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1 Cartier duality over a field

Let k be a field. When we refer to an algebra, we mean a commutative algebra.
We consider finite k-groups, i.e. group objects in the category of k-schemes that are also finite over Spec k

(and automatically flat). These are always the spectrum of some finite dimensional ring over k (necessarily
artinian and noetherian). From the basic theory of group schemes, the category of finite k-groups is dual to
the category of finite-dimensional Hopf algebras over k. These are finite-dimensional k-algebras A equipped
with a comultiplication map c : A→ A⊗kA, a counit homomorphism η : A→ k, and an antipode morphism
i : A → A, all of which are k-algebra homomorphisms and satisfy commutative diagrams dual to those
required for group schemes.

Now suppose that G = SpecA is a commutative finite group scheme. Given such an algebra A, we may
form its dual A∗ = Homk(A, k). Dualizing is well-behaved under the assumption that A is finite-dimensional.
We endow A∗ with the structure of a Hopf algebra by dualizing the Hopf algebra structure on A:

• The multiplicative structure A∗ ⊗ A∗ → A∗ is the dual of the comultiplicative structure c : A →
A ⊗ A. This law is commutative by the assumption that X is a commutative group scheme. This
assumption means that A is cocommutative, i.e. im(c) ⊆ Sym2A ⊆ A⊗A; hence c∗ is invariant under
precomposition with the switch morphism. This is the main reason why we restrict ourselves to the
case of commutative group schemes, since otherwise the dual construction would not give a scheme.

• The k-algebra structure k = k∗ → A∗ is given by the dual of the unit map η : A→ k.

• The antipode A∗ → A∗ is given by the dual of the antipode i : A→ A.

• The comultiplication map A∗ → A∗ ⊗A∗ is the dual of the multiplication map A⊗A→ A.

• The counit map A∗ → k = k∗ is the dual of the structure morphism k → A.

Here, we naturally identify k∗ = k by identifying the element λ ∈ k with the functional a 7→ λa. These
choices of maps are precisely the ones that make A∗ into a Hopf algebra by reversing the arrows in the
commutative diagrams that make A into a Hopf algebra.

Definition 1. The Cartier dual X∗ of a commutative finite k-group X = SpecA is the k-group SpecA∗ via
the Hopf algebra structure on A∗ described above. It is again a finite commutative group.

2 Examples

Example 2. Let µm = SpecA = Spec k[x]/(xm − 1). The coalgebra structure on the coordinate ring is
given by x 7→ x ⊗ x, which we think of as corresponding to the multiplicative group law (x, y) 7→ xy. The
antipode is x 7→ xm−1 = x−1, and the counit map is x 7→ 1.

Abstractly, the linear dual ofA is just anm-dimensional vector space over k. It has basis {y0, y1, . . . , ym−1}
defined by yi(x

j) = δij . Hence the dual to the bialgebra morphism A → A ⊗k A is the map A∗ ⊗ A∗ → A
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defined by c∗ : yi ⊗ yi 7→ yi, yi ⊗ yj 7→ 0 for i 6= j, endowing A∗ with the structure of a commutative

algebra. The counit map η : A → k : x 7→ 1 is dual to k → A∗ : 1 7→
∑m−1
i=0 yi, which we take as the

structure morphism. To see this, note that the dual of η is the unique linear functional ϕ : k → A∗ satisfying
(ϕ(λ))(xi) = λ · η(xi) = λ, so the image of 1 must yield 1 upon evaluating at any of the xi. As a sanity
check, we observe that

c∗

((
m−1∑
i=0

yi

)
⊗ z

)
= z

since this is true when z = yi, and this good since we expect since
∑m−1
i=0 yi to act as the multiplicative

identity.
This already gives enough information to identify the algebra structure of A∗: it is the ring km, the

m-fold product of k. The isomorphism is given by sending yi → ei, the i-th standard basis vector of this
ring. The multiplicative structures clearly match, and the element

∑m−1
i=0 yi gets sent to (1, 1, . . . , 1), which

is the multiplicative identity of km, so this is indeed an isomorphism of k-algebras. Hence, as a scheme,
(µm)∗ is the disjoint union of m copies of Spec k.

