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ABSTRACT

We investigate by numerical experiment the use of discrete-time stochastic parametrization to account for
model error due to unresolved scales in ensemble Kalman filters. The parametrization quantifies the model
error and produces an improved non-Markovian forecast model, which generates high-quality forecast en-
sembles and improves filter performance. We compare this with the methods of dealing with model error
through covariance inflation and localization (IL), using as example the two-layer Lorenz 96 system. The nu-
merical results show that when the ensemble size is sufficiently large, the parametrization is more effective in
accounting for the model error than IL; if the ensemble size is small, IL are needed to reduce sampling error,
but the parametrization further improves the performance of the filter. This suggests that in real applications
where the ensemble size is relatively small, the filter can achieve better performance than pure IL if stochastic
parametrization methods are combined with IL.

1. Introduction

Model error due to unresolved scales can degrade the
performance of data assimilation schemes. Such model
error can arise from failure to represent sub-grid processes
correctly, from computational resources too limited to re-
solve all scales, and from discretization and truncation er-
rors.

Various methods have been proposed for taking model
error into account. One can roughly divide them into di-
rect and indirect approaches. In an indirect approach, one
accounts for model error in ensemble data assimilation by
correcting the ensemble in the assimilation step. The most
widely used indirect methods are covariance inflation and
localization (IL) algorithms, which correct the sample co-
variance (Houtekamer and Mitchell 1998; Anderson and
Anderson 1999; Mitchell and Houtekamer 2000; Hamill
et al. 2001). These algorithms were originally introduced
to reduce sampling errors in the sample covariance due to
insufficient ensemble size. Nevertheless, they have been
found to compensate effectively for model errors and have
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been widely used for that purpose (see e.g. Mitchell and
Houtekamer (2000); Hamill and Whitaker (2005); Ander-
son (2007a, 2009)). Other examples of indirect methods
include covariance relaxation (Zhang et al. 2004) and bias
correction methods that use innovation from data to re-
move bias in the forecast ensemble (Dee and Da Silva
1998). The drawbacks of these indirect methods are that
they need empirical tuning, and more important, that the
deficiency of the forecast model remains.

In a direct approach, one seeks a representation of
the model error to augment and improve the forecast
model, so that the forecast ensemble has correct statis-
tics and dynamics. Examples include deterministic and
stochastic parametrization methods (Palmer 2001; Meng
and Zhang 2007; Berry and Harlim 2014; Mitchell and
Carrassi 2015), additive random perturbations (Hamill and
Whitaker 2005; Houtekamer et al. 2009), low dimensional
method (Li et al. 2009), and averaging and homogeniza-
tion methods (Pavliotis and Stuart 2008; Mitchell and
Gottwald 2012; Gottwald and Harlim 2013). Represen-
tations of the model error can be derived either within
data assimilation using the noisy observations, or before
data assimilation using noiseless training data. In the
latter case, numerous results demonstrate that stochastic
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parametrization is preferable to deterministic parametriza-
tion (Buizza et al. 1999; Palmer 2001; Pavliotis and Stuart
2008), and that a non-Markovian model is preferable to a
Markovian model in the absence of scale separation, see
e.g. (Wilks 2005; Crommelin and Vanden-Eijnden 2008;
Danforth and Kalnay 2008; Chekroun et al. 2011; Ma-
jda and Harlim 2013; Kondrashov et al. 2015). These
findings are consistent with the Mori-Zwanzig analysis
(Zwanzig 1973, 2001; Chorin and Hald 2013; Chorin et al.
2000, 2002; Gottwald et al. 2015) in statistical physics,
which shows that a closed system of equations for a sub-
set of variables in a given problem consists of a Marko-
vian term, a non-Markovian memory term, and a stochas-
tic noise term. The above-mentioned methods face chal-
lenges in deriving an effective non-Markovian model, due
to difficulties in inferring a continuous-time model from
partial discrete data and then deriving an accurate dis-
cretization for it. A novel, efficient, discrete-time non-
Markovian stochastic parametrization scheme for quanti-
fying model error was introduced in (Chorin and Lu 2015).
This method is fully discrete, readily takes memory effects
into account, simplifies the inference from discrete data,
and requires no discretization. It leads to an improved non-
Markovian forecast model that can capture key statistical
and dynamical features of the resolved scales.

