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A numerical method for solving the time-dependent Navier-Stokes equations
in two space dimensions at high Reynolds number is presented. The crux of the
method lies in the numerical simulation of the process of vorticity generation
and dispersal, using computer-generated pseudo-random numbers. An applica-
tion to flow past a circular cylinder is presented.

1. Introduction
The Navier-Stokes equations in two space dimensions can be written in the

form 4L+ (u. V)£ = RIAL, (1a)
AY = ~£, (1d)
u==9,y, v=20.y, (te)

where u = (u, v) is the velocity vector, r = (x, y) is the position vector, ¢ is the
time, Y is the stream function, £ is the vorticity, A = V2is the Laplace operator
and R is the Reynolds number. R is assumed to be so large that finite-difference
methods are difficult to apply. Equations- (1) are to be solved in a domain D,
_not necessarily finite, with bounda.ry oD, and their solutxon must satlsfy the

bounda,xycondstlons . u=0 on aD o , o (2)

' a.nd the initial condxtlon
' i : u(a:,y,t =0) givenin D . ‘ (3)
Consxder in particular ‘the problem of flow past a cylmder ‘of ﬁmte Cross-
_section I’ In the vicinity of its boundary 4D a boundary layer will form, whose
thickness will be proportional to R (ses, for example, Schlichting 1960, p: 109).
Consider furthermore a finite-differerice method whose grid is characterized near
the boundary layer and in the wake by a mesh width 8. Since it is presumably
' necessary that a few mesh points fall within the’ bounda.ry la.yer we find that the

condition &R = 0(1) : : (@)
must be satlsﬁed Ana.lyms (Chorin 1969a) suggests the more strmgent oondltlon
OR = 0(1). (6)

Conditions similar to (4) and (5) were given by Keller & Takami (1966); they
indicate that at Reynolds numbers of practical significance the number of mesh
points as well as the amount of computational labour required to obtain a solution
would be prothxtlve In practice, insuperable difficulties are encountered at

50 LM 57




786 A. J. Chorin

Reynolds numbers of a few hundred. It is therefore of interest to develop a grid-
free numerical method in which the values of the velocity field near a boundary
+ -are not all.computed but are merely sampled, with computational effort concen-
trated in regions of greatest interest. We shall now present such a method, which
relies on a numerical simulation of the process of vorticity generation and dis-
persal, using computer-generated pseudo-random numbers. A summary of this
method was presented in Chorin (1972).

2. Principle of the method |
"Consider first the flow of an inviscid fluid (i.e. R = c0). Equations (1) reduce to
| DE[Dt=0, Ay =-—¢, (6)

where D|Dt denotes a total derivative. One could think of solving equations (6)
in the absence of boundaries by partitioning the vorticity £ into a sum of blobs,
i.e. writing

N
E= 35, )

where the functions £; have small support, i.e. vanish outside a small region (or
blob) around a point r;. § will then have the form

N
Y= _Z ¥y with Ay, =—£; (8)
' For ]r r; la.rge ; will tend to the form

Y Ejloclr r EJ fgjdxdy, _ (9

where |r ;) denotes the length of the vector r— ;. The expression (9) is the
. stream functxon of a point vortex; we are:thus assummg that distant blobs affect
each other as if they were point vortices of a.pproprlatae strength £;. Neighbouring
~ vortex blobs, however, affect each other’s motion unlike neighbouring vortices,

in particular, the velocity field should remain bounded, while the velocity field
induced by a point vortex becomes unbounded near the vortex (Batchelor 1967,
~p. 95)::If the blobs are small, one can. assume that the velocity changes little
.:over-their area and, furthermore, that the. amount of vorticity they contain,
', is small, so that their effect on their immediate neighbours is small. These -
- assumptions have now been justified by Dushane (1973). The gist of the analysis
"+ is as follows: Euler’s equations are written in mtegra,l form, and it is then shown
~that the right-hand sides of equations (10) below are. recta.ngle-rule approxima-
_ tions to the resulting integrals. From this fact, it is deduced that the error con-
a verges to zero with the area of the ]argest of the supports of the £;. Thus we wrlte

v X S ).

o where W’(r) is‘a fixed functlon of r such that .

