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1. Introduction 

Product formulas constitute one of several bridges between numerical and 
functional analysis. In numerical analysis, they represent algorithms intended 
to approximate some evolution equation and, in functional analysis, they are 
used to prove estimates, existence and representation theorems. 

Our aim is to survey the setting for product formulas and to discuss some 
recent results. Needless to say, we do not attempt to accommodate all the 
complex variations which occur in practical algorithms, nor the sharpest 
possible theoretical results. Nevertheless, we hope that our middle ground 
approach and some of the examples will be of interest to both groups. 
Because of its survey nature, we have not hesitated to include some 
well-known examples which are important for understanding the ideas. 

The general idea of product formulas is the following. Suppose one is 
interested in an initial value problem 

du 
dt 
- = A ( u ) ,  
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where A is some linear or nonlinear operator on u in some space. Let K,, be 
a step-forward operator corresponding to an algorithm intended to approxi- 
mate this equation. If At  = t /n and we iterate n times, 

is supposed to approximate the evolution operator for the equation; KA, may 
be defined on the same space of u's or on an approximating space. 

If we let F, denote the evolution operator for the equation, i.e., F,(u,) is 
the solution with initial value uo, then convergence of the algorithm may be 
written as 

or as 

F, = lim KkfiAtJ, 
At-0 

where [ t / A t ]  is the greatest integer in tlht. 
For time-dependent equations duldt = A(t,  u ) ,  the evolution operator 

depends on t and s ;  &.s(u,) is the solution u ( t )  with u ( s ) =  u g .  Here the 
step-forward operator depends explicitly on time: K, , , ,  and convergence may 
be written as 

where the product is ordered with smaller k's to the right. The time 
dependent case is technically more difficult and will not be discussed further 
(see Kato [31], [32] for the linear case and Crandall and Pazy [70] and Evans 
[72] for the nonlinear contractive case). 

The history of product formulas is complicated by gaps between theory 
and practice, but we shall attempt a brief sketch here. The convergence of 
special algorithms for ordinary differential equations of course goes back to 
Euler and Picard. The same ideas prove the convergence of general al- 
gorithms for ordinary differential equations, as is given in numerical analysis 
texts (e.g., Gear [21]). We shall discuss this case in Section 2. 

For m X m matrices A and B, the algorithm KA, = exp {(At)A} exp {(Ar)B} 
for the equation d x / d t = A x + B x  leads to the 1875 formula of S. Lie [38]: 
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This and the related formula 

occur in the theory of Lie groups. 
In the period from 1928-1950, a large number of specific iteration 

schemes were developed and their convergence established, primarily for 
linear partial differential equations, with some theory and a lot of practice in 
the nonlinear case. The bibliography of Richtmyer and Morton [54] contains 
some of the important references. 

In the period 1950-1956 the von Neumann condition and the Lax 
equivalence theorem for linear systems were developed (see Lax and 
Richtmyer [37]). The Lax theorem gives conditions assuring convergence of 
the algorithm. One of these conditions, stability, was examined in detail 
through spectral properties, as in the Kreiss matrix theorem (again see [54]). 

In 1958, Trotter [63] made some important improvements in the Lax 
theorem and applied this result in [64] to the formula exp{A+B}= 
lim,,,,(exp{A/n}exp{B/n})" in case A and 8 are unbounded operators. A 
further important extension and simplification was given by Chernoff [ 5 ] ,  [7] 
which will be discussed, along with some examples, in Section 3. 

Trotter worked in the generality of approximating Banach spaces, a 
situation which is important in numerical work (see, e.g., Ciarlet and Raviart 
[13]); if the equations Li = A ( u )  have solutions lying in a Banach space Y, the 
step forward operator K,,, may be defined on an approximating Banach 
space Y,, in this sense (see Kato [30]): there are uniformly bounded operators 
Pn : Y +  Y,, such that, for u E Y, \lPnull+ IIu1( as n -+ 00 and there is a 
constant C such that, for all u E Y,,, there is a U E  Y with 2) =P,u and 
\lull 5 C I(z)((. It is fairly routine to extend the concepts and results from the 
case K,, : Y -+ Y to the approximating case K,,,, : Y, + Y,,. For example, 
convergence becomes phrased as follows: for U E  Y, 

Applications of product formulas for linear operators to quantum theory 
and the Feyman-Kac formula were initiated by Nelson [46]. For more recent 
references and applications, see Reed and Simon [53]. 

On the nonlinear side, a number of specific algorithms were discussed and 
methods developed in the context of numerical analysis. The papers of Strang 
1591 are representative. For contractive nonlinear semigroups, Brezis and 
Pazy [4] proved convergence of contractive algorithms. In practice, the 
contractive hypothesis may be difficult to arrange. Of course, many existence 



208 A. J .  CHORIN ET A L  

theorems for nonlinear equations implicitly establish convergence of al- 
gorithms, as in Lions [40]. Product formulas were used by Ebin-Marsden [16] 
to establish convergence of the solutions of the Navier-Stokes equations to 
those of the Euler equations on regions with no boundary as the viscosity 
goes to zero. The method was abstracted by Marsden [42] and will be briefly 
discussed in Section 5 .  Finally, Chernoff [6]  established under very general 
hypotheses that if F;,, converges, the limit must be a semiflow. 

Although convergence is important, there are many situations, such as 
structural dynamics, in which one wants to take large time steps in order to 
mask high frequency modes of lesser interest. In doing so, stability problems 
are of central importance. Some of the more naive generalizations of linear 
techniques including an over-reliance on spectral methods seem beset with 
many difficulties. In Section 7 we shall discuss these ideas and present an 
energy preserving (implicit) algorithm for nonlinear Hamiltonian systems 
which generalizes the Crank-Nicolson method for linear systems. The method 
is also of theoretical interest, for it can be used to establish global weak 
solutions for a number of systems (e.g., those treated in Segal [56]). 

The most complicated example treated here will be an algorithm for the 
Navier-Stokes equations first implemented by Chorin [9], and based on a 
heuristic model of boundary layer mechanics; see Lighthill [39] and 
Batchelor [2]. This algorithm was written as a product formula by Marsden 
[43]. Convergence of the algorithm and some discussion of its relevance for 
turbulent solutions of the Navier-Stokes equations is described in Section 6. 

Acknowledgement. The authors are grateful to T. K. Caughey, P. R. 
Chernoff, T. Kato, S .  A. Orszag, A. Pazy, and C .  Peskin for their invaluable 
assistance. Some of the results here were done with their collaboration or, 
where noted, are due to them; they also pointed out a number of useful 
examples. 

2. Ordinary Differential Equations 

1. Introduction. To get the idea, consider a linear differential equation in 
R". 

d X  
- = A X  
dt 

with solution x(t) =exp {tA}x(O). Let K,, be a linear map of [w" depending 
smoothly on At with k,,=identity and satisfying 
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Then to show that limn-m K;,, = exp { tA} ,  note that 

so that 
K;,, += exp { t A }  . 

(Taking logs is justified since K, is close to the identity for E small.) 

differential equations, nor in the nonlinear case. 
Unfortunately, this simple argument does not work for linear partial 

2. A convergence theorem. Let us begin with the observation that the 
convergence theorem for ordinary differential equations works on Banach 
manifolds. It is worth recording this well-known proof for comparison with 
later results and also so that we can globalize the theorem. 

First the notation: let X be a Banach manifold and let A be a locally 
Lipschitz vector field on X .  Let F, be the flow of A, maximally extended, so 
F,(x,) is defined for (t ,  x,) in an open set containing {O}xX. Thus F,(x,) is just 
the solution of i = A ( x )  with initial condition xo which is maximally extended 
in time (see any text in ordinary differential equations). 

Let K,(x) be a map defined in some open set of R X X containing (0) X X 
and taking on values in X and assume 

(9 K d x )  = x, 
(ii) K,(x)  is C' in E with derivative continuous in ( E , x ) .  

2.1. THEOREM. Assume that the algorithm K,(x)  is consistent with A in 
the sense that 

Then, if (t ,  x )  is in the domain of &(x ) ,  K;,,(x) is defined for n suficiently large 
and converges to F , ( x ) .  Conversely, if K;,,(x) is defined and converges for 
0 5  t l  T, then (T,  x )  is in the domain of F and the limit is &(x). 

First of all, we prove that convergence holds locally. We begin by 
showing that, for any xo,  the iterates K;,,(x,) are defined if t is sufficiently 
small. Indeed, on a neighborhood of xo ,  K , ( x ) = x + ~ ( E ) ;  thus if K{, j (x)  is 
defined for x in a neighborhood of xo ,  j = 1,  . . . , n - 1,  

Proof: 
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This is small independent of n for t sufficiently small; so that, inductively, 
K; , , (x )  is defined and remains in a neighborhood of x0, for x near x ( ~ .  

be a local Lipschitz constant for A such that ~ ~ ~ ( x ) - F I ( y ) ~ ~ 5  
exp ( P  I t [ }  IIx - y / / .  Now write 

Let 

where Y k  = K;,,(X). Thus 

since F , ( y ) -  K , ( y )  = O ( E )  by the consistency hypothesis. 
Now suppose Ft(x) is defined for 0s td T. We shall show that K;;,,(x) 

converges to F , ( x ) .  By the above proof and compactness, if N is large 
enough, F,/N=limn-mK;nN uniformly on a neighborhood of the curve t +  
F , ( x ) .  Hence, for O s t S T ,  

By uniformity in t, 

F&) = I-m lim KITIJ(x) . 

Conversely, let K; , (x )  converge to a curve c ( t ) ,  U S  t S 7'. Let S ={t 1 F,(x)  
is defined and c ( t )  = F , ( x ) } .  From the local result, S is a nonempty open set. 
Let tk E S, tk  -+ t .  Thus FIk(x)  converge to c ( t ) ;  thus, by local existence theory, 
F , ( x )  is defined and, by continuity, F , ( x ) = x ( t ) -  Hence S =LO, T ]  and the 
proof is complete. 