It is natural to ask whether the direct approach can be
as good or better than the methods of IL in accounting for
model error in ensemble Kalman filters (EnKF). Several
direct methods have been studied for this purpose. Ad-
ditive error representations were shown to improve the
performance of the ensemble square root Kalman filter
in (Hamill and Whitaker 2005); bias removal methods
augmented by additive noise were shown to outperform
pure inflation schemes in the local ensemble transform
Kalman filter in (Li et al. 2009); time-varying and time-
constant model error representations were shown to reduce
the tuning of IL in the ensemble transform Kalman filter
in (Mitchell and Carrassi 2015).

In the present study we examine the discrete-time
parametrization and compare it with covariance inflation
and localization in accounting for model error in the
EnKF. We assume that offline noiseless training data of
the resolved scales can be generated, and used either to
tune inflation and localization or to infer parameters in the
parametrization. We examine both cases where the ensem-
ble is large enough so that sampling error is negligible,
and where the sample is small and sampling error needs
to be reduced by IL. We carry out numerical tests on the
two-layer Lorenz 96 system (Lorenz 1996), a simplified
nonlinear model of atmospheric dynamics involving inter-
acting resolved and unresolved scales of motion. A fore-
cast model in the EnKF is a truncated model of the large
scales alone, and its model error comes from the unre-
solved small scales. The parametrization directly accounts

for the model error by constructing an improved forecast
model for the filter, and is compared with the IL approach.

The numerical results show that when the ensemble size
is large, the parametrization outperforms IL in account-
ing for model error. To the best of our knowledge, this is
the first comparison made in a case where the ensemble
size is large enough for sampling error to be negligible, so
that both methods account exclusively for model error and
their performance can be compared clearly. The numerical
results also show that when the ensemble size is small, IL
are needed to reduce sampling error, but the parametriza-
tion further improves filter performance. This result is in
line with the previous findings in (Hamill and Whitaker
2005; Li et al. 2009; Mitchell and Carrassi 2015) that with
the combination of stochastic methods and IL, the filter
can achieve better performance than pure IL in practical
small ensemble size.

The paper is organized as follows. In section 2 we
provide a quick review of the EnKF. In section 3 we re-
view covariance inflation and localization algorithms and
discrete-time non-Markovian stochastic parametrization.
We devote section 4 to a numerical study using the two-
layer Lorenz 96 system, and conclude with a discussion of
the results in section 5.

2. The ensemble Kalman filter

The Ensemble Kalman Filter (EnKF) is a Monte-Carlo
implementation of Bayesian filtering with the Kalman fil-
ter update (Evensen 1994; Evensen and Van Leeuwen
1996; Houtekamer and Mitchell 1998; Burgers et al.
1998). It uses an ensemble of random samples, also called
particles, to approximate the forecast and analysis distri-
butions by Gaussian distributions whose means and co-
variances are given by ensemble means and covariances.
Among various EnKF algorithms, we choose to consider
only the version with perturbed observations, introduced
in (Burgers et al. 1998; Houtekamer and Mitchell 1998),
and we refer to (Lei et al. 2010) for a comparison of dif-
ferent versions of EnKF algorithms.

Suppose the filter uses a forecast model

xn = Fn(xn−l:n−1), (1)

where xn ∈ Rdx is the state variable, xn−l:n−1 =
(xn−l , . . . ,xn−1), and Fn is a forecast operator at time n
which maps Rl×dx to Rdx with 1≤ l ≤ n−1. The forecast
model can be either stochastic or deterministic, and either
Markovian (e.g. l = 1) or non-Markovian (e.g. l > 1).
The state variable is observed through a linear observation
operator with Gaussian noise:

zn = Hxn + εn,

where H ∈ Rdz×dx is the observation matrix, and the εn ∼
N(0,R) are independent Gaussian noises. In this study, we
assume that the observation matrix R is known.
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a. The standard EnKF

The EnKF iterates the following two steps, with an ini-
tial ensemble of particles {xa,(i)

0 , i = 1, . . . ,M} sampled
from the forecast distribution of the state variable x (e.g.
the stationary distribution of the forecast model).