~(1]21r)logr for rla.rge
—>0 as r—>0

v ){




- and we have.
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£= ZE,S’ §°——A!/"’(l‘ —1y).

The motion of the vortex blobs is then descrxbed by
dzx;

= _Eigjw (r-1) (i=1,..,N), (10a)
d oy . ,
H-’/Ti =j§‘_§,.__;/’£ (r-r) (=1..5), ~(10B)

where (2,, ;) are the components of r;. This construction can be summarized as
follows: if we consider a collection of vortices having a structure and density
such that their density approximates the initial vorticity density, and if their
motion is determined by equations (10), then their density will continue to
approximate the vorticity density at later times. This statement indicates how
a small viscosity can be taken into account through a judicious use of the rela-
tionship between diffusion and random walks (see, for example, Einstein 1956,
p. 15; Wax 1954, p. 9). Consider the diffusion equation

AE=RTAL E=E=y),
with initial data §(0) = £(x,y,t = 0). A solution of this equation using random
walks can be obtained as follows. Distribute over the z, y plane points of masses
£; and locations r; = (z;,%;), ¢ = 1,..., N, N large, in such a way that the mass
density approximates £(0). Then move the points according to the laws

n+1 = xi +771! yz+1 = ?/ +7’2’ (lla b)

. where 7, and 7, are Gaussianly dJstnbut.ed random variables with zero mean
"and variance 2k(R, k being the time step, and where 27 = z,(nk) and y7 = yi(nk).
Then the mean density after n steps (11) will approximate £" = £(nk). An algo-
rithm for sampling 7 7,8nd 7, is readily designed (see, for example, Paley & Wiener
1934, - 146). Boundaries on which £ is prescribed are readily handled by main-
taining & constant density across them and: allowing points from both sides to
“eross at will: (For analyses, see Einstein (1956) and Wax (1954).)
Now' a.pprox:mate equations (10) by an algonthm of the form -

x:»+1 - a:"‘+ku"’*, Yot =] ? 4 kymd, (12a,b)

where u™# and v™# approximate the right-hand sides of equations (10), k is
a time step and z} = x(nk) and y? = y(nk) are as above. Then the vorticity
: denslty generated by the motion of the vortices according to the laws

P = P kum i'*'"h, (13a)
Y=yt ki, (13d)
wnll nppm\lmuhs the nolution of equntions (1).

Placo in the flow an obstacle with boundary 2D. In tho case of an inviscid
flow only the normal component of u can be required to vanish on the boundary.
‘This requirement can be satisfied by adding to the flow induced by. the vortices
a potential flow with velocity on the boundary so designed that it cancels the
normal velocity due to the vortices. This potentlal flow can be found by solvmg an
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788 A J. Chorin

integral equation on &D (see Kellogg 1929, p. 311) and does not require the imposi-
tion of a grid on D. For details, see below. When R is finite, the tangential com-
~ ponent of u has to vanish on 2D as well. Suppose that at some time ¢ the flow we
have so far, which is the sum of the flow due to.the vortices and of a potential
flow, fails to satisfy this second boundary condition. The effect of viscosity
will be to create a thin boundary layer which will ensure a smooth transition
from the boundary to the flow inside D. The vorticity in that boundary is readily
evaluated; it can then be partitioned among vortex blobs and the latter can be
allowed to diffuse according to the laws (13). Once this has occurred, u™# and
o™ 3 will be small, and in the neighbourhood of a houndary the random « ‘omponent

. of equations (13) will bo dominant. When n vortex, now or ok, erosses M) it
disappears. This process imitatos the physical process of vorticity gonerntion (sec

~the disenssion in Bateholor (1967, p. 277)).
Pt is eloar that our method can be appliod o Bows i tinite domains as woll

as to flows in exterior regions. The example of flow past an obstacle does, however,
- indicate an advantage of our method: no asymptotic expansion of the solution
far from the body need be known in advance.