3. Accuracy and some examples. The explicit Euler method merely 
chooses K,(x) = x + EA(x) .  For higher order accuracy, one uses the following 
consequence of the preceding proof. 
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2.2.  COROLLARY. Let k 2 2  and suppose K,(x) is Ck" in t and A is of 
class C k + ' .  If 

in addition to the hypotheses of Theorem 2 .1 ,  then the algorithm is k-th order 
accurate; i.e., 

IlF,(x)-K~n(x)ll~exp { P  ItlIo((At)k) 9 

At = tJn, as n + 00. 

Specifically, i f  
d 2  2 K(x)lr=,= D A h )  A(x)  7 

then the algorithm is second order accurate. 

2.3.  EXAMPLE. It is often convenient to use the notation 

for the step-forward operator. Thus if we set 

Consider an algorithm given implicitly by the form 

with 

(So the step forward operator K. satisfies K, (x )  = x + EJ(K,(x) ,  x, E ) . )  The 
condition that this be second order accurate is easy to work out and is 

where Di is the derivative with respect to the i-th factor. (Writing J ( x ,  y, E), 
this says that ( W a x )  J + 2 ( a J / a ~ )  = (dJ / t ) y )  J at x = y, E = 0.) 



212 A. J.  CHORIN ET AL. 

The following are examples of second order accurate schemes for given 

Crank-Nicolson (Trapezoidai): J ( x ,  y ,  E ) = ~ [ A ( x ) +  A(y)]. 
Mid-point: J (x ,  y ,  E ) =  A ( ~ ( x +  y ) ) .  
Predictor-Corrector: J ( x ,  x, E )  =i[A(x)+A(y + ~ A ( y ) ) l .  
Central-Difference (for I = A(x)) :  J ( ( x ,  i ) ,  (y, i), E )  = (i +&A(y), 

A ( x ) :  

&W+A(Y)), etc- 

4. Application to the Euler equations. The results of this subsection can 
actually be applied to give some interesting product formulas for the Eulcr 
equations of a perfect fluid. On a compact manifold M, with C" boundary, 
aM, and dimension n, these equations are 

d U  
- + V u u  = -grad p , 
a t  

(4.1) 
div u = 0 , 

u a vector field on M parallel to dM. 

2.4. THEOREM. In  Sobolev function spaces H', s > i n +  1 (or W p ,  
s > n/p + 1) or Ckta ,  k 2 1, 0 <  a < 1, let C,, be the step-forward operator 
defined by' duldt+Vuu = 0. 

Let P denote the L2 orthogonal projection of vector fields to their divergence- 
free parts parallel to dM. 

Then the solution E,(u) of the Euler equations, with initial data u is given 
by 

E, = lim (IPG,,,)" . 
n-m 

(4.2) 

This product formula converges for 0 d t 5  T and u fixed if and only if E,(u)  
exists ( in  the above function spaces), 0 5  t S  T. 

A proof of this product formula is due to Chorin [8 ] ,  although the proof is 
somewhat complicated. The following proof (Marsden-Ebin-Fischer [45]) is 
more elementary in the sense that it relies only o n  Theorem 2.1, but more 
complicated in the sense that it relies on the results of Ebin-Marsden [16]. 

Proof of Theorem 2.4: (Sketch) Some key results of Ebin-Marsden 
are as follows: When transformed to Lagrangian coordinates (i.e., to the 

' is given as follows: let q,(x) be the geodesic starting at  x in direction u(x)  (in 
Euclidean space ?=(x)= x + E u ( x ) ) ,  then G,,(u)= uo.~ , , ' .  
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group of volume preserving diffeomorphisms of M ) ,  the vector fields generat- 
ing E, and G, are C" maps (with no loss of derivatives) and P transforms to a 
Cffi bundle mapping. If we choose K ,  = PG, and transform to Lagrangian 
coordinates, the hypotheses of Theorem 2.1 are met, so convergence in 
Lagrangian coordinates follows. Since transformation back to Eulerian coordi- 
nates is a C" operator, convergence holds there as well. 

The product formula in Theorem 2.4 may be useful in investigating the 
development of a singularity in the Taylor-Green problem (cf. [62]). This 
problem concerns the evolution of the following initial data on the three-torus 
under the Euler equations (or the Navier-Stokes equations): 

u , = cos x1 sin x2 cos x3 , 

(4.3) u2 = -sin x1 cos x2 cos x3 , 

v , = O .  

The flow determined by this initial data undergoes vorticity enhancement by a 
self-induced tornado type mechanism. There is considerable unpublished 
numerical work on this problem (Keller, Chorin, - - .). This and work of 
Orszag ( [ S  11 and personal communication) indicates that 

where w = V X  u is the vorticity, blows up in a finite 223.1. 
One would like to conclude, via Theorem 2.4 or a modification of it, that 

the strict Euler equations have a finite blow-up time.2 In drawing such 
conclusions one must be careful of numerical blow-ups. For instance, in 
Herring, et al. [23 ] ,  the accuracy of finite mode simulation of high Reynolds 
number flows is questioned (see also Chorin [ S ] ) .  In this particular problem 
these objections do not seem relevant, for t 6 4. (Orszag, private communica- 
tion.) 

Further computations are under way to confirm or  deny the existence of a 
singularity and to detail its structure. Hopefully they will lead to a mathemati- 
cal proof of finite blow-up time for the three-dimensional Euler equations. 
(For more details on the blow-up problem for the Euler and Navier-Stokes 
equations, see [45].) 

'The algorithm of Theorem 2.4 is not strictly used in practice, but the modifications used 
(e.g., a leapfrog time differencing scheme on the nonlinear terms) for numerical stability are 
hopefully minor. 
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3. The Generalized Lax Equivalence Theorem 

1. Some terminology. This section deals with product formulas in the 
linear case. 

Let X be a Banach space and let A be the generator of a linear C" 
semigroup on X ,  exp { t A ) .  Thus, if u lies in the domain of A, exp {tA}u = u ( t )  
solves the equation 

c i = A u .  

As is well known, llexp{fA}IISMexp{Pt} for constants M, p. We write 

Let, for each E 2 0 ,  K, : X +  X be a bounded linear operator and assume 

The algorithm K, is called stable3 if, for ,any T >  0, there is a constant MT 

A E G ( M  P I .  

K,, = id. 

such that 

for all OStdT, n = 0 ,  1, 2 ; . .  . 
The algorithm is called consistent if, for each x in the domain of A. 

The classical Lax theorem, subsequently improved by Trotter [64], states 
basically that under the assumption of consistency (along curves exp { t A } u  = 
u( t ) )  stability is equivalent to convergence. (See Richtmyer and Morton [54], 
or Lusternik and Sobolev [41] for a discussion and proof.) 

The algorithm is resolvent consistent if, for A > O  sufficiently large, 

( A  - A)-' = s-lim 
c -0 

(1.3) 

(strong limit). 

2. The generalized Lax theorem. For contractive semigroups and contrac- 
tive algorithms, Chernoff [6] proved that resolvent consistency is equivalent to 
convergence. The general situation is as follows: 

3.1. THEOREM. Let A generate a C" semigroup on X (not necessarily 
contractive, bounded or quasi-contractive) and let K,  E B ( X )  be a given family 

'The terminology here is not quite consistent with that in Section 6, where stability is taken 
to mean uniform stability, i.e., that M, is independent of T. 
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of bounded operators, K,, = Id. Then 

exp { tA} = s-lim KZ,, , 
K, is stable and n -= 

on bounded t-intervals 

Although this can be derived from results in Kato [30], we shall give a 

Proof of Theorem 3.1: 
Step 1. 

self-contained proof kindly supplied by P. Chernoff. 

We first establish for technical convenience the equivalence of the 

exp {tA} = s-lim K(E)' ' /~'  uniformly , 0s t 5  T ,  

following two versions of convergence: 

E'O 
(2.1) 

(2.2) exp {tA} = s-lim n-m K(dn)" uniformly, O s t S T .  

First suppose that (2.2) is false. Then there exists a vector x, a 6 > 0 ,  a 
sequence t k  in [0, TI, and integers t t k  + 00 such that, for all k, 

Let Ek = tk/nk; note that Ek -+ 0. Also K(tk/nk)nk = K(Ek)Ltk/ck', SO that by (a) it 
follows that, for k sufficiently large, 

This contradicts (2.3). Thus (2.1) implies (2.2). 

a sequence Ek + 0, such that, for all k, 
Secondly, suppose that (2.1) is false. Then there is a vector x, a 6 > 0, and 

This leads to an obvious contradiction if the numbers [tk/Ek] are bounded; 
thus, passing to a subsequence, we may assume that [ tk /Ek]  = nk + m. Note 

Then K(Ek)ctk'PklX = K(Tk/nk)nkX, and, for large k, (2.2) implies the in- 
that Ek = Tk/nk, where Tk - tk + 0 as k + O0. 

equality 

Note also that (/exp { TkA}x - exp { tkA}x(I 5 $3 for large k by uniform con- 
tinuity of exp{tA}x on [0, TI. Thus we have a contradiction of (2.4). 
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Step 2. convergence implies stability: Since exp{tA} is a Co semigroup 
we have an estimate of the form ((exp {rA}((z  M,, exp {Pot}. Suppose that 
K(E)['"'x + exp {tA}x uniformly, 0 5 t S 1, as E -+ 0 for all x. Then there is a 
constant M such that, for all E E [0, 11 and all t E [O,1], I IK(E)~~/~ '~I  5 M. 

We use the Banach-Steinhaus theorem. Suppose that, for some x, 
//K(q,)['"''-~lxl[ is not bounded. Clearly E ,  must tend to 0. We may assume that 
1, + t t [O, 11. But then, by assumption, K(E,,)[*.I'"IX -+ exp {tA}x, so the norms 
must be bounded. 