We now identify the coalgebra structure, and hence the group law on (µm)∗. The structure morphism
k ↪→ A dualizes to the counit morphism y0 7→ 1, yi 7→ 0 for i 6= 0, which canonically identifies one of the
points on SpecA∗ as the identity element. The dual of the multiplication map ∆ : x⊗x′ → xx′ is the unique
map ∆∗ such

∆∗(yi)(x
j ⊗ xk) = yi(x

jxk) = δi(j+k),

where the indices are understood to be modulo m and δ denotes the Kronecker delta. This determines
∆∗(yi) =

∑m−1
j=0 yj ⊗ yi−j . Finally, we can extract the group law on X∗ at the level of points: let Pi

be the points on X∗ corresponding to the prime ideals pi =
⊕

j 6=i k. The preimage of the prime ideal
pij =

⊕
0≤i′,j′<m

(i′,j′)6=(i,j)

k corresponding to the point (Pi, Pj) ∈ (µm)∗×(µm)∗ under the coalgebra homomorphism

is pi+j , corresponding to Pi+j . We can verify directly that (µm)∗ is the constant group scheme Z/mZ by
verifying that that coalgebra homomorphism on this scheme matches the one we found for (µm)∗. Using the
identification A∗∗ ' A, we also conclude (Z/mZ)∗ ' µm.

Note that our previous discussion was completely independent of the characteristic of the base field. If
char(k) = p > 0, we get a curious result in the case m = pn: the group scheme µpn is a nonreduced group
scheme consisting of one point, but its dual is a constant group scheme consisting of pn points, illustrating:

• The dual of a constant group scheme may not be constant;

• The dual of a smooth group scheme may not be smooth;

• The dual of a connected group scheme may not be connected.

Example 3. Let αp be the kernel of the relative Frobenius endomorphism on the scheme Ga over some field
k of characteristic p. As a scheme, this is the spectrum of A = k[x]/(xp), and its group structure is defined
by the comultiplication c : x 7→ x⊗ 1 + 1⊗ x, inherited from Ga; this means that c(xn) = (x⊗ 1 + 1⊗ x)n =∑n
i=0

(
n
i

)
xi ⊗ xn−i. The counit morphism is associated to x 7→ 0, and the antipode is defined by x 7→ −x.

Again let A∗ have basis y0, . . . , yp−1 dual to the basis x0, x1, . . . , xp−1 of A. The dual to the comultipli-
cation of A is the unique map c∗ : A∗ ⊗A∗ → A∗ satisfying, for all 0 ≤ n < p,

c∗(yi ⊗ yj)(xn) = (yi ⊗ yj)

(
n∑
k=0

(
n

k

)
xk ⊗ xn−k

)

=

n∑
k=0

(
n

k

)
δikδj(n−k)

=

(
n

i

)
δj(n−i),
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so this sum is nonzero only if n = i+ j. We conclude that c∗(yi ⊗ yj) =
(
i+j
i

)
yi+j . Meanwhile, the dual to

the counit morphism is 1 7→ y0; again, as a sanity check, we indeed have c∗(y0⊗ yi) = yi for any yi. We also
note that ypi = 0 for any i 6= 0, since this is

∏p
j=1

(
ji
i

)
yji, and the last term is divisible by p unless i = 0.

We claim that the algebra structure on A∗ is in fact isomorphic to A. This isomorphism ϕ : A → A∗ is
given by

xi 7→ i! · yi

for each 0 ≤ i < p. This is an algebra homomorphism since

(i+ j)! · yi+j =
(i+ j)!(
i+j
i

) yiyj = (i! · yi) (j! · yj) ,

and it sends 1 = x0 7→ y0.
The comultiplication structure on A∗ is defined by ∆∗(yi)(x

j ⊗ xk) = yi(x
j+k) = δi(j+k)—note that we

do not consider indices modulo p, unlike the case of Example 2, since now xn = 0 if n ≥ p, so we interpret
δi(j+k) = 1 if and only i = j + k as integers. We conclude that ∆∗(yi) =

∑i
j=0 yj ⊗ yi−j , with the indexing

stopping at i. We observe something remarkable: the algebra isomorphism A→ A∗ we described previously
is also a coalgebra isomorphism, since

ϕ(c(xn)) = ϕ

(
n∑
i=0

(
n

i

)
xi ⊗ xn−i

)

=

n∑
i=0

(
n

i

)
· i! · (n− i)! · yi ⊗ yn−i

= n! ·
n∑
i=0

yi ⊗ yn−i

= n! ·∆∗(yn)

= ∆∗(ϕ(xn)).

We conclude that αp is its own Cartier dual!
Note that computing the Cartier dual of αpn for n ≥ 2 is trickier. The map ϕ : xi 7→ i! · yi described

previously is no longer an isomorphism if we allow i ≥ p since i! = 0 in this range.

