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1 Introduction

Let G be an algebraic group over a field k with closed subgroup H (not necessarily normal). We would like
to come up with a space G/H, called a homogeneous space, that is algebraic and somehow corresponds to
the idea of a coset space. It should be equipped with a transitive G-action whose points correspond to cosets
of H in G. We should be more scheme-theoretically precise: when we are speaking of points, transitivity,
and cosets, we mean on the set of k-valued points. In general, constructing such a space is subtle—it is not
even a scheme in general, but rather an algebraic space.

Fortunately, there are many special cases where this construction is easier.

Example 1.1. Let G = SpecA be an affine commutative group variety with subgroup H = SpecB. Then
we may define G/H to SpecC, where

C = {a ∈ A : τ∗ha = a ∀h ∈ H(k)}.

That is, we take C to be the subring of A that is fixed by translation by H. SpecC inherits the structure
of a commutative group variety over k via restricting the comultiplication on A to C, and it satisfies the
categorical properties of the cokernel of the map H → G.

Example 1.2. If A is an abelian variety over k, then one may apply the theory of fpqc descent to mean-
ingfully treat A as a quotient A/A[n], or more generally build A/B for a finite subgroup B.

Example 1.3. If G is a linear algebraic group and H is a closed subgroup, then there is a trick to giving
G/H the structure of a quasiprojective variety, called the Chevalley trick.

We will discuss this last example. The main idea is to construct a finite dimensional G-representation
W such H is the stabilizer of some subspace of W . Thus H is the stabilizer of a point in a Grassmannian,
and we define G/H to be the orbit of this point, which is locally closed. We will assume some background
on the Grassmannian; I have also written an essay about this topic.

The space G/H extremely useful in geometric representation theory, especially in the case where H is
a Borel or parabolic subgroup. Its existence is the starting point for flag varieties, the Borel-Weil-Bott
theorem, and the theory of L-packets, to name a few.

Most of these basic results can be found in [Hum75].

2 Faithful representations of affine algebraic groups

Lemma 2.1. Let G be an affine algebraic group over a field k, and let f1, . . . , fn be a finite subset of
Γ(G,O(G)). Then there exists a finite dimensional subrepresentation of Γ(G,O(G)) (equipped with either
the left or right regular action) containing the fi.
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Proof. We adapt [Dem72]. It suffices to prove this for n = 1, say f1 = x, and by symmetry we need only
prove the case of the right regular representation. Say G = SpecA. The group law on G corresponds to a
comultiplication law ∆ : A→ A⊗k A. Choose a k-basis {ai} of A and write

∆(x) =
∑
i

xi ⊗ ai

Let F be the k-vector space spanned by x and the xi. Then F is finite-dimensional, and we claim that F is
invariant under right G-translation, hence satisfying our criteria.

Let ε : A→ k be the counit map induced by the unit map e : Spec k → G. Then

((id⊗ε) ◦∆)(x) =
∑
i

xiε(ai),

so this element lies in F . Comultiplication is coassociative, which means∑
i

(∆xi)⊗ ai = ((∆⊗ id) ◦∆)(x) = ((id⊗∆) ◦∆)(x) =
∑
i

xi ⊗∆(ai).

Write ∆ai =
∑
j bij ⊗ aj for finitely many nonzero bij . We have∑

i

(∆xi)⊗ ai =
∑
i,j

(xi ⊗ bij)⊗ aj

so matching coordinates (using the fact that the ai form a basis for A) shows that ∆xi =
∑
i,j xj ⊗ bji.

Hence ∆xi ∈ F ⊗A, and by definition ∆x ∈ F ⊗A.
The right regular representation is defined by (Rgf)(h) = f(hg), which translates to Rgf = ((id⊗ evg) ◦

∆)f , where evg is the functional A→ k induced by the k-point g ↪→ G. Hence, with xi as above,

Rgxi = ((id⊗ evg) ◦∆)xi ∈ F ⊗ evg(A) ' F.