Proof: 

Next we prove that if s-limE+o K(E)~''' '= exp (?A} locally uniformly, we 
have an estimate 

for some constants M ,  p. 
We have IIK(E)['"]II S A4 for 0 5 E 5 1, 0 5 t 5 1. Now suppose that 

O s t s n .  Write t = t , + t z + . .  + t , ,  0 5 t i S l ,  and note that [ t / ~ ] =  
[ t , / ~ ] + . . . + [ t , / ~ ] + r ,  where O S r S n .  Hence 

Proof: 

~ ~ K ( E ) ~ ' " ~ ~ ~  5 IIK(E)"I~"~( . . . ( [ K ( E ) ~ ' ~ " ' ~ ~  IIK(E)~II 

.I - M" M' 5 M2" 

if n - l s t s n ,  2 n 5 2 t + 2  so that 

( ( K ( E ) " ' ~ ' I ( ~  M 2  M2' = M 2  exp(2t log M }  , 

an estimate of the desired form. 

Step 3. Convergence implies stability and resotvent consistency: If 
exp {tA} = s-Iirnc-() K(E)["'] uniformly, 0 5 t 5 T, then K ( E )  is stable and 
resolvent consistent. 

We already have proved in Step 2 that K ( E )  is stable: (\K(E)"\IS 
M exp {n@} for some constants M,  0. Consider the resolvents (which we show 
make sense for A > (cxp {&}- I ) /€ ) :  

Proof: 

[A - E - ~ [ K ( E )  - I ] ] - ' =  E [  1 + A E  - K ( E ) ] - '  

io 
E -- - (1 + AE)-"K(E)" . 

1 + A E  ,=O 
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Since IIK(E)"I) 5 M exp { n f k } ,  the series converges for 1 + AE > exp { P E } ,  
i.e., A > (exp { P E } -  l)/c The second series is equal to the integral 

and this converges strangly, by the dominated convergence theorem, to 

Thus we have proved resolvent consistency. 

Step 4. A key estimate: Assume stability, i.e., IJK(e)"'"~~ 5 M exp {Pt}. If 
t / E  = n, we have 11K(~)"11 S A4 exp { P E " } .  We now wish to estimate 

exp{-n)nk 
[exp{n(K(E)-I)}-K(E)"]X= ( K ( E ) ' x  - K ( E ) " x )  . 

k - 0  k ! 

Consider an individual term. If n > k,  

K ( E ) ~  - K ( E ) ~  = { K ( E ) " -  + K(E)"-* + * * . + K ( E ) ~ } (  K ( E )  - I )  , 

we estimate as follows: 

Hence 

We estimate the series by the Schwarz inequality: 



218 A.  J .  CHORIN ET AL. 

This series can be summed explicitly: it equals 

Now take n = [ t / c ] .  Then np'c'= O(E2p3t)  and n2p4e4 = O(c2P4t2), so the 
expression in brackets is p 2 e 2 [ r / ~ ] +  O(E') and thus 

uniformly 0 5 t 5 T, n = [ r / ~ ] .  Consequently we get our estimate: 

Step 5. Suppose that K ( E )  is stable and resolvent consistent. Then 
K ( E ) ~ * " ~ - - +  exp{tA} (strongly, uniformly on 0 5  l S  T ) .  

Proqf: We consider the semigroups exp { t ~ ~ ' } [ k ( ~ ) - l ] .  We must show 
that they obey uniform estimates. We start with the estimate llK(~)"11 d 
M exp { p e n } .  We then have 

llexp{r€-l(K(E)--)}((fexp{-t/E} 
n =O 

= ~ e x p  {;(exp{pc}-l)}. t 

Now E-'(exp@E}-l) is bounded by some constant as long as 0 < ~ 5 1 .  
Thus the semigroups exp { K ' ( K ( E ) - - I ) }  belong to a fixed class G(M,  p').  By 
assumption we have resolvent convergence: 
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hence it follows that exp{tE-l(K(E)-I)}-+ exp {tA) in the strong topology, 
uniformly on bounded t-intervals by the Trotter-Kato theorem ([30, page 
502). 

To complete the proof we just have to show that K(E)""]- 
exp { te - ' (K(c)  - I ) }  -+ 0 as E + 0. Since these operators obey uniform esti- 
mates, it is enough to get convergence to 0 on a dense set. Fix a vector y .  
Define 

Then 

which converges to A ( A  -A)-'y - y = z as E + 0. Now we apply our "key 
estimate" (Step 4): 

uniformly on bounded t-intervals. Since K ( E ) x ,  - x, = O ( E )  it follows that the 
right side goes to 0 uniformly as E --i, 0, 0 5  t 5 T. Finally, note that x, -+ x = 
( A  ~ A ) - '  y = w and so our uniform bounds show that 

But the set of such vectors w is dense. 

We recover the Lax theorem as follows. 

3.2. COROLLARY. If K, is consistent, then it is stable if and only if it is 
convergent. Here for consistency it  is enough that 

for all x in a core D of A (i.e., a space D such that A is the closure of its 
restriction to D) .  

Necessity is immediate from Theorem 3.1. For sufficiency, write 
A, for e - ' ( K ( e ) -  I ) .  We must show that (A-A,)- '+ (A -A)-' strongly, and 
by-uniform bounds it is enough to do this on a dense set of vectors. We 
choose as our dense set the vectors of the form y = ( A  -A)x  for x in the 

Proof: 
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core D. We then write 

(A -A,)-'y - ( A  - A)-  y = ( A  -AC)-'(~ - A)X -X 

= (A -Ae)-'(A -A,  +A, -A)x - X 

= x +(A - Ae)-'(Ac - A)x - x 

= ( A  - Ac)-'(Ac - A)x , 

which goes to 0 as E -+ 0 since Aex + A x  while the norms of ( A  -Ae)- '  
remain bounded. 

3.3 .  Remark. If consistency (on the domain of A) and stability hold, one 
can prove Corollary 3.2 directly by the same method used to prove Theorem 
2.1. This alternative procedure (which is close to the original Lax proof) has a 
crucial advantage, namely 

(a) for consistency, convergence is at the rate At, i.e., l ln ,  

(b) for resolvent consistency, convergence is at the rate J A t ,  i.e., 1 / J n .  
- - 

3. Some examples and applications. The difference pointed out in Re- 
mark 3.3  is often of computationat significance. We give an example in 
Section 4, where (b) but not (a) holds and in which convergence is hard to 
detect on the computer (see Section 4). For now we give a simpler example 
which is standard in singular perturbations and boundary layer theory. 

3.4. EXAMPLE. Let 

d2 d 
d x 2  dx A, = E - + -  in L2([0, m]) 

with boundary condition u(0)  = O .  Let K, = exp{EA,} and let A = d/dx with 
no boundary condition. In this example, resolvent consistency, but not 
consistency holds. Convergence of K;/,, to exp{tA} in L, can in fact be 
seen directly from the Trotter-Kato theorem ([30], page 502). One has 
( A  - Ac)-' 7 (A -A)- '  in L,([O, a]). This can be seen either using general 
techniques (see Section 4) or by direct computation. In fact, if p,= 

(-1 * d 1 + 4 A ~ ) / 2 ~ ,  then 
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where 
m 

a = -1, exp {-sp+}u(s) ds ; 

this is easily seen to converge in L, to 

[(A -A)- '  u](x) = exp {-As}u(s  + x) ds , Lrn 
In all but the simplest examples such explicit computation of the resol- 

vents is difficult or impossible. Some further examples are given in [30]. 
As we shall see in Section 4, sometimes one can turn a resolvent 

consistent algorithm into a consistent one and thereby improve the con- 
vergence rate. Other pathologies can concievably happen, such as consistency 
and instability, but convergence on a dense set. If one expects an algorithm to 
converge only for very smooth functions, Theorem 3.1 or Corollary 3.2 might 
be applied to a power of A. 

There are a number of applications of Theorem 3.1 and Corollary 3 .2 .  
The best known of these is the following result of Trotter [64]. 

3.5. APPLICATION. Suppose A and B are generators of quasi-contractive 
semi-groups (i.e., l(exp {tA}IIS exp {fa}, Ilexp {tB}II5exp { tp})  and the closure of 
A + B, C= A + B, is a C" generator. Then 

exp {tC} = s-lim n-m (exp {tA/n} exp {cB/n})", 

Proof: Let K, = exp {EA)  exp {EB} .  Then \\K:,nl\ 5 exp {€(a  + p) } ,  so that 
the algorithm is stable. Also, if u E D ( A )  fl D ( B ) ,  

1 1 1 
- (K,u - u )  = - exp {EA}(exp { E B } u  - u)+- (exp {EA}u - U )  
E E E 

+ B u + A u  as t + O .  

Since we have consistency on a core for C, the result follows by Corollary 
3.2. 

See Nelson [47] and Goldstein [22] for the corresponding formula for the 
semigroup of a bracket. 

As Trotter points out, it is not always possible to renorm a space so that 
two semigroups simultaneously become quasi-contractive. This is possible for 
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one semigroup exp {tA) by this well-known trick of Feller: if Ilexp {tA}II 5 
M exp { to}, let 

One might guess that a simultaneous norm in which exp { tA} and exp { t B }  are 
quasi-contractive is necessary. The following example of Chernoff shows this 
is not so (see [64] and [7] for other examples of pathologies that can occur). 

3.6. EXAMPLE. 
such that: 

(a) Ur, V, are bounded (-in fact U, is an isometry); 
(b) if A, B are the generators of U, and V,, then A + B =  C is a 

generator, and moreover the Trotter product formula 

There are two (CJ semigroups U,, V, on Hilbert space IH 

( U , ,  V,/,,)" A exp {tC} is valid; 

(c) but nevertheless IH cannot be renormed in such a way that U,, V, are 

For the example: Let T, be the translation group on IH = L2(-w,  a): T,f(x) = 
f ( x + t ) .  Let U, = T-,. Then U, is an isometry. Let u(x)=sin (x'). Let 

both quasi-contractive. 