3. Implementation of the method

We shall now give details of the algorithm just outlined by presenting an
explicit form for the blob stream function ¥°(r) and a construction of v™% and
»™1 to be used in (13). The method of calculating the potentxa,l component of the
ﬁow will be presented in the next section.

Consuder blob stream functions of the form

0 (2m)tlogr (r > o), o ' '
. ‘ "0 ( )_ {(2#)‘11'/0' (r<o), ‘ (14)

. where 7 = |r} and o is a cut-off length, to be determined later. The reason for

- .considering this particular form will appear below. The total circulation around

a.vortex of this form is 1, and the associated velocity field is continuous and

bounded. Assume that at time ¢ = nk we have a veloclty ﬁeld u” with vorticity
' a.pproxxmated by -

——2§;A¢°(r r) A=V

e :.We now present a sequence of steps which will yield £n+1.

- Divide the boundary 4D into M segments of equal length 4, w1th centres
Qi 1 =1,...,M; let the co-ordinates of @; be (X,,Y;). Let u, = (u, ) be the
velocity mdu ced by the vortices present at time? = nk; we haveat r = (z,y)

__ J;I 3/ Y~y
uf(r) .)” 21 £j ;,” EB (YT‘ E[D (150)
, . 1 r;—a— .1 XX+
’l)g(f) 27 741 T}’ g) 2”.;42 o, .fl, (15’))

“where 7; = [(x;— x)2+ (y; -y, 2, is a sum- ovcr all vortices such that >0
‘ and Z is a sum over a.ll vortlces such that r, < 0. Let n = (n;,n,) be the outward
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norma,l to 2D. We find a potentlal flow u, such that u,.n = —u;.n (at @,
t=1,...,M). The deta.lls of the evaluation of u,, will be presented m the next

seetlon u,+ u, ‘satisfies the normal boundary condltlon on 4D. We write
[ .

und = (umd,ond) = u, +u,,
and use this velocity field in equations (13) to advance the posmon of the exist-
ing vortxces those vortices which cross dD are eliminated. -

Let s be a unit vector tangent to D). The total vort101ty in the bounda,ry layer
which appears when the condition u.s = 0 is applied is (up+u;). S per unit
- length of 4D. We now partition the resulting vortex sheet into. M blobs, centred

at the @,. We evaluate (u,+u,).s at Q,, and assign to the new. ly created vortices
the vorticity £ = (u +u;).sh. The newly created vortices cannot be point vor-
tices, since the flow field in the neighbourhood of a point vortex is very different
from that near a vortex sheet; in particular, it is not bounded, while in the neigh-
bourhood of a vortex sheet, the velocity does remain bounded, with its tangential
components suffering a jump as the sheet is crossed. It is clear that an array of
vortices with the structure (14) will approximate these features, since if one draws
" a line through the centre of such a vortex the velocity field where » < o has a
constant magnitude and changes sign abruptly at the centre. Furthermore, as a
vortex of this structure leaves the surface, its induced velocity field must exactly
annihilate the tangential velocity at the boundary. This condition can be satis-

fied if - ' o = h/2m, : ' (16)

and thus the cut-off o is determined. The newly created vortices then move
according to the laws (13); those Whlch leave the fluid disappear; the evaluation
of £»+1 is complete. !

The use of equations (15) amounts to an a.ppa.rently cumbersome method of
solution of Poisson’s equation. However, the method is intended for use in prob-
~ lems where intense vorticity is confined to small regions, which makes (15) usable,

' and the alternative methods of solution employ a grid, which Wou]d destroy the
: pnnc1p1e of our method. :

| ;4 The evaluatlon of the potential component of the flow =

" To complete the descnptxon of our a.lgonthm we now descrlbe h(yw' the  poten-
tial component. u,, is evaluated (see Smxth 1970). The equatlon to be

L _ | Ap=—f=-Vxu=o, (17)
; sub]ect to the boundary condltxon ) v |
’ ' u.n=-u,.n on abD.
' ,Eq;;;étiion (17),'.@1_ be satisfied by a flow of the form
' | u=ve,  as

“where $ has the form.

o) =5 a@oeR@dy, o)
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' where q isa pomt on 6D with co-ordma.tes (xq, yq), and

