(1) (a) Show that
\[ab \leq \frac{a^2 + b^2}{2} \] for all \(a, b \in \mathbb{R} \).

(b) Let \(x_1 := 1 \), and for \(n \geq 1 \) define
\[x_{n+1} := \frac{x_n}{2} + \frac{2}{x_n}. \]
Prove that \(\{x_n\}_{n=1}^{\infty} \) converges. [Caution: taking the limit of both sides as \(n \to \infty \) is only justified if you already know that the limit exists.]

(2) Let \(\{x_n\}_{n=1}^{\infty} \) be a sequence in \(\mathbb{R} \). Suppose there exists \(z \in \mathbb{R} \) such that every subsequence \(\{x_{n_k}\}_k \) has a further subsequence \(\{x_{n_{k\ell}}\}_\ell \) which converges to \(z \). Prove that \(\{x_n\} \) converges.

Suggestion. Suppose for contradiction that \(\{x_n\} \) does not converge. Let \(x, y \) be distinct subsequential limits....

(3) Show that if \(s_n \leq t_n \), then \(\lim \sup s_n \leq \lim \sup t_n \) and \(\lim \inf s_n \leq \lim \inf t_n \).
Deduce from this the so-called *squeeze lemma* that you likely encountered in single-variable calculus: Let \(\{a_n\}, \{b_n\}, \{c_n\} \) be sequences in \(\mathbb{R} \) such that \(a_n \leq b_n \leq c_n \) for all \(n \). If \(\lim a_n \) and \(\lim c_n \) both exist and are equal, then \(\{b_n\} \) converges.

(4) Rudin 3.2
(5) Rudin 3.4
(6) Rudin 3.6abc
(7) Rudin 3.7