V, =exp{a(x+2t)-a(x)}T2, = R-'T2,R,  

where R is multiplication by exp {~(x)} .  
Then V, is a uniformly bounded C, semigroup. (In fact if t f O ,  

11 V,ll = e'.) We shall show first that IH cannot be renormed in such a way that 
both V,, V, are quasi-contractive. Indeed, if this were possible, we would 
have constants M, a such that, in the original norm, 

for any s i ,  ti 2 0. Indeed, we shall show that, for fixed t, no inequality of the 
form I[( VtI2,, Ut/n)nll 5 M is possible. For this we compute 
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Hence 

Since n [ a ( x  + t / n )  - a ( x ) ] +  t a ' ( x )  as n + a, and a ' ( x )  is unbounded above, 
there is no uniform estimate for log \I( VII2,, U J ' ~ ~ .  

Next, we shall show that (V,, U,,)" converges strongly, uniformly on 
bounded t intervals to a semigroup W,, and that the generator C of W, is the 
closure of A + B .  (Note that Theorem 3.1 applies here.) We find by 
computation that 

Since a( x) is bounded and continuous, the dominated convergence theorem 
shows that 

where W, = R-"R2. The generator of U, is A = -d/dx on its usual domain 
H1([R). Since V, = R-'T, ,R,  the generator B of V, is B = - R p l  2A R = 
2 ( d / d x ) + 2 a ' ( n )  with D ( B ) =  R - ' D ( A )  and the generator C of W, is 
R p 2  * ( d l d x ) R Z =  d l d x  +2u'(x). Since each of V,, V, and W, leaves C t  
invariant, CF is a core for A, B, and C (see, e.g. Chernoff-Marsden [7], pages 
53-55). On C z ,  A + B = C, and because D ( A )  n D ( B )  c D(C),  it follows that 
C = A + B .  

The next example gives sufficient conditions for the convergence of the 
Crank-Nicholson scheme. The context is an abstract hyperbolic or parabolic 
equation (c.f. [7], page 35). For more detailed results, see the classic paperof 
Kreiss [35]. Nonlinear generalizations of this scheme are discussed in Section 
6. 

3.7. APPLICATION. Let IH be a real Hilbert space and let A be an 
operator in IH such that (x,  Ax) 5 0 for all x E D ( A )  and A - A  is surjective 
for A > &  so that A generates a Co contractive semigroup. Then 

exp {fA}= s-lim n-- K;,, , 

where 
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Proof: From the dissipative assumption (x, Ax) 5 0, 

Therefore, ))(I-t&A)(f-$~A)-'yl( 5 JJyJJ, so /JK,\JZ 1, i.e., stability holds.4 The 
identity 

(A-e- ' (Ke-I))- '  = ( A - ( 1  -~AE)A) - ' ( I -~cA)  

shows resolvent consistency. In fact, from 

we see that consistency holds. 

3.8. EXAMPLE (T. Kato). For an arbitrary one-parameter group of 
isometries in a Banach space, the Crank-Nicolson algorithm K, need not be 
stable (so cannot converge). For instance, let exp{tA) be the shift by t-units 
in L 1 ( - m , ~ ) .  Let 

T,, = ( I  -(t/2n)A)-'K:;,=(I +(t/2n)A)"(1 -(t/2n)A)-"-' . 

Then 
T,u=f ,*u ,  

where f;, is the inverse Fourier transform of ( H (1 - it5/2n)"(l+ it(/2n)-"- '. 
Hence 

(2n/t)cpn(2nx/t) for x > 0 ,  
fn(x)-( for x<O, 

where the (P,, are the orthonormalized Laguerre functions on [O,.;) (that is, 
q , ( s )  = exp {--;s}L,,(s), where L, are the Laguerre polynomials, such that 

/ o m q n ( s ) q m ( s )  ds = anm). Since (IT,((= llf,,llLl = I I q n l ( L 1  Zconst. n1'2 (see Askey 

and Wainger [l]), T, is not uniformly bounded. Hence K:in is not either. 

4. Product Formulas for the Heat and Stokes Equation 

Algorithms for the heat equation, such as random walk 
with absorbing boundaries have played an important theoretical and computa- 
tional role. For the Navier-Stokes or the Stokes equation, good computa- 
tional algorithms are of obvious importance. 

1. Introduction. 

In the hyperbolic case, is., if A is skew-adjoint, llK,ll= 1, the well-known energy-preserving 
property of the  ztep-forward operator for the Crank-Nicolson algorithm. 
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For the Stokes equation, and more generally for the Navier-Stokes 
equation, our purpose is to study vorticity production in boundary layers. A 
detailed investigation of the linear case is crucial in this regard. 

2. The "random walk" algorithm for the heat equation. We shall begin 
with the heat equation. Let R c R "  be an open region with smooth boundary 
dn .  Let A denote the free space Laplacian in R", so that 

Let A($ be the Laplacian o n  C! with zero boundary conditions; thus if 
u , , ~  H 2 ( n ) ,  u ~ ,  = 0 on d f l ,  (exp {tAo}uo)(x) = u(r, x) satisfies 

a u  - = A u  in 0 ,  
a t  

Define an algorithm in L2(fl) as follows: 

K, L ( R )  + & ( a ) ,  

K,u = (exp {t  A}u) 1 SZ (restriction to fl) , 

where exp { t  A}u means exp { t  A} applied to u extended to be zero outside SZ .  
This algorithm is similar to random walk with absorbing boundaries; hence 

one might conjecture that it converges to exp{rA,}. In fact, in Courant- 
Friedrichs and Lewy [14] this is established for finite difference schemes. 
However there is a crucial distinction; for difference schemes, stability 
requires A ~ / ( A x ) ~  < 4 ( A x  =spatial discretization). Here effectively A t  is finite 
and Ax = 0. Another way of putting it is that infinitesimal 'blobs' of heat can 
re-enter through the boundary before being annihilated. This difference 
means that the present scheme is resolvent consistent, but is not consistent. 
To understand why the scheme ought to converge, imagine the domain Q to 
be finite and immersed in an infinite bath which is at 0". To approximately 
solve the heat equation in C! with zero boundary conditions, one would let 
heat flow in 0, at the same time constantly stirring the fluid right outside R. 
The stirring would disperse the heat in the bath, making the temperature of 
the bath a constant, which would have to be 0" since only a finite amount of 
heat had been added to it. The iteration scheme amounts to stirring the bath 
every A t  seconds, which ought to be approximately the same for small At. 
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4.1. THEOREM (Kato). For K,  as defined above, 

s-lim K;” = exp {rA,} 
It-= 

in L2( f i ) ,  uniformly on bounded t-intervals. 

Proof: Since exp {tA} is a contraction in L2( R”), llKfl15 1 and hence 
stability holds. We shall now show resolvent consistency. This is not easy to 
do by direct computation.’ Instead one appeals to the following result. 

4.2. THEOREM (Kato). Let A be a non-negatiue selfadjoint operator in a 
Hilbert space H ,  H, a subspace of H ,  and let P : H -+ Ho be the orthogonal pro- 
jection. Assume that D(A”’))nH, is dense in Ho. For t > O ,  set A, = 
tr ’( 1 - P exp { - tA} )  E B(H,,). Then ( 1  + A,)-’ -+ ( 1  + AJ’, t J, 0 (strong con- 
vergence), where A,, i s  the non-negative selfadjoint operator in H0 associated 
with the closed quadratic form6 U++~\A”~UIV, which is densely defined in H , .  

Proof of Theorem 4.2: Let ~ E H , ,  and ( l + A , )  I f =  u,. Then 

(2.1) u, E H,, and f = u, + A,u, = u, + t-’(1- P exp {-tA})u, 

= u, + t-’ P( 1 -exp {- tA })u, = u, + PB,u,, 

where B, = t r ’ ( l  -exp{-rA})E B ( H ) .  Relation (2.1) implies 

from which it easily follows that JIu,IJ 5 I l f l l ,  lIB:12utll S I l f l l .  Hence 

( 2 . 3 )  u, - u E H O ,  B : ’ 2 ~ t  - w E H (weak convergence) 

along some subsequence t, + 0. We claim that 

(2.4) u E D(A’ l2)  and w = A”’u 

For instance, if I1 = [O,=)  c R, consistency (and hence resolvent consistency) holds on 
elements g E H2(a) such that g(0) = 0, g’(0) = 0. Taking orthogonal compliments, then rewlvent 
consistency comes down to this: (1 -A,)-’e-” -+ xeCX” in L2([0,  a)) where Ae = (K. - l)/e. We do 
not know a direct way of doing this, hut the simpler problem, replacing K, by ( l+cA)- ’  in 
&([(),a)), can be done by Wiener-Hopf techniques, as was pointed out by T. Kato. 

‘See Kato [30] and Simon [57] for the correspondences between selfadjoint operators and 
quadratic forms. 
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Indeed, let UED(A’”) .  Then ( w ,  u)=lim ( B : ’ 2 ~ , ,  v ) = l i r n ( u , ,  B:12u)= 
(u ,  A ’ ” U ) ,  from which (2.4) follows. Next we prove that 

(2 .5)  ( l + A , , ) u = f ,  i.e., u = ( l + A , , )  I f .  

Indeed, let u E D(A6/’) = D ( A  ‘ I 2 )  f l  Ho. Then 

Thus the definition of A,, gives (2.5), which implies that the weak limits in 
(2.3) are independent of the subsequence chosen. By a standard argument, it 
follows that (2.3) holds as tJ0, without taking any subsequence. 

It remains to prove strong convergence. To this end, note that (2.2) 
implies 

Then we get, using (2.3), 

Hence u, - u = (1 + AJ’f, 

Remark. The existence of s-lirn (1 + Ac)-’ is trivial, since A, = P3(P* 
(where P* : Ho+ H is the adjoint of P, i.e., P* is the injection), and B, is 
monotone increasing as t JO. 

