Chevalley's trick

CJ Dowd

February 1, 2024

1 Introduction

Let G be an algebraic group over a field k with closed subgroup H (not necessarily normal). We would like to come up with a space G/H, called a *homogeneous space*, that is algebraic and somehow corresponds to the idea of a coset space. It should be equipped with a transitive G-action whose points correspond to cosets of H in G. We should be more scheme-theoretically precise: when we are speaking of points, transitivity, and cosets, we mean on the set of k-valued points. In general, constructing such a space is subtle—it is not even a scheme in general, but rather an algebraic space.

Fortunately, there are many special cases where this construction is easier.

Example 1.1. Let $G = \operatorname{Spec} A$ be an affine commutative group variety with subgroup $H = \operatorname{Spec} B$. Then we may define G/H to $\operatorname{Spec} C$, where

$$C = \{a \in A : \tau_h^* a = a \ \forall h \in H(k)\}.$$

That is, we take C to be the subring of A that is fixed by translation by H. Spec C inherits the structure of a commutative group variety over k via restricting the comultiplication on A to C, and it satisfies the categorical properties of the cokernel of the map $H \to G$.

Example 1.2. If A is an abelian variety over k, then one may apply the theory of fpqc descent to meaningfully treat A as a quotient A/A[n], or more generally build A/B for a finite subgroup B.

Example 1.3. If G is a linear algebraic group and H is a closed subgroup, then there is a trick to giving G/H the structure of a quasiprojective variety, called the *Chevalley trick*.

We will discuss this last example. The main idea is to construct a finite dimensional G-representation W such H is the stabilizer of some subspace of W. Thus H is the stabilizer of a point in a Grassmannian, and we define G/H to be the orbit of this point, which is locally closed. We will assume some background on the Grassmannian; I have also written an essay about this topic.

The space G/H extremely useful in geometric representation theory, especially in the case where H is a Borel or parabolic subgroup. Its existence is the starting point for flag varieties, the Borel-Weil-Bott theorem, and the theory of L-packets, to name a few.

Most of these basic results can be found in [Hum75].

2 Faithful representations of affine algebraic groups

Lemma 2.1. Let G be an affine algebraic group over a field k, and let f_1, \ldots, f_n be a finite subset of $\Gamma(G, \mathcal{O}(G))$. Then there exists a finite dimensional subrepresentation of $\Gamma(G, \mathcal{O}(G))$ (equipped with either the left or right regular action) containing the f_i .

Proof. We adapt [Dem72]. It suffices to prove this for n = 1, say $f_1 = x$, and by symmetry we need only prove the case of the right regular representation. Say G = Spec A. The group law on G corresponds to a comultiplication law $\Delta : A \to A \otimes_k A$. Choose a k-basis $\{a_i\}$ of A and write

$$\Delta(x) = \sum_{i} x_i \otimes a_i$$

Let F be the k-vector space spanned by x and the x_i . Then F is finite-dimensional, and we claim that F is invariant under right G-translation, hence satisfying our criteria.

Let $\epsilon: A \to k$ be the counit map induced by the unit map $e: \operatorname{Spec} k \to G$. Then

$$((\mathbf{id}\otimes\epsilon)\circ\Delta)(x)=\sum_{i}x_{i}\epsilon(a_{i}),$$

so this element lies in F. Comultiplication is coassociative, which means

$$\sum_{i} (\Delta x_i) \otimes a_i = ((\Delta \otimes \mathbf{id}) \circ \Delta)(x) = ((\mathbf{id} \otimes \Delta) \circ \Delta)(x) = \sum_{i} x_i \otimes \Delta(a_i).$$

Write $\Delta a_i = \sum_j b_{ij} \otimes a_j$ for finitely many nonzero b_{ij} . We have

$$\sum_{i} (\Delta x_i) \otimes a_i = \sum_{i,j} (x_i \otimes b_{ij}) \otimes a_j$$

so matching coordinates (using the fact that the a_i form a basis for A) shows that $\Delta x_i = \sum_{i,j} x_j \otimes b_{ji}$. Hence $\Delta x_i \in F \otimes A$, and by definition $\Delta x \in F \otimes A$.

The right regular representation is defined by $(R_g f)(h) = f(hg)$, which translates to $R_g f = ((\mathbf{id} \otimes \mathrm{ev}_g) \circ \Delta)f$, where ev_g is the functional $A \to k$ induced by the k-point $g \hookrightarrow G$. Hence, with x_i as above,

$$R_g x_i = ((\mathbf{id} \otimes \mathrm{ev}_g) \circ \Delta) x_i \in F \otimes \mathrm{ev}_g(A) \simeq F.$$

Likewise $R_q x \in F$. Thus F is stable under this action, as desired.

