MATH 104 HOMEWORK 1
DUE FRIDAY AUGUST 31 AT 12PM

(1) This problem has two parts.
 (a) Prove that \(\sqrt{5} \) is irrational.
 (b) Suppose you attempt to “prove” that \(\sqrt{4} \) is irrational by mimicking
 your argument for \(\sqrt{5} \). Retrace your steps in the previous part and
 identify where the arguments break down. Moral: if you find that you
 have proved a false statement, you have made a logical error some-

(2) Write down the negation of each of the following statements. Let \(x_0, x_1, x_2, \ldots \)
 be a sequence of real numbers.
 (a) “There exists \(A > 0 \) such that \(|x_n| \leq A \) for all \(n \).”
 (b) “For any \(\varepsilon > 0 \) there exists \(N > 0 \) such that \(|x_m - x_n| < \varepsilon \) for all
 \(m, n > N \).”

(3) Write down the converse and contrapositive of each of the following con-
 ditional statements. Here \(f : \mathbb{R} \to \mathbb{R} \) denotes a function and \(\{a_n\}_{n=1}^\infty \)
 a sequence of real numbers. The properties “Cauchy”, “converges”, and
 “continuous” will be defined precisely later in this course.
 (a) “If \(f \) is differentiable then \(f \) is continuous.”
 (b) “If \(\{a_n\}_{n=1}^\infty \) is Cauchy then \(\{a_n\}_{n=1}^\infty \) converges.”

(4) Prove that \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \) for any positive integer \(n \).
 Solution. Base case: When \(n = 1 \), \(1 = \frac{1 \cdot 2 \cdot 3}{6} \).
 Inductive step: Assume that \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \). Then
 \[
 \sum_{i=1}^{n+1} i^2 = \left(\sum_{i=1}^{n} i^2 \right) + (n+1)
 = \frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)[n(2n+1) + 6(n+1)]}{6}
 = \frac{(n+1)[2n^2 + 7n + 6]}{6} = \frac{(n+1)(n+2)(2n+3)}{6}
 = \frac{(n+1)(n+2)(2(n+1)+1)}{6}.

 Hence by induction the identity holds for all \(n = 1, 2, \ldots \).

(5) Show that for each integer \(n \geq 0 \) and real number \(x > -1 \), the inequality
 \((1 + x)^n \geq 1 + nx \) holds.

(6) Prove that if \(0 \neq a \) is rational and \(b \) is irrational, then both \(a + b \) and \(ab \)
 are irrational.
 Solution. If \(a + b \) is rational, then \(b = a + b - a \) is rational. Similarly, if
 \(ab \) is rational then \(b = a^{-1}ab \) is rational.

(7) Prove the reverse triangle inequality: \(||a| - |b|| \leq |a - b| \) for all \(a, b \in \mathbb{R} \).
Solution. For any \(x, y \in \mathbb{R} \), \(|x| = |x - y + y| \leq |x - y| + |y|\), we have \(|x| - |y| \leq |x - y|\). Interchanging \(x \) and \(y \) yields \(|y| - |x| \leq |x - y|\). Thus \(||x| - |y|| \leq |x - y|\).

(8) For each of the following subsets of \(\mathbb{R} \), determine its sup, inf, min, max, or indicate that the quantity does not exist.

(a) \((-5, 6] = \{x \in \mathbb{R} : -5 < x \leq 6\}\)
(b) \(\{0, 1, 2, \ldots\}\)
(c) \(\{\frac{n-1}{n} : n = 1, 2, \ldots\}\)

Solution. (a) inf = -5, sup = 6 = max, and min does not exist.
(b) min = inf = 0, neither sup nor max exist.
(c) inf = min = 0, sup = 1, max does not exist.

(9) (Rudin 1.4) Let \(E \) be a nonempty subset of an ordered set. Suppose \(\alpha \) is a lower bound of \(E \) and \(\beta \) is an upper bound of \(E \). Prove that \(\alpha \leq \beta \).

Solution. Fix \(x \in E \), which exists since \(E \) is nonempty. By hypothesis \(\alpha \leq x \) and \(x \leq \beta \), hence \(\alpha \leq \beta \).

(10) (Rudin 1.5) Suppose \(A \) is a nonempty subset of \(\mathbb{R} \) which is bounded below. Let \(-A := \{-x : x \in A\}\). Prove that
\[
\inf(A) = -\sup(-A).
\]

Solution. Let \(\alpha = \inf(A) \). By definition \(\alpha \) is a lower bound of \(A \), so \(\alpha \leq x \) for all \(x \in A \). Thus \(-x \leq -\alpha \) for all \(x \in A \), so \(-\alpha \) is an upper bound of \(-A\). Now suppose \(\gamma \) is another upper bound of \(-A\). Then \(-\gamma \) is a lower bound of \(A \), so \(-\gamma \leq \alpha \), thus \(-\alpha \leq \gamma \). Therefore \(-\alpha \) is the least upper bound of \(-A\).