Completion of the proof of Theorem 4.1: We apply Theorem 4.2 with 
H = L,( R“), Ho = L2(0)  (regarded as a subspace of H by extending elements 
in L2(f l )  to be zero outside a), and A = - A .  From the facts that (i) 
IIA *” u1r = “grad u1r and (ii) u E D(A’”) n H,, is equivalent to u E Ht(R) it 
follows that AO = -AO, and hence the resolvent consistency. 

It is worth seeing why the algorithm in Theorem 4.1 is not consistent. The 

For t>0,  u smooth and 0 on &I, 
following argument is formal, but is easy to make precise. 

d 
- K,u = A  exp { tA}u I a .  
d t  
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For x E R, we can work out ( A  exp { t A } u ) ( x )  explicitly; we get 

by Green’s identity. As f l u ,  this becomes 

and so the 8 function term blows up in L, 

3. Kato’s conditions for Trotter’s formula. The techniques used in 
Theorem 4.2 have been used by Kato [34] to obtain the following rather 
general result. 

4.3. THEOREM (Kato). 
a Hilbert space H. Then 

Let A and B be non-positive selfadjoint operators in 

s-lim (exp {tAln} exp{tB/n})“ = exp {tC,,}P, 
n-m 

where C,, is the form sum of’ A and B and is a non-positive selfadjoint operator 
in the closed subspace Ho of H spanned by  D,, = D((-A)”’ )  n D((-B)”*), and 
where P is the orthogonal projection of H onto H<,. In particular, the limit is 
zero i f  D,, = (0) (see Chernofl [7] for an example). 

We refer to Kato’s paper for generalizations and applications. 

4. The modified heat algorithm. As we have remarked earlier, con- 
vergence may be undetectable numerically if only resolvent consistency holds. 
We shall now present a modification of the algorithm in Theorem 4.1 which 
will be important for the Navier-Stokes equations and which is consistent in 
the usual sense. Computationally, the algorithm in Theorem 4.1 has almost 
undetectable convergence since the convergence and error rates balance, 
whereas the modified algorithm converges quickly. 

The modified algorithm is described as follows. Let U = as2 be a tubular 
neighborhood of dR composed of straight line segments through dR and 
normal to it. We assume either fl is bounded or 8 0  has bounded curvature so 
these line segments extend a distance 8>0  away from aR without crossing. 
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Let cp : U +  U be the map which reflects across the boundary relative to 
these lines. 

Consider the map cb : L2(Ck) -+ L2(R"), u - @ ( u )  = 6, where ii equals u 
in (1, - u o c p  in U-R and is zero outside R U  U, i.e., ii is u extended across 
dR to be odd. 

Consider the algorithm whose step-forward operator is 

4.4. THEOREM. The algorithm just defined is consistent and stable; thus 

s-Iim K:" = exp { tAo} 

uniformly on bounded t-intervals. 

on aR, we have 
Proof: First we prove consistency. For t > 0, x E 0, and u E H 2 ( 0 ) ,  u = 0 

exp { - J x  - yI2/4t} aii 
- dy  . 

The two integrals over 6'0 cancel exactly and so this converges strongly in 
L2(0 )  to Au, as t L O .  (The integrals over U n (R'- C k )  and a( U U S Z )  converge 
to zero since ~ E R . ) '  

It can be checked that this algorithm is not, in general, second order accurate. 
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Secondly we must prove stability. The complication here is that K, is not a 
contraction and to demonstrate stability some cancellations must be taken 
into account. The following estimate suffices for stability: 

for a constant 7, depending o n  thc curvature of dR. Equivalently, we can 
obtain an estimate of the form 

Write K(x  - y, t )  = exp { - Ix - y12/4t}/(4.rrt)"'2. By the change of variables 
formula, 

where J , (y)  is the absolute value of the Jacobian of cp. 
At the outset, let us choose U sufficiently small so that J , ( y ) 5 2  and 

points in  U are a distancc at most 6 from dR. This shrinking of U does not 
affect the cstimates (6  depends only on the curvature of dR and is determined 
in the  proof). 

Let us first prove a special case. In fact, we  shall show that K ,  is a 
contraction if II is convex. In this case, for x, y E U nfI, Ix - yI 5 Ix - cp(y)l, so 

Here we used the inequality la - b /  5 a if a 20, b 2 0 and b S 2a. Thus, from 
(4. l ) ,  for each x E lL, 

Since the heat kernel induces a contraction, [ \ K , u \ ( ~ ~ ( . ( ~ ) ~  \lul\L2(cl). (Note that 
this works in a wide variety of function spaces.) 

Now we turn to the general case. Let 
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so that (4.1) reads 

(4.3) 

We can estimate the L2 norm of (4.3) by the Schwarz inequality as follows: 

5 (SUP J lL(x, 2, €11 dzjjsup l u x ,  y. €11 dx) /lUllL,(R)' 
* t i 1  61 Y t n  (1 

We shall prove the two estimates 

(4.4) 

and 

IL(x, y, t)l dY 5 1 9 

(4.5) I,, JL(x ,y , t ) ldxS1+CL 

which will give us the result. (In what follows, C is a generic constant.) 

XEO. 
The estimate (4.4) is proved by our earlier convex argument: for any 

I?. (0- U)Uconvrx concavc 
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It remains to prove (4.5). We do this as follows: for each y E U n Cn draw the 
line from y to q ( y )  and locate the origin 0 on the midpoint of this line, so 
that OrdR. Let y sit on the x, coordinate axis. Since Cn is compact, or dR has 
bounded curvature, there is a paraboloid x, = -C(x:+. .+ x”,,), Ixi15 1, 
i = 1, - * , n -  1, containing an between it and the x, , . * 1 x,-,-plane. This 
region, denoted D, is shaded in Figure 1. From estimate (4.4), i t  suffices to 
prove 

(4.6) 

Notice that, cp(y)=-y and that in D 

Figure 1 
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In D, (x, y ) S O  and thus 

5 CK(X, t )  exp{C(x?+. . .+xi-,) I l y l l / ~ ~ ~ ( e x ~ ~ - l l ~ I l ~ / ~ ~ ~ I l ~ l l )  

xjx:c. .;.x., + l j .  

Now change variables: xi =& wi, yi = &zi; then D becomes the region 

D, : 0 2 w, 2 - & C( w: +. . . + wiP1).  Hence, (4.7) becomes 

We chose S so that iCIlyll<d. (Here C is the constant for the parabolas.) 
Thus (4.8) gives 

since e x p  { - l l~1\~/4)  llzll is uniformly bounded. Finally, an elementary estimate 
gives 
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Combining (4.9) and (4.10), we obtain 

our required estimate. 

Remark. This algorithm works in other function spaces than L, using 
essentially the same proof. For example, one can use C'(Ln), O<a< 1. We 
shall come back to this point in  Section 6. On the other hand, Theorem 4.1 
depends heavily on the fact that one is dealing with positive selfadjoint 
operators on Hilbert space. 

5. Algorithms for the Stokes equations. Next we turn to a discussion of 
the Stokes equations. First the notation. Let J2(i2) denote the L, closure of 
the CE vector fields u in 0 with div u = 0. Formally, u E ],(a) if div u = 0 and 
u is parallel to the boundary. Let 

be the L, orthogonal projection. (Then we have the well-known decomposi- 
tion &(a, R") = G,(0) CB J,(fi), where G2(0) consists of gradients of (locally) 
H' functions.) Then exp {rPAo} is the contractive semigroup associated with 
the Stokes' equation. it is defined since PAo is a non-positive selfadjoint 
operator. Thus exp {tPA}uo = u solves 

au 
-=Au-gradp ,  
a t  

div u = 0 . 
u = O  on a 0  and u ( x , O ) =  u o ( x ) ,  

u = O  on 8 0  and u(x ,O)= u0(x) .  

Let K, : J2(n)- &(a) be given by 4.5. THEOREM. 

(5.1) K,u =P(exp{tA}u r 0). 
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Then 

s-lim K;,, = exp { t  PA,,}, 
n-2 

uniformly an bounded t-intervals. 

This algorithm is stable (obviously K, is a contraction) and resolvent 
consistent. This follows from Theorem 4.2 in exactly the same way as in the 
proof of Theorem 4.1. However, just as above, it is not consistent. We can 
rectify the latter situation exactly as in the heat equation. Let u @ ( u )  = i4 
be the odd extention of u, this time for vector fields. 

4.6. THEOREM. Let K, : &(a) -+ J,(O) be given by 

(5.2) K,(u) = P(exp { tA}f i  R) . 
Then 

s-lim K;, = exp { t PAo} 
n-l, 

uniformly on bounded t-intervals. 

This time the scheme is consistent and stable (so, as above, converges 
faster). Theorem 4.6 follows directly from Theorem 4.4. 

6. The creation of vorticity. Some comments on the physical meaning of 
the algorithm (4.2) are in order. This becomes most meaningful in the context 
of the Navier-Stokes equations, but is worth explaining here. 

Given u E J,(CI), the map u H ii creates a 8-layer of vorticity at  dR (see 
Figure 2). The strength of the layer is twice the component of u parallel to 
the boundary. Following this, exp{tA}ii diffuses these vortices away from the 

an an 

Figure 2. The vorticity creation operator. 
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boundary and finally lP gives us back a divergence free vector field parallel to 
the boundary. 

Remarks. 1. A characterization of the step forward operator (5.1) for 
the Stokes equation can be given in terms of the vorticity alone. In fact, given 
u (sufficiently smooth), div u = O  and u ( , ~ = O ,  let o = V x  u and w, = 
exp{tA)wIn. Let u, be the velocity field associated with w , ;  i.e., u, solves 

div u, = 0 , 

Then 

This may be verified by a straightforward calculation. 
2. For the modified algorithm (5.2) a similar formulation in terms of the 

vorticity is possible. Here L;, = V  x fi will have a 6-layer on K! (which can be 
smoothed out if desired-see Remark 4), but o, = exp {tA}G will be smooth. 

