MATH 104 HOMEWORK 8
DUE FRIDAY OCT 19 AT 12PM

1. For each nonzero rational \(x \in \mathbb{Q} \), let \(x = \frac{p(x)}{q(x)} \) be its representation such that \(p(x) \in \mathbb{Z} \), \(q(x) \in \mathbb{N} \), and \(\gcd(p(x), q(x)) = 1 \). Note in particular that \(p(0) = 0, q(0) = 1 \). Define \(f : \mathbb{R} \rightarrow \mathbb{R} \) by

\[
f(x) = \begin{cases} \frac{1}{q(x)^{\alpha}}, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}
\]

Prove that \(f \) is continuous on \(\mathbb{R} \setminus \mathbb{Q} \) and not continuous at any \(x \in \mathbb{Q} \).

2. Rudin 4.4

3. Let \(X \) be a metric space, \(E \subset X \) be a dense subset.
 (a) \(f : E \rightarrow \mathbb{R} \) be uniformly continuous. Prove that \(f \) has a unique continuous extension to \(X \); that is, prove there exists a unique continuous function \(\tilde{f} : X \rightarrow \mathbb{R} \) which agrees with \(f \) on \(E \).
 (b) Show that if \(X \) is compact, the converse is true: \(f : E \rightarrow \mathbb{R} \) has a continuous extension to \(X \) if and only if \(f \) is uniformly continuous.
 Also show, by giving a counterexample, that the statement is false without the compactness assumption.

4. A fixed point of a mapping \(f : X \rightarrow X \) is an element \(x \in X \) such that \(f(x) = x \). Show that if \(f : [0, 1] \rightarrow [0, 1] \) is continuous, then \(f \) has a fixed point.

5. Fix \(0 < \alpha \leq 1 \). A function \(f : [a, b] \rightarrow \mathbb{R} \) is Hölder continuous or \(\alpha \)-Hölder continuous if there exists \(M > 0 \) such that

\[
|f(x) - f(y)| \leq M |x - y|^\alpha \quad \text{for all } x \neq y \in [a, b].
\]

Show that the set of \(\alpha \)-Hölder continuous functions \([a, b] \rightarrow \mathbb{R} \) form a vector space, denoted \(C^{0, \alpha}([a, b]) \), under the usual addition and scalar multiplication of functions. Also show that

\[
\|f\|_{C^{0, \alpha}} := \sup_{x \in [a, b]} |f(x)| + \sup_{x \neq y \in [a, b]} \frac{|f(x) - f(y)|}{|x - y|^\alpha}
\]

is a norm on \(C^{0, \alpha}([a, b]) \).