1. Forecast step: from the ensemble {xa,(i)
1:n−1} at time

n−1, generate a forecast ensemble {x f ,(i)
n } using the

forecast model in (1), i.e. x f ,(i)
n = Fn(x

a,(i)
n−l:n−1). Here

the superscript in x f
n denotes the ensemble from the

forecast model, and the superscript in xa
n denotes the

ensemble of the posterior distribution after assimilat-
ing data in the following analysis step. If the forecast
model is stochastic, independent realizations should
be used at different times.

2. Analysis step. Given new observation zn, update the
forecast ensemble to get a posterior ensemble of xn,

xa,(i)
n = x f ,(i)

n +Kn(z
(i)
n −Hx f ,(i)

n ), (2)

for i = 1, . . . ,M, where the Kalman gain matrix is

Kn =C f
n HT (HC f

n HT +R)−1, (3)

where the matrix C f
n is the sample covariance of the

forecast ensemble:

C f
n =

1
M−1

M

∑
i=1

(
x f ,(i)

n −x f
n

)(
x f ,(i)

n −x f
n

)T
,

where x f
n = 1

M ∑
M
i=1 x f ,(i)

n and the z(i)n are obtained by

adding random perturbations ε
(i)
n ∼ N(0,R) to zn:

z(i)n = zn + ε
(i)
n .

b. A block update algorithm

At each time n, only the current state x(i)n of the i-th
particle is updated in the analysis step in the above stan-
dard EnKF, and the past trajectory x(i)1:n−1 of the particle
remains unchanged. Therefore, the time correlation be-
tween xn and x1:n−1 is not properly represented by the en-
semble. For a Markovian forecast model, this works fine,
because the next state xn+1 depends only on the current
state xn. For a non-Markovian model with lag l, however,
the next state xn+1 depends directly on a block of past
trajectory xn−l+1:n. This requires the ensemble to prop-
erly represent the space-time correlation of xn−l+1:n, and
therefore the states xn−l+1:n should be updated as a whole
at time n. Inspired by the block sampling algorithm of
Doucet et al. (2006), we introduce the following block up-
date algorithm that updates a block xn−L+1:n with L ≥ l

in the analysis step of the EnKF. This block update algo-
rithm is akin to the fixed-lag smoother using EnKF (Khare
et al. 2008), which is an implementation of the ensem-
ble Kalman smoother (EnKS) discussed in Evensen and
Van Leeuwen (2000) and Whitaker and Compo (2002).

Choose a block length L≥ 1, and define the augmented
observation matrix H̃ ∈RLdz×Ldx and the augmented noise
covariance R̃ ∈ RLdz×Ldz as

H̃ = diag(0, . . . ,0,H), R̃ = diag(0, . . . ,0,R). (4)

For n < L, use the above EnKF method. At time n ≥ L,
after obtaining the forecast ensemble {x f ,(i)

n }, update the
ensemble of the block path X f ,(i)

n = (xa,(i)
n−L+1:n−1,x

f ,(i)
n ):

Xa,(i)
n = X f ,(i)

n + K̃n((z
(i)
n − H̃X f ,(i)

n ),

for i = 1, . . . ,M, where the Kalman gain matrix is com-
puted as

K̃n = C̃ f
n H̃T (H̃C̃ f

n H̃T + R̃)−1.

Here the matrix C̃ f
n is the sample covariance of the forecast

ensemble:

C̃ f
n =

1
M−1

M

∑
i=1

(
X f ,(i)

n −X f
n

)(
X f ,(i)

n −X f
n

)T
,

where X f
n = 1

M ∑
M
i=1 X f ,(i)

n . Then update the current L–step

block by setting xa,(i)
n−L+1:n = Xa,(i)

n .
When L = 1, the above algorithm is the same as the

standard EnKF. When L > 1, it updates a block of the tra-
jectory using the new observation. A natural choice of
block length L is the length l of the memory in the fore-
cast operator fn(xn−l:n−1). This is the choice we make in
this paper, and we leave it as future work to discuss of the
optimal choice of L as well as of other issues such as co-
variance inflation and localization for this block update al-
gorithm and its variants in applications to non-Markovian
models.