3. The modified algorithm (5.2) might be of use in showing that the 
Stokes equation generates a C" semigroup in L,(SZ). 

4. The vorticity creation operator Q, can be changed to a large extent 
without affecting the validity of the above product formula. For example, the 
vorticity sheet can be smeared out to some extent so that if u is smooth, so is 6. 
The width of the region of smoothing must decrease faster than & as A t l o .  
Also, the region U can depend on At; its width must go to zero slower than 
& as AtLO.' 

5. Convergence of Nonlinear Algorithms 

1. Introduction. Now we turn our attention to the nonlinear case. In this 

(i) develop a theory parallel to the linear case using monotone operators 

(ii) develop a theory suitable for evolution problems in which solutions 

The general theory in case (i) is reasonably satisfactory, due to work of 

direction there are at least two approaches: 

as generators, 

might exist only for a short time. 

'Without these conditions, one can show that consistency fails by example. (Details are 
available on request from Marjorie F. McCracken.) 
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Brezis and Pazy [ 3 ] ,  [4]. See also Webb [65] ,  Pazy [68] and Weissler [69]. A 
number of interesting questions still remain here however. 

In  structural dynamics, elasticity and fluid mechanics, it seems at present 
that a local (in time) approach is more fruitful. As in Theorem 2.1, one will 
have the validity of product formulas as long as the solution exists and is 
sufficiently smooth. 

One can turn the problem around and use product formulas to get 
existence theorems for both classical and weak solutions. This is particularly 
promising for a nonlinear energy preserving algorithm (a nonlinear generali- 
zation of the Crank-Nicolson algorithm) presented in Section 7 .  

Here we shall present a general result suitable for many short time 
evolution problems. The idea follows Marsden [42], which was inspired in 
turn by Ebin-Marsden [ 161. Sharper versions of these results in the context 
of, for example, Hughes, Kato and Marsden [29] ought to  be possible. 

2. A Convergence theorem. First some terminology. Y c X  will be 
Banach spaces with the inclusions dense and continuous. Let A : Y + X be a 
given nonlinear operator defined on an open set in Y. We are interested in 
the evolution problem 

d u  - = A ( u ) ,  
dt 

for  a curve u ( t ) ~  Y which is differentiable in X .  

defined only on an open set). 
Let K, : Y +  Y be given maps with € 2 0  and K,=identity (K< may be 

We say K, is consistent' if, for all y E Y, 

The algorithm will be called locally Y-stable if, for all y o €  Y and a 
neighborhood U of y o ,  there is a T>O and a neighborhood V of y o  such that 
K;,(y) is defined and lies in U for all y E V and 0 I t 5 T. (See proposition 
5.2 below for some sufficient conditions.) 

' Outside the context of monotone operators, the possibility of using resolvent consis- 
tency has not been adequately explored. Presumably it means that, at each Y E  Y, 

(A -- (DKe(y)-I))-'&+ -DA(y)) , where DK, is the FrCchet derivative. 
-1 1 

E 
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Our first result is a straightforward generalization of the ordinary differen- 

(A,) The algorithm is consistent, locally uniformly in Y; i.e., 
tial equations case. We make these assumptions: 

1 
- I I K e ( ~ ) - A ( ~ ) l l x + O  as ~ + 0 +  
E 

uniformly for y in a Y-neighborhood of y o .  
(A2) The algorithm is locally Y-stable. 
In the case of nonlinear partial differential equations, consistency and 

stability do not suffice for convergence. We need another condition such as 
the following: 

(A3) The equation (2.1) defines a Co-local semiflow Fr : Y+ Y which is 
Y-locally X-Lipschitz, i.e., for y l ,  y 2  in a Y-neighborhood of yo, 

Remark. (A,) does not say that F, is locally Lipschitz in X .  While the 
latter holds in parabolic and semi-linear hyperbolic problems, only (A,) need 
hold in quasi-linear hyperbolic equations (see [29]). 

5.1. THEOREM. l o  Under the assumptions (A1)- (A3) ,  for each y o  E Y, 
limn-- K;,,(yO) = Ft(y,,) uniformly, 0 5  t 5 T. Moreover, the limit is defined and 
exists for t~ [0, T , ]  if and only if F,(y , , )  exists for tE [0, TI]. 

Proof: As in Theorem 2.1 we write 

F,(Y(J - K:n(~o)  = F:;' Fr/n ( y o )  - F;i I Kt/n 

+ F;i2Ft/n(yl) - FDi * K ; n ( y l )  

+Fr/n(Yn-,)-Kt,n(Y~-~) 9 

where Y k  = K;,(yo). By assumption (A2), the Y k  lie in a y-neighborhood of 
yo. From (A3), and due to the fact that F;;k=Fl((n-k) lnf ,  

,1 - 1 

~ ~ ~ ( y O ) - K ~ m ( Y O ) ~ ~ X  * I I F t / , ( Y k ) - K f / n ( Y k ) l l X .  
k = O  

NOW, by (Al) ,  this is at most C n o ( l / n )  + 0 as n + 00. The last part may 
be completed as in Theorem 2.1. 

'"This is implicit in the literature in a number of cases (e.g., [SO], 11). 
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3. Conditions for stability. The following gives sufficient conditions for 
Y-stability of an algorithm. 

5.2. PROPOSITION. 
(S,) for a dense set Z c  Y ,  K,(z)  is Y-differentiable in E ,  

(S,) there is a metric d on Y equivalent to the given norm on Y such that 

Let the algorithm K, satisfy the following conditions: 

locally in Y 

Then K, is locally Y-stable. 

Proof: First one shows that K&(z)  remains defined and lies in a Y-ball 
by using 

and induction on the estimate 

t 
5 n exp {Pt}C-= C exp {Pt}t .  

n 

Thus if t is sufficiently small, K;ln(z) lies in any given Y-ball about 2. For 
y E Y and d(z, y )  < 6, one gets inductively , 

and hence the result. 

4. Product formulas used to prove an existence theorem. In some 
circumstances one can use product formulas to deduce properties of the flow 
F, and indeed use them to prove an existence theorem. The next theorem 
gives an example of such a result." 

" For instance, this is the method used by Ebin-Marsden [16] to show that, on  a boundaryless 
manifold, the time of existence in the Navier-Stokes equations is independent of the Reynolds 
number l / v  and that the solutions converge as u + 0. 
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This time we assume there are three Banach spaces Z c  Y c X  with 
inclusions continuous and dense. We make these hypotheses o n  K , :  

(B{J K, maps (an open set in) Y to Y and 2 to Z ;  K,,=identity. 

(B,) For Y E  Y, EHK,(Y) from [0, TI to X is C’ and A ( y ) =  
d 

__ K,(y)l, = O  is continuous from Y to X .  
d€ + 

(B2) K ,  is locally 2 and Y-stable. 

(B,) Locally in Y, K ,  satisfies the estimate 

for all n, O S t t T ,  O Z k Z n .  

(B,) Locally in 2 we have the estimate 

Remark. It would be of some interest to weaken (B,) to “locally in Z”.  

5.3. THEOREM. Assume (Bo)-(B4). Then locally in Y, limn+m K;,(y) = 

H,(y) exists (in Y) and defines a Y-locally Lipschitz semi-flow H, (in Y ) .  
Also, 

(i) the semi-flow i s  generated by A in the sense that, for Y E  Y, tLO, 

(ii) A has unique integral curves, 
(iii) the above limit holds on [O, T )  if and only if Ht(y) exists on [O, T).  

Proof: By local Y-stability and (BJ, it is enough to prove convergence at 
~ € 2 ;  one can then extend convergence to Y E  Y by continuity. By 
Z-stability, the iterates will remain in a 2-neighborhood of y € Z .  If 
we write 
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and use (B3), (B,) and induction, we get the estimate (with a generic constant 
C) 

(4.1) 

Using (4.1), we get 

Since K:fnl(y) lies in a Z-ball, by assumption, the previous estimate gives 

n - l  

(4.2) j = O  

Therefore, by (4.2), 

5 c12(;+--). 1 1  

Thus K:),,( y )  is a Cauchy sequence, and therefore converges. 
That If, is a semiflow, i.e., H,,, = H r o H ,  follows readily from 

lim,-,K;,(y)=Hr(y) if f and s are rationally related, and by con- 
tinuity for all f, s. 

From (4.1), letting n + 00, we have 

From this and (B,) we get 
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From H,,, = H, O H ,  we see that H,(y) is right differentiable at t with 
derivative A(H,(y)). Since this is continuous, we get (i) ([67], page 239). Part 
(ii) follows since H, is Y-locally Y-Lipschitz (see [7]). Finally, the last part is 
proved as in Theorem 2.1. 

Remarks. 1. If one has a family K," of algorithms depending on a 
parameter v, if the basic constants in Theorem 5.3 are independent of v and 
K," -+ K, as v + 0 in Y uniformly in E,  then the H ;  have times of existence 
independent of v and H;+ H, in Y. 

2. For further information on the stability hypotheses, applications and 
questions of differentiability of H,(y) in y, see [43]. 

6. The Vorticity Algorithm for the Navier-Stokes Equations 

1. Introduction and statement of the algorithm. Consider a region llc 
R" with smooth boundary dR. For technical convenience, assume R is 
bounded. Here we are concerned with an algorithm for the Navier-Stokes 
equations; viz 

a u  
-= at  

v A M  - U  V U - V p ,  

div u = 0 , 

Chorin [9] introduced a powerful numerical method for solving (1.1) 
which is based on a heuristic model of boundary layer mechanics and which 
explicitly includes a mechanism for vorticity production near the boundary. 
This method was written as a product formula in Marsden [43], although a 
number of important factors were then unclear. 