'R(Q) = [(x %)2"'(?/ yq)z]i

a(q) isa smgle-la.yer source (see Kellogg 1929, p 311), and sa.tlsﬁes the mtegral

equation 1 v
alg)=7 [, ala) 2,008 Rig)dg' = ~2ue.m, (20)

where @,, denotes a. denva.tlve in the direction of n. We approximate (20) by a

.. system of linear equa.tlons A _souree of 1ntens1ty 1 at Q: _mduces a.t tho pomt
: Q,, i # o velomty ﬁeld w1th components - :

1 X,~X, 1Y%
U('I‘.’) ﬂ_‘_j{—g;—’ U(’L)— 277 R2 ’
| R = (X~ X )Pt (V-T2
We approdimate ag) by the M component cectim a o)) vy, which
must thus satisfy the matrix equation
e : ‘Aa = b,
where the components of b are the values of —U;.n eva]uated at the points ¢,
and the matrix A has the components '
= Uit Bliim G+
=3t (i=1,...,N).

.The discrete form of (18) and (19) is-then

p(r) Zup('t),

o Q) i onsih
where " ) = {2,, Q) gy I 7@ > 1
T @)@ i @) <

) :.1s the vector )01mng Q, t.o I and r(Q‘) = ]r(Q,)[ '

5. Heuristic considerations
The crux-of our method is the representation of the flow by a ra.ndomly placed

. set of vortices of sxmﬂa.r ﬁmte structure. This representatlon was suggested by

he s _,vthor swork on tnrbulence theory (Chorm 1969b 1970 1973), and 1t may be
of interest to summarize the relevant considerations. -

Much of the theory :of turbulence is. concerned with the behaviour of the .
spectmm of the flow at large frequencies (see Batchelor 1960, p. 103). The
reason is that this behaviour seems to be independent of the particular flowtinder
consideration. "The hopoe is thal an: amdertanding of this bohavienr would
suggest a way to mcorpora.te these frequoncies into a numerical method; finite-
difference methods in particular can handle only a bounded range of frequencies.

The high-frequency range of the spectrum is associated with the less smooth
part of the flow. The crucial assumption in the author’s work is that the loss of

" smoothness in incompressible flow. does not occur uniformly in each ﬁow but

W
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is locahzed in certain reglons, much in the same way a8 the high-frequency com-
ponents of one-dimensional ¢compressible flow are occasioned by the appearance
of shocks. An argument was given to the effect that these rough regions consist
of circular vortices; in order to match the observed spectra these circular vortices
must have a core of universal structure. Their locations may be thought of as
random. By constructing the flow from such elements, one ensures that the high-
frequency range is taken into account. It is interesting to note that similar
considerations can be applied to Glimm’s (1965) solution of nonlinear* hyperbohc
. systems.
, The question now arises as to what is the order of magnitude of the errors
- induced by our approximation. In the case of infinite R (inviscid flow), we have a
fully deterministic method of so]vmg Euler’s equations, and as long as k is of
order h, we expect the overall error to be of O(k). In the case of finite R, the velo-
city at any one point or at any one instant is a random variable, and convergence
can be expected only in the mean, i.e. as one averages over large regions, or over
- long times.or over ensembles. In the mean, diffusion is represented without error;
" the crucial problem is to assess the effect of the mtera.ctlon between the random
and deterministic parts of equations (13). As far as the determination of inertial
effects is concerned, the random variables 7, and 77, can be viewed as harmful
perturbations. The standard deviation of 7, and 7, is [2k/R]}. After » steps, the
total effect of the random perturbations will be to induce a displacement of order

[n.2k/R}t = O(R~Y)

in the loca.tlon of the vortlces If this can be identified with an error in the evalua-
- tion of the nonlinear terms; its magnitude will be of O(R~1). We thus conjecture

" thatthe: mean error in our calculation is of O(k) + O(R-1). The second term in this
estimate may appear shockmg, since it does not depend on k. However, the
relations | (4) and (5) indicaté that, if R+¥isnot small, a difference method may be
used and our algorithm bécomes unnecéssary: We therefore do not expect valid
solutions at low R.