I think this lemma is a compelling example of the power of Hopf algebras. It also implies the very important:

Theorem 2.2. Affine group varieties have a faithful finite-dimensional representations.

Proof. If G is affine, let f_1, \ldots, f_n generate its coordinate ring, and let V be a finite dimensional subrepresentation of the right regular representation containing the f_i by the previous lemma. Then V is faithful, since if R_g fixes each f_i , then it fixes the entire coordinate ring and induces the identity map on G, so g = e.

This also implies that affine algebraic groups are the same as linear alebgraic groups.

3 Chevalley's trick and applications

Theorem 3.1. (Chevalley's Trick.) Let G be a linear algebraic group with closed subgroup H. Then there exists a finite dimensional representation $\rho: G \to \operatorname{GL}(V)$ and $x \in \mathbb{P}(V)$ such that $H = \operatorname{Stab}_G(x)$ under the induced action on $\mathbb{P}(V)$.

Proof. Consider the left regular representation $G \sim H^0(G, \mathcal{O}_G)$, defined on k-points by $(L_g f)(x) = f(g^{-1}x)$. Let I_H be the ideal of the subgroup H. Then H is exactly the stablizer of I_H : we have $H = \{g \in G : L_g(I_H) = I_H\}$. Elements of I_H are characterized by the fact that f(h) = 0 for all $h \in H(k)$ if and only if $f \in I_H$, and H(k) is characterized by $h \in H(k)$ if and only if f(h) = 0 for all $f \in I_H$. It is clear that H is contained in this

stabilizer. Conversely, if $g \notin H(k)$, then there exists $f \in I_H$ such that f(g) = 1. Then $(L_g^{-1}f)(e) = f(g) = 1$, which implies that g does not stabilize I_H —otherwise, $L_g^{-1}f \in I_H$, but any such element must kill e.

Write $I_H = (f_1, \ldots, f_n)$. By Lemma 2.1, we can always find a *G*-stable finite dimensional subspace $W \subseteq \Gamma(G, \mathcal{O}(G))$ with $f_1, \ldots, f_n \in W$. Let $L = W \cap I_H$. Then $f_1, \ldots, f_n \in L$, so if $g \in G(k)$ stabilizes *L*, it also stabilizes I_H , hence $g \in H(k)$. We conclude that $\operatorname{Stab}_G(L) = H$.

Let $n := \dim_k W$ and $d := \dim_k L$. Then the action $G \curvearrowright W$ yields an action on the Grassmannian $\operatorname{Gr}(d, n)$. The subspace L corresponds to a point x in this Grassmannian, so we have $\operatorname{Stab}_G(x) = H$. Let $V = \bigwedge^d W$. Then V inherits the structure of a G-representation, and the Plücker embedding $\operatorname{Gr}(d, n) \hookrightarrow \mathbb{P}(V)$ is compatible with the G-action. Hence $x \hookrightarrow \mathbb{P}(V)$ is stabilized by H, as desired.

Corollary 3.2. Let G be a linear algebraic group with closed subgroup H. Then there exists a smooth quasiprojective variety, denoted G/H, equipped with a transitive G-action with kernel H.

Proof. Let $x \in \mathbb{P}(V)$ be as in Chevalley's trick. Then the orbit $Y := G \cdot x$ is constructible by Chevalley's theorem (see [Har77, Exercise II.3.19], since it is the image of a finite type morphism of noetherian schemes defined by $G \to \mathbb{P}(V) : g \mapsto g \cdot x$. Then \overline{Y} is stable under the action of G by a density argument, and Y contains an open subset U of \overline{Y} , again by [Har77, Exercise II.3.19(b)]. The action of G is transitive on Y, and each translation is a homeomorphism of \overline{Y} . Therefore, let $y_0 \in U$ and let $y \in Y$ be some other point. Choosing $g \in G$ with $g \cdot y_0 = y$, we also have $y \in g \cdot U \subseteq Y$, so we conclude that y is an interior point of Y inside \overline{Y} . Hence Y is open in \overline{Y} , so Y is locally closed in $\mathbb{P}(V)$ and may therefore be endowed with the structure of a quasiprojective variety. Transitivity of the G-action implies that all stalks of Y are isomorphic, hence Y is smooth. Thus we may define G/H := Y.

Corollary 3.3. Let G be a linear algebraic group with normal closed subgroup H. Then there exists a representation $\rho: G \to GL(W)$ such that ker $\rho = H$. Hence we may define G/H to be the image of G in GL(W), which inherits the structure of a group variety.