Briefly, the vorticity algorithm is as follows. To solve an initial value 
problem with initial value ua in a domain S Z G  R 2 ,  a grid is introduced. In the 
center of each box is placed a point vortexI2 whose strength is equal to the 
integral of the vorticity oo = V X uo over the box. Then the point vortices are 
moved around in such a way that the solution to the Euler equations is 
approximated. At this point, the velocity field associated with the point 
vortices is parallel to dR, so that a layer of point vortices is added on dR 
whose associated velocity field exactly cancels the velocity field already there. 
Finally, each vortex is walked one random step, discarding those vortices 

'' A point vortex at xu is a delta function of varticity at x,). The associated velocity field has 
circular streamlines and the speed at x falls off like l / r ,  where r = Ix - xoI. 
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which cross 8 0  into C. The whole procedure is then repeated, etc. The 
algorithm described below is a continuous analogue to the numerical method. 

Let E, be the local flow defined by the Euler equations (see subsection 
2.4), so that E, is a well-defined C0 flow in Sobolev or Holder function 
spaces (cf. [16]). 

Let @(u) = L be the  vorticity creation operator described in subsections 
4.5 and 4.6, and let H,(ii) =P(exp {tv A}LIf l ) ;  then our earlier Stokes 
algorithm (formula (5.2) of subsection 4.5) reads: 

u-H,o@(u).  

The algorithm for the Navier-Stokes equation now is defined as follows: 
for u a divergence-free vector field on 0, u = 0 on afl, let 

The operator @ in (1.2) plays a more fundamental role than it did for the 
Stokes equation; here, for u = O  on 8R, E,(u) will only be parallel to the 
boundary; the operator @ corrects for this by creating a vortex layer whose 
flow cancels E,(u) on 8 0 .  Then as in subsection 4.6, H, diffuses this created 
vorticity. We shall refer to K, defined by (1.2) as the vorticity algorithm. For 
further intuition on this formula, see [44]. 

2. The consistency of the vorticity algorithm. From Section 5 we know 
that much more than consistency is needed in the nonlinear case to ensure 
convergence. However at first sight, one might not think the algorithm (1.2) is 
consistent because of the more or less “ad hoc” introduction of the vortex 
sheet. However, from our work in Section 4 we know this i s  consistent. In 
considering these matters, the choice of function spaces poses a problem. One 
would like to choose X = L,(0),  Y = Hi(fl) = D(A,). However, the Euler 
equations might not be nicely behaved on Y.I3 Instead we shall let n = 2 or 3 
and choose Y as divergence-free vector fields in WZzp and zero on dR and 
X = J p ,  p > n .  The Euler operator E, then maps Y to WtSp the space of 
divergence-free vector fields parallel to the boundary (cf. [16]) and 

(2.1) 
d 

de 
- E,(u)l,=,= - P ( u  . V U )  . 

Then 
Y to Wt*. (for E small). 

operates on E,(u) and H, maps @oE,(u) back to Y. Thus K, maps 

l 3  In two dimensions, the situation might be salvaged in HZ using the fact that elements of H 2  
are quasi-Lipschitz; cf. T. Kato, Arch. Rat. Mech. An. 25, 1967, pp. 188-200. The situation seems 
rather complicated, however, even here. 
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6.1. THEOREM. With this choice of X and Y, the algorithm (1.2) is 

Proof: 

consistent with the Nuuier-Stokes equations. 

In Section 4 we saw that 

which also holds with X ,  Y as presently chosen. This together with (2.1) 
proves consistency. 

We have shown the non-trivial fact that the vorticity algorithm is 
formally correct and that the introduction of the vortex sheet (or vorticity 
creation operator) is essential for consistency in the usual sense. 

3. Stability and convergence of the vorticity algorithm. Stability and the 
other conditions of Theorem 5.1 (or 5.3) are much more difficult than 
consistency. If we choose the function space Y to be { u  E W2,p(Ck) Iulan= 0, 
p > n, n = 2 or .3} in order that the Euler equations have solutions, then the 
Stokes part of the algorithm presents problems. The norm of the Hodge 
projection IP is not one in L,, p f 2 .  It seems unlikely that the Stokes 
equations generate a quasi-contractive semigroup in L, Sobolev spaces if 
p + 2. Thus, it is imporbable that llH, o@( u))1w2.p(n) 5 (1 + ct) I ) U ~ ~ ~ L . ~ ( ~ ) .  It ap- 
pears, therefore, that in order to prove 

one would not be able to estimate IIHtln o@oEIInuI( and then take the n-th 
power. Hence, one would have to look directly at the iterates. This seems to be 
very difficult. 

On the other hand, one might consider using a subspace of H4(R) for Y.  
This, however, would entail dealing with higher order boundary conditions, 
which also seems difficult. 

7. Stability of Algorithms 

1. Introduction. Step-by-step marching methods, such as those previ- 
ously described, are heavily relied upon in the computer analysis of large- 
scale, time-dependent systems. Frequently, the original problem to be solved 
consists of a system of time-dependent, partial differential equations (PDE's) 
subject to certain initial and boundary conditions. A commonly used tech- 
nique for spatially discretizing the PDE's is the finite element method, a 
projection technique involving basis functions of local support. The spatial 
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discretization leads to a system of ordinary differential equations in the time 
variable, and it is this system which is approximately integrated by a 
step-by-step met hod. 

Often, the number of equations involved is in the thousands, and much 
effort has been expended to develop efficient and reliable techniques. The 
computer plays a valuable role as an experimental tool in this effort, and 
there have been many incidences when “peculiarities” of algorithms, which 
have gone undetected in analysis, have been discovered on the computer, and 
have ultimately lead to new analytical criteria for evaluating algorithms (see 
subsection 7.2 below). 

Perhaps the most important aspect of a step-by-step method, from a 
practical standpoint, is its stability characteristics. We take it for granted that 
any method under consideration is convergent. Unfortunately there are 
many notions of stability prevalent, which often lead to confusion. 

In the remainder of this section we shall discuss what we feel are 
important stability ideas in some fields of practical interest. 

2. Linear structural dynamics. The time-dependent, matrix equation of a 
linear, elastic structure is 

(2.1) Mu+ Ku = F , 

where M is the mass matrix, K is the stiffness matrix, F is the vector of 
applied forces (a given function of time), u is the displacement vector, and 
superposed dots indicate time differentiation. M and K are symmetric, M is 
positive definite, and K is positive semi-definite. (Frequently K is positive 
definite also.) We wish to think of (2.1) as arising from a finite-element 
spatial discretization of an elastic continuum or a structural model. 

The initial value problem consists of finding a function u=u(t) which 
satisfies (2.1) for all t € [ O ,  TI, T>O, such that 

( 2 . 3 )  u(0) = v , 

where d and v are given vectors of initial data. It is well known that the initial 
value problem is well posed, and furthermore that solutions satisfy the 
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following energy identity: 

where 

E(u, u) = T(U) + U(u), the total energy, 

T(U) = $u7 MU, the kinetic energy, 

U(u) = $uTKu, the strain energy, 

and 

E,, = E(d, v) . 

If F=O, total energy is conserved, viz. 

(2.5) E(u(t), U ( t ) )  = E, . 

Roughly speaking, a numerical solution of (2.1) is stable if the rate-of- 
growth of total energy “approximates” the rate-of-growth indicated by (2.4). 
An unstable solution is one in which the energy grows too fast, or “blows 

A concept of stability prevalent in the engineering literature and pertinent 
to equation (2.1) is “unconditional stability”. An unconditionally stable 
algorithm is one in which the stability condition in question is satisfied 
independent of the size of the time step taken. On the other hand, a 
conditionally stable algorithm requires that a time step be taken which is less 
than a constant times the smallest period of the structure. In complicated 
structural models, containing slender members exhibiting bending effects, this 
restriction is a stringent one and often entails using time steps which are 
much smaller than those needed for accuracy, especially when only low-mode 
response is of interest. In these cases unconditionally stable algorithms are 
generally preferred. 

To make our ideas more precise we shall consider a particular family of 
step-by-step methods for solving (2. l), called the Newmark methods [49]: 

up”. 

l 4  A superscript T indicates transpose. 
We treat stability from scratch in this section. Stability in the previous sections was used 

only on finite time intervals; here we are concerned with all t 2 O .  
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Find d,, v, and a,, n ~ { 0 , 1 ,  . , N} ,  such that 

(2.9) d , = d ,  

(2.10) v , = v ,  

(2.11) a, = M-'(Fo - Kd,) , 

where N is the number of time steps, A t =  TIN, d,, v, and a, are the 
approximations to u( t , ) ,  u(t,,) and u( t , ) ,  respectively, in which t,, = n At, 
F, =F( t , ) ,  and P and y are free parameters which govern the stability and 
accuracy of the methods. 

The stability of the preceding algorithms can be ascertained by considering 
the model equation 

(2.12) Mu + Ku = 0 .  

In this case, (2.6)-(2.11) can be written as 

where 
X, = (d,, Atv,, A t 2 a , ) T ,  

and A is called the amplification matrix. Many important properties of an 
algorithm can be determined by studying the spectral properties of its 
amplification matrix. 

We shall call a matrix such as A spectrally stable, or simply, stable if (i) the 
spectral radius p 5 1 and (ii) eigenvalues of multiplicity greater than one 
satisfy ( A l <  1. 

The condition of stability that we shall require of the family of algorithms 
(2.6)-(2.11) is that the associated amplification matrix A be stable. If A is 
stable for all At E [O, Atc] ,  where t, is a positive constant, stability is said to be 
conditional, whereas if A is stable for all A t E [ O , a ) ,  stability is said to be 
unconditional. 

The notion of unconditional stability is closely related to so-called 
"A-stability" [21]. An algorithm is said to be A-stable  if when applied to >; = - A y ,  
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%e.A>O,  the solution y, goes to zero as n + m ,  for all At>( ) .  Many 
algorithms which are employed on second-order systems such as (2.1) cannot 
be directly applied to first-order systems, and thus we retain the use of the 
terminology "unconditional stability" when speaking of (2.1). 