3. Methods to account for model error

Let a forecast model at our disposal be represented as

xn = f0(xn−1), (5)

where xn is a vector in Rdx representing the resolved scales
at time tn, and f0 is a forecast operator independent of time.
This is a reduced model of a more complicated full model
of the form: {

x̂n = F̂(x̂n−1, ŷn−1),

ŷn = Ĝ(x̂n−1, ŷn−1),
(6)

where x̂n ∈ Rdx and ŷn ∈ Rdy are the resolved and unre-
solved scales at time tn respectively, with dx << dy ≤ ∞,
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and where the functions F̂ and Ĝ map the states from time
tn−1 to tn. In general, this full model is a discrete represen-
tation of a system of differential equations. The reduced
model is used when the full system is too difficult to solve
or possible not fully understood, and it is often obtained
by truncating the full system. The difference between the
solutions of the reduced model (5) and the full model (6)
is the model error due to unresolved scales.

a. Covariance inflation and localization

Covariance localization. Covariance localization was
originally designed to remove poorly estimated long-
range spatial correlations due to insufficient ensemble size
(Houtekamer and Mitchell 1998; Gaspari and Cohn 1999;
Furrer and Bengtsson 2007; Anderson 2007b). The stan-
dard implementation of localization is through the Schur
product (entry-wise product, also known as Hadamard
product) of the forecast covariance C f

n by a localization
matrix Cloc, which is a symmetric positive definite ma-
trix with entries obtained from a predefined correlation-
length function, known as taper function. In this study, we
use the widely used Gaspari-Cohn taper function (Gaspari
and Cohn 1999), which is a function with compact support
given by

g(s) =


1− 5

3 s2 + 5
8 s3 + 1

2 s4− 1
4 s5, if 0≤ s≤ 1;

− 2
3s +4−5s+ 5

3 s2 + 5
8 s3− 1

2 s4 + 1
12 s5,

if 1≤ s≤ 2;
0, if s≥ 2.

(7)

The corresponding localization matrix is

Crloc(i, j) = g(|i− j|/rloc), (8)

where rloc is the localization radius. We refer to (Furrer
and Bengtsson 2007; Anderson 2007b; Sakov and Bertino
2011) for analysis and comparisons between different lo-
calization methods, and refer to (Bishop and Hodyss 2007;
Anderson 2012) and the references therein for recent de-
velopments in adaptive localization methods.

Covariance inflation. Covariance inflation algorithms
account for the underestimation in the covariance of the
forecast ensemble. There are two main types of covari-
ance inflation, additive and multiplicative inflation. In
additive inflation algorithms (Hamill and Whitaker 2005;
Tong et al. 2016), the forecast covariance C f

n in the EnKF
is replaced by

Ĉ f
n =C f

n +λ I,

for some λ > 0. In multiplicative inflation algorithms
(Anderson and Anderson 1999; Hamill et al. 2001), the
spread of the forecast ensemble is inflated by replacing

x f ,(i)
n with x f ,(i)

n +
√

1+λ

(
x f ,(i)

n −x f ,(i)
n

)
for some λ > 0

in the analysis step, which is equivalent to replacing the
covariance C f

n by

Ĉ f
n = (1+λ )C f

n .

This increases the covariance of the forecast ensemble, so
as to account for the underestimation of covariance. Infla-
tion has the effect of weighting the observations more than
the deficient forecast model, and pulling the filter back
towards the observations so as to avoid filter divergence.
Optimization of the inflation parameter λ is usually done
by numerical tuning. To avoid ad-hoc tuning and to ac-
count for the dynamical changes in the model error, adap-
tive inflation algorithms have been recently developed in
(Anderson 2007a, 2009) for multiplicative inflation, and
in (Kelly et al. 2014; Tong et al. 2015, 2016) for additive
inflation.

In the numerical experiments that follow, we use infla-
tion and localization simultaneously, test both additive and
multiplicative inflation, and select the best combinations.
The main cost is the generation of training data to tune the
inflation parameter and the localization radius.

b. Discrete-time stochastic parametrization

The model error in the forecast model (5) is
F̂(x̂n−1, ŷn−1)− f0(x̂n−1), which can be seen by rewriting
the first equation in the full system (6)

x̂n = f0(x̂n−1)+ [F̂(x̂n−1, ŷn−1)− f0(x̂n−1)].