Likewise Rgx ∈ F . Thus F is stable under this action, as desired. �

I think this lemma is a compelling example of the power of Hopf algebras. It also implies the very
important:

Theorem 2.2. Affine group varieties have a faithful finite-dimensional representations.

Proof. If G is affine, let f1, . . . , fn generate its coordinate ring, and let V be a finite dimensional subreprese-
nation of the right regular representation containing the fi by the previous lemma. Then V is faithful, since
if Rg fixes each fi, then it fixes the entire coordinate ring and induces the identity map on G, so g = e. �

This also implies that affine algebraic groups are the same as linear alebgraic groups.

3 Chevalley’s trick and applications

Theorem 3.1. (Chevalley’s Trick.) Let G be a linear algebraic group with closed subgroup H. Then there
exists a finite dimensional representation ρ : G→ GL(V ) and x ∈ P(V ) such that H = StabG(x) under the
induced action on P(V ).

Proof. Consider the left regular representation Gy H0(G,OG), defined on k-points by (Lgf)(x) = f(g−1x).
Let IH be the ideal of the subgroupH. ThenH is exactly the stablizer of IH : we haveH = {g ∈ G : Lg(IH) =
IH}. Elements of IH are characterized by the fact that f(h) = 0 for all h ∈ H(k) if and only if f ∈ IH , and
H(k) is characterized by h ∈ H(k) if and only if f(h) = 0 for all f ∈ IH . It is clear that H is contained in this
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stabilizer. Conversely, if g 6∈ H(k), then there exists f ∈ IH such that f(g) = 1. Then (L−1g f)(e) = f(g) = 1,
which implies that g does not stabilize IH—otherwise, L−1g f ∈ IH , but any such element must kill e.

Write IH = (f1, . . . , fn). By Lemma 2.1, we can always find a G-stable finite dimensional subspace
W ⊆ Γ(G,O(G)) with f1, . . . , fn ∈W . Let L = W ∩ IH . Then f1, . . . , fn ∈ L, so if g ∈ G(k) stabilizes L, it
also stabilizes IH , hence g ∈ H(k). We conclude that StabG(L) = H.

Let n := dimkW and d := dimk L. Then the action G y W yields an action on the Grassmannian
Gr(d, n). The subspace L corresponds to a point x in this Grassmannian, so we have StabG(x) = H. Let

V =
∧d

W . Then V inherits the structure of a G-representation, and the Plücker embedding Gr(d, n) ↪→
P(V ) is compatible with the G-action. Hence x ↪→ P(V ) is stabilized by H, as desired. �

Corollary 3.2. Let G be a linear algebraic group with closed subgroup H. Then there exists a smooth
quasiprojective variety, denoted G/H, equipped with a transitive G-action with kernel H.

Proof. Let x ∈ P(V ) be as in Chevalley’s trick. Then the orbit Y := G · x is constructible by Chevalley’s
theorem (see [Har77, Exercise II.3.19], since it is the image of a finite type morphism of noetherian schemes
defined by G → P(V ) : g 7→ g · x. Then Y is stable under the action of G by a density argument, and Y
contains an open subset U of Y , again by [Har77, Exercise II.3.19(b)]. The action of G is transitive on Y ,
and each translation is a homeomorphism of Y . Therefore, let y0 ∈ U and let y ∈ Y be some other point.
Choosing g ∈ G with g · y0 = y, we also have y ∈ g · U ⊆ Y , so we conclude that y is an interior point of
Y inside Y . Hence Y is open in Y , so Y is locally closed in P(V ) and may therefore be endowed with the
structure of a quasiprojective variety. Transitivity of the G-action implies that all stalks of Y are isomorphic,
hence Y is smooth. Thus we may define G/H := Y . �

Corollary 3.3. Let G be a linear algebraic group with normal closed subgroup H. Then there exists a
representation ρ : G → GL(W ) such that ker ρ = H. Hence we may define G/H to be the image of G in
GL(W ), which inherits the structure of a group variety.