- At the other extreme, some dJﬂiculty may be expected at very. hxgh Reynolds
: »numbers This is so because the boundary layers formed by the algorithm are
" ‘made up of & few bouncing vortices'and are thus noisy; turbulence effects should
.. $herefore appear at too small a value of R as they do, for: exa.mple, in noxsy
., ‘wmd tunnels or a,round rough bodles B e . :

6 Apphcatlom flow past a clrcular cylmder T
~ Consider a'circular cylmder of radius 1, immersed in a fluid of denslty 1 to
- which'is imparted at t =04 constant velocity of ma,gmtude 1. The . Reynolds -
'number based on cv]mder radius is R-= v-}; where » is the viscosity. (In the
litor nturo one oncountors a Roynolds number R’ = 2R basod on eylinder dia-
moter ) Let the origin O be fixed in the centre of the cylinder’s base, with the
" négative-r axis pointing in the direction of the motion. In the resulting frame
of reference the velocity at infinity is (1, 0), and the cylinder is'at rest oD.is the
('xrcumforenco of the base.
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" Divide 2Dinto M “ﬁiéces’ of lengish b= 271/M ‘The cut-off length is o = k/27 =
.. 1/M. One. of the important functionals. of . the flow is the drag coefficient Cp,
~which in our units is slmply the force per unit length of the cyhnder We ha.ve

: . o OD_C’+C',,,.,
Iwhere C is: the skm drag, glven by _ . ,
c, = ——f g,,smeda 1)
A n.nd (" is.the form drag, glvon by ‘ , ' ‘
: ,(:, - J._ Py 08 (hl(), : (" 2

. wh(-) o 7 eos () =, rsm (} _/, Ea isthevor tic nty on' &/ and p, is tho prossure on &1).
" p, can be cvaluated using the formula

p,(0) = Rf 2, £ ds + constant, (23)

".“'Where 3 g ls the normal derivative of £ and the integration is carried out along
éD. The problem at hand is to evaluate £ and 2 & given our random array of
- «vortices. Introduce the regions A a.nd A+ defined by

={z,yll<r <1+/L,(j 3) 277/M <6 <(]+§)27r/M}
={,yll+p<r <1424, (j—3)2n/M <0 <(j+3)2n/M},

where p = (2L/R)i is the standard deviation of 7, and '72 £(A;) and £(A4F) are
~defined:as the sums of the vorticities ; associated with vortices whose centres
. fallwithin 4; and A} divided by.the areas of 4; and A+ respectxvely We now
- identify £(4; ) with! g(Q,) and (£(A;) — £(4;))/p with 9, g(Q,) 1t is worth empha-
- ‘sizing-that the grid just introduced is used not to advance the ca.lculatlon, but
‘only to-diagnose its outcome: g(A,) and; §(A+) are random va.na.bles, and can be

"~ .-expected to have substantial variance; we therefore mtroduce the averaged drag .

Gty T),deﬁnedby ey
CD(tT) f Loy Y

vwhere Cp(t) is: the drag C’D at tlme t The mtegrals (21)—(24), can be evalua.ted
Y through the use.of the trapezoidal rule. :

The time step k and the number M of vort:ces crea.ted per tlme step remam n to
be chosen. As k decreases M must increase; this is so because the deterministic
component of the right-hand sides in equations (13) is proportlona,l to k, while
the random component his staridard deviation proportional. to WJk. Thus as k

. is decreased, each vortex-has:an increasing:number of opportunities to cross oD
- and disappear;since:a minimum humber of vortices must be ma.mta,med in the
" fluid, rmore and-more must be created. For.a given k, M is chosen so large that a
~* furthorine reasce-doesnot affect tho solution. k must bo.choson 80 that a docroaw‘
 in'‘k will'not affect the flow; the solution is rather insensitive to k. After some
sexperimentation the value k = 0-2 was.picked. The required M is 20. All the
* calculdtions: below were made with these parameters v . )
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Flow st (a) B = 1000, ¢ = 12; (b) R = 1000,

t= 245 () R=100,¢=16. . ...