3 Cartier duality over a general base

Now let S be an arbitrary scheme.

Definition 4. A finite group G over S is a group object in the category of S-schemes that is finite locally
free over S. That is, f∗OG is a locally free OS-algebra of finite rank, where f : G → S is the structure
morphism. If this rank r is constant, then we say that r is the order of G.

We will refer to such schemes simply as finite group schemes, with the local freeness assumed. If S is
locally noetherian, then local freeness of f : G→ S is equivalent to saying that G is flat over S.

The category of finite S-group schemes is dually equivalent to the category of locally free and finite
OS-Hopf algebras via G 7→ f∗OG, where f : G → S is the structure morphism, and, in the other direction,
A 7→ Spec A, where A is a sheaf of OS-Hopf algebras.

Definition 5. The Cartier dual G∗ of a finite commutative group scheme G over S is S-group

SpecH omOS
(f∗OG,OS),

with Hopf algebra structure given by dualizing the Hopf structure on OG as described in the case over a
field.
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Again, cocommutativity of the coalgebra structure of OG guarantees that H omOS
(f∗OG,OS) is a com-

mutative OS-algebra, hence G∗ is a scheme. Commutativity of G∗ follows from the assumption that f∗OG
is a commutative OS-algebra.

Implicit in this discussion is the following:

Lemma 6. Let f : G→ S be a group scheme over an arbitrary scheme S. If U ⊆ S is an open subscheme,
then V = f−1(U) is an open subgroup scheme of G over U .

Proof. It suffices to show that the morphisms µ|V : V × V → G, i|V : V → G, and e|U : U → G factor
through the open immersion V → G. The morphisms µ, i, and e are all morphisms of S-schemes, so their
restrictions are all morphisms of U -schemes, which automatically implies that the images of all of these
restrictions land in V . �

Therefore, there exists a covering {Ui} of S such that Ui = SpecRi for some ring R and such that
f−1(Ui) = SpecAi for some finite free Ri-algebras Ai. By the lemma, the Ai inherit an Ri-Hopf algebra
structure—this follows from the fact that the f−1(Ui) are themselves group schemes over their respective
Ui. We may therefore locally describe G∗ as the spectrum of HomRi

(Ai, Ri), which is again a free Ri-Hopf
algebra of the same rank as Ai, so we also conclude that G∗ is finite free over S. The gluing morphisms
bewteen such charts are dual to the corresponding gluing morphisms between the various SpecAi. This
description also shows that G∗∗ = G via the local natural isomorphisms HomRi(HomRi(Ai, Ri), Ri) ' Ai of
finite free Ri-Hopf algebras.

Practically, this means that the theory over an arbitrary base is not terribly more complicated than the
theory over a field as long as we work affine-locally and glue. For example, our computations of (µm)∗ and
(αp)

∗ are essentially the same as before.

4 The functor of points

There is an alternative useful description of the Cartier dual: it represents the functor that sends a commuta-
tive finite group scheme to its group of characters. This description makes the Cartier dual a scheme-theoretic
analogue of the Pontryagin dual for (abstract) finite abelian groups. The advantage of our original definition
is that it gives an explicit construction of the Cartier dual, showing that it is representable by a finite locally
free commutative group scheme, but the functorial definition is often more useful in practice.

Proposition 7. Let G be a finite commutative group scheme over a base S. Then G∗ represents the functor
T 7→ HomT−Gp(GT ,Gm,T ) on the category of S-schemes. Here, HomT−Gp refers to homomorphisms of
T -group schemes.

Proof. It suffices to prove this when S = SpecR is affine, since we can cover a general base scheme by affines
and glue. It also suffices to give a natural isomophism of functors G∗(T ) ' HomT−Gp(GT ,Gm,T ) when T is
the spectrum of an affine R-algebra, since the restriction of the two functors to this subcategory determines
the functor of points for more general S-schemes, again by a covering argument. For this case, we follow [2,
Section 14].

So let S = SpecR, T = SpecB, and G = SpecA, where B is an R-algebra and A is a finite free R-Hopf al-
gebra. ThenG∗(T ) = G∗T (T ) = HomB−alg(A∗B , B) (homomorphisms ofB-algebras) and HomT−Gp(GT ,Gm,T ) =
HomB−Hopf(B[x, x−1], AB) (homomorphisms of B-Hopf algebras; recall that the Hopf algebra structure on
B[x, x−1] is determined by x 7→ x⊗x). Our goal is to establish a bijection between these two Hom sets that
is natural in B, and we will do this by identifying both sets with a certain subset of AB .