Proof. Take a vector space V as in the Chevalley trick, so that there exists v ∈ V with StabG(〈v〉) = H.
Hence H acts on 〈v〉 by characters H → Gm. For a given character χ : H → Gm, set Vχ = {v ∈: hu =
χ(h)u ∀h ∈ H(k)}, the χ-isotypic subspace of V . Write V ′ =

⊕
χ Vχ, ranging over all characters of χ; note

that the space Vχ are linearly independent inside V . Since H is assumed to be normal, we have g(Vχ) = Vχg ,
where χg : H → Gm is the character defined on points by χg(h) = χ(g−1hg). This shows that V ′ is stable
under the action of G, so without loss of generality we may shrink V to assume V = V ′.

Define W ⊆ V ⊗ V ∗ by

W :=
⊕
χ

Vχ ⊗ V ∗χ .

Then H acts trivially on W , since it acts by χ · χ−1 = 1 on each component. Conversely, a given g ∈ G(k)
acts trivially on W if and only if g acts by a scalar multiple on each Vθ. But since our original choice of v
lies in one of the Vχ, this implies that g ∈ H(k). �

Definition 3.4. A Borel subgroup of an algebraic group is a maximal solvable connected subgroup.

Theorem 3.5. Let G be a linear algebraic group.

(a) If B is a Borel subgroup, then G/B is a projective variety.

(b) All Borel subgroups are conjugate to each other.

Proof. Let B0 be a Borel subgroup of maximal dimension. By Chevalley’s trick, we may choose a represen-
tation ρ : G→ GL(V ) such that B0 = StabG V1 for a 1-dimensional subspace V1 ⊆ V . By Lie’s theorem, we
may inductively extend to a full flag F given by V1 ( V2 ( · · · ( Vn = V , where dimV = n, that is stabilized
by B0. Letting F be full flag variety of V , the orbit G · F is isomorphic to G/B0; note that B0 = StabG(F )
since G−B0 does not preserve the V1 part of the flag F .
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We claim that G · F is an orbit of minimal dimension in F . Let F ′ be some other flag. Then B :=
StabG(F ′) is also solvable: choosing a basis of V based on the flag F ′, the image ρ(B) in GL(V ) lies inside
the upper triangular matrices. The kernel of ρ is contained in B0, so ker ρ is also solvable; hence B fits
into an exact sequence 0 → ker ρ ∩ B → B → ρ(B) → 0 where the outer two groups are solvable, so B
is solvable. Since B0 is chosen to be a connected solvable subgroup of maximal dimension, we must have
dimB0 ≥ dimB0 = dimB, where B0 denotes the neutral component of B. Hence dimG ·F ≤ dimG ·F ′, so
G · F = G/B0 is an orbit of minimal dimension.

G/B0 \G/B0 is also a union of orbits of G and has dimension strictly less than G ·F , so by minimality we
conclude that this complement is empty. Hence, G/B0 is closed in the projective variety F , hence projective
itself, proving (a) assuming (b).

For a general Borel B, the fixed point theorem (see below) asserts that B always has a fixed point x on
G/B0. Since G/B0 is the orbit of a point with stabilizer B0, we conclude

B ⊆ StabG(x) = gB0g
−1.

But gB0g
−1 is a solvable connected subgroup, and B is supposed to be a maximal solvable connected

subgroup. Hence B = gB0g
−1, yielding (b). �

Theorem 3.6. (Fixed point theorem.) Let X be a nonempty projective variety, and let G be a connected
solvable affine algebraic group that acts on X. Then G has a fixed point on X.

Proof. Suppose first that G is commutative. Then take a closed orbit Y ⊆ X (e.g. a minimal orbit), and let
H = StabG y for some y ∈ Y . Then H is automatically normal, and Y = G/H is affine but also projective,
hence just a point.

In general, we induct on the dimension of G. Let H = [G,G], so that dimH < dimG and G/H is
commutative. Then H has a fixed point on X by inductive hypothesis. Let Y be the nonempty set of all
fixed points of H. Since H is normal in G, Y is G-stable, so G/H acts on Y . Hence, by the commutative
case, Y ⊆ X has a point fixed by G. �
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