H+ to itself. Since we can define H+ using the
coefficients of one particular Drinfeld module, H+ is finitely generated over K, so it must be
a finite normal extension, and we can show that this is separable.

We get an injective homomorphism

χ : Gal(H+/K) ↪→ AutPic+ A Y +(C∞) ' Pic+A

which shows that Gal(H+/K) is abelian.
Let B+ be the integral closure of A inH+ and P ⊂ B+ a nonzero prime lying above p ⊂ A.

There is a reduction theory that lets us define a reduction map ρ : Y +(H+)→ Y +(Fp) that
is Pic+A-equivariant. The Pic+A action is faithful on both source and target. Y +(H+)
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is a PHS for Pic+A, so we conclude that the reduction map is injective. Therefore, if
g ∈ Gal(H+/K) lies in the inertia subgroup for P , then g acts trivially downstairs, hence it
acts trivially upstairs, so g = 1. Therefore H+/K is unramified at P 6=∞.

Finally, we want to show that χ is actually an isomorphism. Now that we know that
H+/K is unramified at P , let σ = FrobP = Frobp ∈ Gal(H+/K). We want to show that

σφ = p ∗ φ

for any φ ∈ Y +(FP ). If we can show this, then this shows that the Frobenius action on
Y +(FP ) lifts to Y +(H+) as φ 7→ p ∗ φ, i.e. χ sends Frobp to the class of p in Pic+(A).

To prove the claim, let ψ := p∗φ. Then by the definition of the ideal action, ψaφp = φpφa.
The characteristic of φ over Fp is p, and one can show that this means that φp = τdeg p, hence
ψaτ

deg p = τdeg pφa. But this just means that p acts by raising coefficients to the power of
qdeg p, which is exactly the action of Frobp. �

This theorem solves a case of Hilbert’s 12th problem by explicitly describing one of the
ray class fields of A. It is not too hard to generalize the arguments from the previous section
to make them work more generally for ray class fields of an arbitrary modulus (including the
standard class field). See Poonen’s notes for the precise statement.

2.4 Explicit example

We end by giving an explicit example of a construction of the narrow Hilbert class field.

Example 2.9. Let q = 2 and let X be the elliptic curve over F2 defined by y2 + y = x3,
and let ∞ be the point at infinity, so that A = F2[x, y]/(y2 + y − x3). The residue field at
∞ is just F2, which means that there is only one choice of uniformizer for K∞, and we have
Pic+A ' PicA ' Pic0X ' X(F2), which is a group of order 3. Consequently, the narrow
Hilbert class field H+ and the Hilbert class field coincide H, and [H : K] = 3.

To construct H explicitly, we need only write down one sgn-normalized Drinfeld module
over a finite extension of K. Then the coefficients of this Drinfeld module generate H. I
haven’t really told you exactly what sgn-normalized means, but in this case giving a sgn-
normalized rank 1 Drinfeld module over L means giving elements a, c1, c2 ∈ L such that

φx = x+ aτ + τ 2 ∈ L{τ}
φy = y + c1τ + c2τ

2 + τ 3 ∈ L{τ}

such that φxφy = φyφx and φ2
y + φy = φ3

x. The second condition turns out to be redundant,
since the first condition tells us that φx commutes with f = φ2

y + φy − φ3
x. But φx has a

nonzero constant term x and φ2
y + φy − φ3

x has a trivial constant term. This means if f is
nonzero that the lowest degree term of φxf has coefficient x but the lowest degree term of
fφx has coefficient xq

i 6= x for i ≥ 1, so in fact we must have f = 0.
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Doing out the multiplication and matching coefficients, the condition φxφy = φyφx is
equivalent to

xc1 + ay2 = ay + c1x
2

xc2 + ac2
1 + y4 = y + c1a

2 + c2x
4

x+ ac2
2 + c4

1 = c1 + c2a
4 + x8

a+ c4
2 = c2 + a8

The first two equations let us eliminate the variables c1 and c2, so we end up with two
polynomial conditions on a. The gcd of these two polynomials ends up being a3 + (x2 +
x)a2 + (x+ 1)2a+ (x+ 1)4 = 0, so H is the extension generated by a root of this polynomial,
since c1, c2 are rational functions of x, y, and a.
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