We start by identifying HomB−Hopf(B[x, x−1], AB) with a subset of AR. Any element

φ ∈ HomB−Hopf(B[x, x−1], AB)

is determined by α = φ(T ). Conversely, an arbitrary element α ∈ AB determines a Hopf algebra homo-
morphism φ if and only if α ∈ A×B and cB(α) = α ⊗ α, where cB : AB → AB ⊗ AB is the comultiplication
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associated to the group law on GT . (Elements α satisfying cB(α) = α ⊗ α are called grouplike.) Therefore
we may identify

HomB−Hopf(B[x, x−1], AB) = {α ∈ A×B : cT (α) = α⊗ α}.

We massage this description a bit. Let ηT : AB → B be the B-algebra homomorphism associated to the
unit map T → GT . We have a Cartesian diagram

AB AB ⊗AB

B B ⊗B B = B

cT

ηT ηT×ηT

with the identification B⊗B B = B given by b1⊗ b2 7→ b1b2. Therefore our two previous observations imply
that ηT (α) ∈ B× and ηT (α)2 = ηT (α), hence ηT (α) = 1. Conversely, suppose α ∈ AB satisfies ηT (α) = 1
and cT (α) = α⊗ α. Letting iT : AB → AB be the antipode map, we have a commutative diagram

AB AB ⊗B AB

B AB

cT

ηT a1⊗a2 7→a1·iT (a2)

as part of the Hopf algebra axioms. Tracing the image of α under this commutative diagram, we conclude
that we must have α · iT (α) = 1, so α ∈ A×B . Hence, we may alternatively identify

HomB−Hopf(B[x, x−1], AB) = {α ∈ AB : cT (α) = α⊗ α, ηT (α) = 1}.

These are the grouplike elements that pull back to 1.
Meanwhile, we consider which element of HomB−mod(A∗B , B) correspond to B-algebra homomorphisms,

not just B-module homomorphisms. In order for a B-module homomorphism ϕ : A∗B → B to be a B-
algebra homomorphism, it is necessary and sufficient to require ϕ(η∗T (1)) = 1, since η∗T (1) acts as the
multiplicative unit in A∗B , and that ϕ(c∗(a∗1 ⊗ a∗2)) = ϕ(a∗1)ϕ(a∗2), preserving the multiplicative structure.
There is a natural identification of AB with its double dual HomB−mod(A∗B , B) sending α ∈ AB to the
homomorphism a∗ 7→ a∗(α). Identifying ϕ with an element α ∈ AB , the two requirements for ϕ to be an
algebra homomorphism translate to requiring ηT (α) = 1 and c(α) = α ⊗ α. We conclude that we have a
natural bijection

G∗(T ) = HomB−alg(A∗B , B) = {α ∈ AB : cT (α) = α⊗ α, ηT (α) = 1}
= HomB−Hopf(B[x, x−1], AB) = HomT−Gp(GT ,Gm,T ),

as desired. This bijection is also a group isomorphism, where the group structure on both sides is identified
with multiplication in A×B . �

Corollary 8. The Cartier dual (−)∗ defines an additive dual equivalence on the category of finite commu-
tative S-groups.

Proof. Contravariant functoriality is clear, either from the direct construction or the functor of points.
For additivity, it suffices to show that (G ×S H)∗ ' G∗ ×S H∗ naturally as group schemes for any finite
commutative S-groups G and H. This follows immediately from the functor of points characterization of
the Cartier dual. Since (−)∗ is its own essential inverse, it defines a dual equivalence of categories. �

Example 9. If G is the constant group scheme associated to a finite abelian group of the form
∏

Z/miZ,
then G∗ =

∏
µmi .
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Example 10. Let f : A→ B be an isogeny of abelian schemes with dual f̂ : B̂ → Â. Then the Weil pairing
identifies ker f = (ker f̂)∗. For example, A[n] = (Â[n])∗. In characteristic p, we have kerF = (ker V̂ )∗,
where F is the Frobenius and V̂ is the Verschiebung on the dual. For ordinary abelian varieties over an
algebraically closed field of characteristic p, kerF is local while kerV is étale, and the Weil pairing in this
case is the starting point for the construction of the canonical lifting for ordinary abelian varieties, along
with the Serre-Tate Theorem; for more details see [1, Section 2].
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