Proof. Take a vector space V as in the Chevalley trick, so that there exists $v \in V$ with $\operatorname{Stab}_G(\langle v \rangle) = H$. Hence H acts on $\langle v \rangle$ by characters $H \to \mathbb{G}_m$. For a given character $\chi : H \to \mathbb{G}_m$, set $V_{\chi} = \{v \in hu = \chi(h)u \ \forall h \in H(k)\}$, the χ -isotypic subspace of V. Write $V' = \bigoplus_{\chi} V_{\chi}$, ranging over all characters of χ ; note that the space V_{χ} are linearly independent inside V. Since H is assumed to be normal, we have $g(V_{\chi}) = V_{\chi^g}$, where $\chi^g : H \to \mathbb{G}_m$ is the character defined on points by $\chi^g(h) = \chi(g^{-1}hg)$. This shows that V' is stable under the action of G, so without loss of generality we may shrink V to assume V = V'.

Define $W \subseteq V \otimes V^*$ by

$$W := \bigoplus_{\chi} V_{\chi} \otimes V_{\chi}^*.$$

Then H acts trivially on W, since it acts by $\chi \cdot \chi^{-1} = 1$ on each component. Conversely, a given $g \in G(k)$ acts trivially on W if and only if g acts by a scalar multiple on each V_{θ} . But since our original choice of v lies in one of the V_{χ} , this implies that $g \in H(k)$.

Definition 3.4. A *Borel subgroup* of an algebraic group is a maximal solvable connected subgroup.

Theorem 3.5. Let G be a linear algebraic group.

- (a) If B is a Borel subgroup, then G/B is a projective variety.
- (b) All Borel subgroups are conjugate to each other.

Proof. Let B_0 be a Borel subgroup of maximal dimension. By Chevalley's trick, we may choose a representation $\rho: G \to \operatorname{GL}(V)$ such that $B_0 = \operatorname{Stab}_G V_1$ for a 1-dimensional subspace $V_1 \subseteq V$. By Lie's theorem, we may inductively extend to a full flag F given by $V_1 \subsetneq V_2 \subsetneq \cdots \subsetneq V_n = V$, where dim V = n, that is stabilized by B_0 . Letting \mathcal{F} be full flag variety of V, the orbit $G \cdot F$ is isomorphic to G/B_0 ; note that $B_0 = \operatorname{Stab}_G(F)$ since $G - B_0$ does not preserve the V_1 part of the flag F. We claim that $G \cdot F$ is an orbit of minimal dimension in \mathcal{F} . Let F' be some other flag. Then $B := \operatorname{Stab}_G(F')$ is also solvable: choosing a basis of V based on the flag F', the image $\rho(B)$ in $\operatorname{GL}(V)$ lies inside the upper triangular matrices. The kernel of ρ is contained in B_0 , so ker ρ is also solvable; hence B fits into an exact sequence $0 \to \ker \rho \cap B \to B \to \rho(B) \to 0$ where the outer two groups are solvable, so B is solvable. Since B_0 is chosen to be a connected solvable subgroup of maximal dimension, we must have $\dim B_0 \ge \dim B^0 = \dim B$, where B^0 denotes the neutral component of B. Hence $\dim G \cdot F \le \dim G \cdot F'$, so $G \cdot F = G/B_0$ is an orbit of minimal dimension.

 $G/B_0 \setminus G/B_0$ is also a union of orbits of G and has dimension strictly less than $G \cdot F$, so by minimality we conclude that this complement is empty. Hence, G/B_0 is closed in the projective variety \mathcal{F} , hence projective itself, proving (a) assuming (b).

For a general Borel B, the fixed point theorem (see below) asserts that B always has a fixed point x on G/B_0 . Since G/B_0 is the orbit of a point with stabilizer B_0 , we conclude

$$B \subseteq \operatorname{Stab}_G(x) = gB_0g^{-1}.$$

But gB_0g^{-1} is a solvable connected subgroup, and B is supposed to be a maximal solvable connected subgroup. Hence $B = gB_0g^{-1}$, yielding (b).

Theorem 3.6. (Fixed point theorem.) Let X be a nonempty projective variety, and let G be a connected solvable affine algebraic group that acts on X. Then G has a fixed point on X.

Proof. Suppose first that G is commutative. Then take a closed orbit $Y \subseteq X$ (e.g. a minimal orbit), and let $H = \operatorname{Stab}_G y$ for some $y \in Y$. Then H is automatically normal, and Y = G/H is affine but also projective, hence just a point.

In general, we induct on the dimension of G. Let H = [G, G], so that dim $H < \dim G$ and G/H is commutative. Then H has a fixed point on X by inductive hypothesis. Let Y be the nonempty set of all fixed points of H. Since H is normal in G, Y is G-stable, so G/H acts on Y. Hence, by the commutative case, $Y \subseteq X$ has a point fixed by G.

References

- Demazure, Michel. Lectures on p-divisible groups. Vol. Vol. 302. Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1972.
- Hartshorne, Robin. *Algebraic geometry*. Vol. No. 52. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977.
- Humphreys, James E. *Linear algebraic groups*. Vol. No. 21. Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1975.