The discrete-time stochastic parametrization method
quantifies the model error and produces an improved fore-
cast model. It constructs a non-Markovian NARMA (non-
linear autoregression moving average) forecast model of
the form

xn = f0(xn−1)+Φ(xn−p:n−1,ξn−q:n−1)+ξn, (9)

where the {ξn} are independent Gaussian random vari-
ables with mean zero and covariance diag(σ2

ξ
). The func-

tion f0 comes from the original forecast model (5), and
Φ(xn−p:n−1,ξn−q:n−1) is a parametric function of the form

Φn : = Φ(xn−p:n−1,ξn−q:n−1) (10)

=
p

∑
j=1

a jxn− j +
r

∑
i=0

p

∑
j=1

bi, jfi(xn− j)+
q

∑
j=1

c jξn− j,

where {a j,bi, j,c j,σ
2
ξ
} are parameters to be estimated, and

{fi, i = 1, . . . ,r} are functions to be provided by modelers.
The appearance of f0 in Φ has the effect of modifying the
coefficient of f0(xn−1) from what it was the original fore-
cast model.

The NARMA model can capture key statistical and dy-
namical features of the resolved scales, and generate high
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quality forecast ensembles which have correct mean and
covariance if the ensemble size is sufficient. We empha-
size that this is different from just correcting the ensemble,
because the forecast model is improved, and this treats the
root of the model error problem.

The main difficulty in this construction is deriving and
selecting the ansatz (i.e. the functions {fi} and the orders
{p,r,q}) of the NARMA model. The ansatz may be de-
rived from the physical properties of the full system, and
it may depend on the numerical scheme used in the origi-
nal reduced model. We refer to (Crommelin and Vanden-
Eijnden 2008; Majda and Harlim 2013; Kondrashov et al.
2015; Harlim 2016; Lu et al. 2017, 2016) for further dis-
cussion.

Once {fi} and the orders {p,r,q} are fixed, the parame-
ters θ = {a j,bi, j,c j,σ

2
ξ
} are estimated by conditional like-

lihood methods. We first solve the full system (6) offline
to generate a time series {x̂n}N

n=1 for a large N. Then
the parameters are estimated as follows. Conditional on
ξ1, . . . ,ξm, the negative log-likelihood of {xn = x̂n}N

n=m+1
is

L(θ |ξ1, . . . ,ξm)=
dx

∑
k=1

N

∑
n=m+1

(
xn,k−Φn,k

)2

2σ2
ξ ,k

+
N−q

2
logσ

2
ξ ,k,

(11)
where m = max{p,q}, θ =

(
ak

j,b
k
i, j,c

k
j,σ

2
ξ ,k

)
. For a given

value of θ , if q = 0, the values of {Φn}N
n=m+1 can be com-

puted directly from data {xn}N
n=1. If q > 0, the values of

{Φn}N
n=m+1 and {ξn}N

n=m+1 can be computed recursively,
conditional on ξ1 = · · · = ξm = 0. That is, one computes
Φm+1 from ξm−q+1:m using equation (10), and computes
ξm+1 from Φm+1 using equation (9); and repeats this pro-
cess for the rest times n≥m+1. The maximum likelihood
estimator (MLE) of the parameter is the minimizer of the
negative log-likelihood

θ̂N = argmin
θ

LN(θ |ξ1, . . . ,ξm).

If q = 0, the minimization reduces to least squares regres-
sion. If q > 0, the minimization can be done by iterative
least squares (Ding and Chen 2005) or other optimization
methods.

As in covariance inflation and localization algorithms,
the main cost of the discrete-time stochastic parametriza-
tion method is the generation of training data. This re-
quires solving the full system offline for a time interval
long enough so that the maximum likelihood estimator,
which converges at the rate 1/

√
N, is close to its limit.

The cost of parameter estimation depends on the NARMA
model. It is negligible if the model does not have a mov-
ing average term, i.e. if q = 0. In this case the maximum
likelihood estimator is equivalent to the least squares esti-
mator. The cost varies when q 6= 0 since the minimization
may need many iterations.