The conditions for stability of the Newmark methods are well known: 

2/3 2 y 2 4 (unconditional stability) , 
(2.15) 

y Z $ ,  2/3< y ,  iAt2<------- (conditional stability) . 
( Y  - 2 P )  

To see what the condition of spectral stability means, let us assume that the 
eigenvalues of A are distinct. In this case, A admits the representation 

(2.16) A = PAP-' , 

where P is a matrix of eigenvectors and A is a diagonal matrix of eigenvalues. 
Combining (2.16) with (2.13) results in 

(2.17) X, = A"X,, = PA"P 'X, . 

Let ( 1  1 1  denote any norm such that llAll=p. Since we may scale P in any way 
we like, let llPll= 1. Multiplying (2.17) by P-' and taking the norm of both 
sides results in 

Note that P--'X, are the eigencomponents of X,. Thus if p = 1, IIP-'X,II is 
uniformly bounded by its initial value; if p < 1, ~ ~ P p l X , ~ ~  + 0 as n + 00. To 
determine a bound on X, we take the norm of (2.17), viz. 

(2.19) lIX"lI 5 P" llp-'ll IIX"lI 9 

which reveals that (IP ' ( 1  must be considered when comparing l\X,[( with IIXoll. 
Here, if p =  1, JIX,(( is uniformly bounded by ~ ~ P - ' ~ ~ \ ~ X o ~ \ ,  but if p < l ,  then 
llXnll -+ 0 as n -+ m. 

A spectrally stable amplification matrix also implies that a conservation 
law, or growth inequality, exists for the algorithm in question. Let N denote 
the symmetric real part of (P-')*P-', so N is positive definite. Then the 
spectral stability of A implies 
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where 
llXllN = (XTNx)1'2 . 

If all the eigenvalues of A fall on the unit circle, then we have equality in 
(2.20) (i.e., a conservation law). On the other hand, if p <  1, then (2.20) is a 
strict inequality. 

Assuming conditions necessary for spectral stability hold (i.e., either of 
(2.15)), the conservation law/growth inequality for the Newmark methods is 

If y = i ,  we have equality in (2.21). 
Spectral stability implies the uniform boundedness of X,, but the bound is 

dependent upon \lP--'Il. We shall now give an example of a matrix which is 
spectrally stable, but admits virtually unbounded early growth. Let 

where O < E <  1 and k >> 1. The spectral radius of A is E .  The effect of the 
spectral radius is evident from 

i.e., all terms go to zero as n + CQ. However, due to the presence of k,  the 
term n ~ " - ' k  will be very large for small n. 

From this example, and the previous discussion, we draw the following 
conclusions: 

1. 

2. 

3. 

In 

The long term, or asymptotic behavior of X, is governed by the 
spectral properties of A. 
The short term behavior of X, may be independent of the spectral 
properties of A. 
A stable amplification matrix may permit arbitrarily large growth for 
small n. 

I fact there are algorithms in existence which are spectrally stable and 
accurate (in the technical sense), but exhibit pathological high-frequency 
growth in the early response. For examples of this behavior, called "over- 
shoot", see [24]. Likewise, there are algorithms which have virtually identical 
stability and accuracy properties, but preclude any pathological early growth. 
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The trapezoidal rule is such a method. This algorithm corresponds to /3 = a  
and y = i in the Newmark family. The conservation law in this case reduces to 

(2.22) E ( d , ,  u,) = E" 9 

which makes it clear why no early pathological growth is possible. Spectrally 
stable algorithms which overshoot possess conservation lawlgrowth ine- 
qualities which explicitly involve At, see (2.21). 

3. Stability in nonlinear problems. In the nonlinear regime the issue of 
stability is more complicated. Here it is important to study both the stability 
of solutions with respect to perturbations, and the growth/decay properties of 
solutions in appropriate norms. In the linear case both of the above 
considerations are governed by the same equation, and no such distinction 
need be made. 

An example will illustrate these ideas. Consider the nonlinear model 
equation 

(3.1) ii + K ( u )  = 0 ,  

where 

for 1 1 ~ 1 ~ 2 ,  
200sgn(u)  for l u l>2 .  

K ( u ) =  { (3.2) 

This is the equation of a nonlinear spring with zero tangent beyond lul=2. 
As in the linear case, solutions of (3.1) conserve total energy, i.e., 

(3.3) 

Let us consider the initial value problem for (3.1)-(3.2) in which d = 0 and 
u = 25. The algorithm to be employed is the trapezoidal rule; namely, 
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Let us take At=0.2. Under these circumstances the solution of (3.4)-(3.9) 
may be easily computed by hand and shown to be periodic, reproducing itself 
every 24 steps. However, solution on a computer, in which round-off error 
exists, reveals that the periodic solvtion eventually breaks down (after about 
100 steps) and thereafter linear growth in total energy manifests itself. The 
growth is quite striking. After 1000 steps the error in energy is anywhere 
from a factor of 100 to 300 times E,  depending on the processor and 
precision involved. (See [26] for further details.) Thus here we have a case in 
which an a priori bound can be given for the solution. However, the solution 
is unstable with respect to perturbations. This can be ascertained in the usual 
way, by studying the locally linearized system about the solution of the given 
equation. 

In the linear case, spectral stability enabled us to deduce global conserva- 
tion laws, or growth inequalities. If we write a nonlinear algorithm in 
amplification matrix form 

(3.10) Xn+l =An+IXn 9 
we can get a local conservation lawlgrowth inequality, which depends on the 
eigenvectors of A,+1 (which, in turn, is a function of X, and Xn+l). 
Unfortunately, the global result which manifests the changing of A,,, from 
step to step is so crude as to be virtually useless. 

However, the spectral stability of A,+1 does tell us one important fact: An 
instability characteristic of the linear case (i.e., one involving exponential 
feedback) is impossible. Nevertheless, a weaker instability formed by the 
biased accumulation of local truncation errors due to nonlinear terms is 
possible. The solution to the initial value problem previously described is such 
an example. 

Because of pathological behavior as indicated above some writers have 
asserted that there are no unconditionally stable algorithms in the nonlinear 
regime. However, well-known examples of unconditionally stable algorithms, 
for particular nonlinear problems, exist. For example, consider the following 
discrete problem arising in nonlinear heat conduction: 

(3.11) ch+K(e, t)e = 0 ,  

(3.12) O(o)=T, 
where C is the constant capacity matrix, K(B, t )  is the conductivity matrix, 8 is 
the temperature vector, and T is the given initial value. C and K(8, t )  are 
assumed symmetric and positive definite. It can be easily shown (see [15], 
[27]) that the midpoint rule, i.e., 

(3.13) 
C(Tn+I-Tn) +AtK(Tn+,/,, t n + l / Z ) T n + l / 2 = O  7 

T,=T,  
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satisfies the following growth inequality 

(3.14) 

where 

llTllc = (T?'CT)''2. 

Thus the midpoint rule is unconditionally stable for this problem. This result 
also indicates that small perturbations are not a problem since we have a 
strict inequality. 

The midpoint rule can be applied to the first order form of (3.1). When 
written in the form (3.10), the spectral stability of the algorithm can be 
verified. However, solutions which are unbounded in energy exist. To see this 
consider the initial data d = -2.5 and u = 25, and A t  = 0.2. The solution is the 
same as for the trapezoidal rule with the previously described initial data. 
(The equivalence of midpoint and trapezoidal rules under a change of data is 
due to Lindberg and Dahlquist [15].) 

It must be mentioned that spectrally stable algorithms seem to work quite 
well in a majority of large scale computations and, because of this, people 
frequently speak of a spectrally stable scheme as a stable scheme. Neverthe- 
less, there is some cause for concern due to certain pathological occurrences 
such as that indicated above. The fact is that in general, we cannot obtain a 
useful global norm condition on the discrete solution given spectral stability. 

4. Energy preserving algorithms. Since it is the global norm condition 
that we are ultimately after, it has been suggested in [28]  that one modify the 
standard algorithms, such as trapezoidal rule or midpoint rule, so that the 
global conservation lawlgrowth inequality is satisfied ab initio, thereby achiev- 
ing unconditional stability automatically. For example, the following implicit 
algorithm may be employed: 

(3.18) 

(3.19) d o = d ,  

(3.20) v o = v ,  
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where U is the potential which generates K, i.e., D U = K .  This algorithm 
obeys the identity 

as is easily checked (see (3.27) below). Thus when F s O ,  total energy is 
conserved, just as for the exact solution. The algorithm (3.15)-(3.20) is 
second order accurate, unconditionally stable and reduces to the trapezoidal 
rule in the linear case. We view it as the appropriate generalization of 
trapezoidal rule for nonlinear elastodynamics because of the above conserva- 
tion law. (For related finite difference ideas involving conservative discrete 
algorithms see Labudde and Greenspan [36] and references therein.) 

The energy-preserving algorithm (3.15)-(3.20) can be defined for a 
general Hamiltonian system (finite or infinite-dimensional) as well, 

(3.22) 

by the following implicit scheme 

(3.26) 

where a, P ,  7, 6 are arbitrarily chosen in [O, 11. 
The proof of conservation of energy is simple: From (3.23), we have 

(3.27) ( q n + l - q n ) T ( P n + l - P n ) = A t ( H ( q n + l  ,Pn+l) -H(qn+l ,Pn))  7 

and from (3.24), 
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The algorithm (3.23H3.26) is easily checked to be consistent. Thus the 
energy preserving property (3.29), if H is related to a norm, will give us 
stability. In many cases, the methods of Section 5 then give, as a bonus, a 
unified “algorithmic” approach to existence theorems for weak and strong 
solutions of Hamiltonian or Hamiltonian-dissipative systems. (For instance, 
see UI ,  page 35, [441, 08.1 
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