“* ‘For figures 1(a)and (b) the flow at B = 1000 at two.times is visualized. The

" domain is divided into squares of side € = 0-3; if a square contains'no vortices

" nothing is printed; if the'sum of the vortices in the square is positive a cross is
** “pritited; if the sum is negative a circle is printed. Note the. deformation of the
* circle by the computer printer.. This visualization may be crude, but it is in




e A.J. Chorin

t Cp(t, ) Colt, 2)
-2 0-993 - . 0-993
4 1-118 . 1-232
6 1-020 0-833
8 1-056 1-158
10 1-068 ' 1-118
12 1-034 0-863
16 1:014 - 0-804
20 1049 - 1-216
24 '1-060 . 1-073

TABLE 1. Average drag as a function of time at B = 1000

j &4, &4
1 10-8 14-4
2 60 59
3 —21-3 —20-9
4 8-1 7-9
5 —25-4 —24-9
6 7-2 7-0
7 521 51-1
8 22-7 49-3
9 35-7 35-0
10 20-6 20-2 -
11 -95 —64
12 —30-9 ~30-3
13 —52:6 - —516
14 248 —41-9
15 —194 —493
T S & -89
a7 -83 —114
8 . 23 2.2
19 11-6 114
20 51 100

TaBLE 2. Vorticity distribution at R = 1000, ¢ = 10

keeping with the spirit of our method, in which nolocation is certain; the visualiza-
.. tion is of course most ma.dequa.t.e at boundaries. In table 1 the values of £(4,) and
- g(A+) fort= 10 and R'= 1000 are tabulated.: Separation can be detected when

'g(A,) and £(47) differ appreciably. It can be:seen that the separation of the
boun ry”layers occurs (asymmetrically) around 0= 126° and 6 = 288°. The

o fva,lues of Cp(t,ty and Cp(t, 2) at R = 1000 are tabulated in table 2. The numbers

printed yield a mean: drag of 1:04, in excellent agreement with expenment
(Schlichting 1960, p. 16).

‘We now decrease R. At It = 500 we obtain & mean drag C, = 1-:15. In ﬁgure
‘1(c) we visualize the flow at B = 100, which is at the lower limit of applicability
of the method; € = 0-25. Cp(t, 2) climbs to a maximum of 2- 80, and then oscillates
. between 1-:30 and 1-18. (The experimental values lie between 1:20 and 1-25.)
The skin drag is 0-26 + 0-02; ; the ox]mrlm(mtnl value is.0-28,

\
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: As we increase B we find that Cp = 109 at. B ,='\V5000;,thi§ rise is of course
experimentally observed. At R = 10000, Cp, is approximately 0-87, about %

" of the experimental value. We.can conjecture that the rough representation of

the boundary layer triggers a premature onset of the drag crisis, analogous to the
effect of a rough boundary or a noisy flow. This conjecture is apparently con-
firmed by tho fact that, at B = 100000, O, = 0-29, in good agreement with the
expoerimontal valuo hoyond tho drag crisis. However, moro thought is required
~heforo we are ready to ‘claim that the method is- able to follow a:transition to
turbulence. Beyond B = 10000 the vortex street behind the cylinder becomes
disorderly at about 10 units of length behind the cylinder. In all our calculations,
the number of vortices in the fluid at ¢ = 30 is approximately 300, and it takes
about 12 minutes of CDC 6400 time to follow the evolution from ¢ = 0tot = 30.1

7. Conclusion and further work

We have presented a numerical method containing a random element which
‘makes possible the analysis of flow at high Reynolds number with comparatively
little effort. The price paid for this achievement is the loss of pointwise conver-.
~ gence in either space or time. The method will be applied to other problems be-
sides the one presented here, but the most fascinating subject for further research,
both theoretical and numerical, is the possibility that this method is able to
simulate the transition to turbulence.

Another problem under investigation is the development of a similar method
for three-dimensional flow problems, in which vortices will be replaced by vortex

lines.

This work was carried out while the author was Visiting Millér Research Professor
at the University of California, Berkeley, with partial support from the Office
of Naval Research under Contract no. N00014-69-A-0200-1052.
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