4. Numerical experiments on the Lorenz 96 system

In this section we carry out numerical experiments on
the two-layer Lorenz 96 system (Lorenz 1996), which
consists of K resolved variables xk coupled to J×K un-
resolved variables y j,k

d
dt

xk = xk−1 (xk+1− xk−2)− xk +F + zk,

d
dt

y j,k =
1
ε
[y j+1,k(y j−1,k− y j+2,k)− y j,k +hyxk],

where zk =
hx
J ∑ j y j,k, and k = 1, . . . ,K, j = 1, . . . ,J. The

indices are cyclic, xk = xk+K , y j,k = y j,k+K and y j+J,k =
y j,k+1. The system is invariant under spatial translations,
and the statistical properties are identical for all xk. The
formulation here is equivalent to the original formula-
tion by Lorenz (see e.g. Fatkulin and Vanden-Eijnden
(2004); Crommelin and Vanden-Eijnden (2008); Kwas-
niok (2012)). The parameter ε measures the scale sep-
aration between the resolved variables xk and the unre-
solved variables y j,k. We set ε = 0.5, so that there is
no significant scale separation between resolved and un-
resolved processes, as is both more realistic and more dif-
ficult to handle for parameterizations (see (Fatkulin and
Vanden-Eijnden 2004) and references therein). We take
K = 18,J = 20,F = 10,hx = −1 and hy = 1. Here one
model time unit is approximately equal to five atmospheric
days, deduced by comparing the error doubling time of the
model to that observed in the atmosphere (Lorenz 1996;
Arnold et al. 2013; Mitchell and Carrassi 2015).

In the experiments, we take a trajectory of the resolved
variables x in the full system to be the truth. We solve the
full system by a fourth-order Runge-Kutta method with a
time-step dt = 0.001, and make recordings every 50 steps,
i.e. with observation spacing h = 0.05, approximately six
atmospheric hours. To eliminate transients, we begin to
make observations after running the full model for 100
time units. To create noisy observations we add to the
recorded trajectory independent Gaussian random vectors
with mean zero and covariance R = σ2

ε I.
In the data assimilation, we assume that we cannot af-

ford to solve the full Lorenz 96 system for ensemble fore-
casts, and use a reduced system obtained by discarding the
y variables:

d
dt

xk = xk−1 (xk+1− xk−2)− xk +F,

for k = 1, . . . ,K. After discretization by a fourth-order
Runge-Kutta method with time-step h (i.e. the observation
spacing), one obtains a system of difference equations:

xk,n = xk,n−1 + f h
k (x·,n−1), (12)

for k = 1, . . . ,K, where xk,n is the value of the component
xk at time n. Hereafter we refer to this reduced discretized
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model as the L96x model, and we refer to the discrete rep-
resentation of the full L96 system as the full model.

This paragraph will be deleted. The model error in
the L96x model comes from the unresolved y variables.
It has been shown to have a mean close to zero (see e.g.
(Arnold et al. 2013; Chorin and Lu 2015; Mitchell and
Carrassi 2015)), hence the biases in the means of forecast
ensembles are negligible. This removes a concern about
ensemble bias in the use of covariance inflation and local-
ization to account for such model error (Dee and Da Silva
1998; Li et al. 2009).

In the following, we first implement the two methods
reviewed in Section 3 to account for such model error in
Sections a-b, and then compare their filtering and forecast-
ing performance in Sections c-d.

a. Accounting for model error by discrete-time stochastic
parametrization

Discrete-time stochastic parametrization quantifies the
model error of the L96x model and produces an improved
forecast model, which we call the NARMA model, as in-
troduced in section b. Specifically, this is done by using
the conditional likelihood method to fit a NARMA model
to a set of training data, which is generated by solving
the full model for a long time. The initial conditions in the
simulation that generates training data can be arbitrary, be-
cause the estimated parameters of the NARMA model will
converge as the length of the training data increases, due
to ergodicity of the full system (Chorin and Lu 2015). Ac-
cording to the results in (Chorin and Lu 2015), we use a
NARMA(2,0) model

xk,n = ∑
2
j=1(a jxk,n− j +b j f h

k (x·,n− j)) +c0 + c1x2
k,n−1 + c2x3

k,n−1 +ξk,n,(13)

where f h
k (x) comes from the right hand side of (12), and

{ξ·,n} is a sequence of independent Gaussian random vec-
tors with mean zero and covariance σ2

ξ
I. The parameters

in the different components are the same due to the sym-
metry in the equations.

The main cost in deriving the NARMA representation is
the generation of training data. The cost of the NARMA
parameter estimation is negligible compared with cost of
generating training data, because the model does not have
moving average terms and the optimization reduces to lin-
ear least squares. In our tests, the training data were gen-
erated by solving the full system with step size dt = 0.001
and recording data every 50 steps, i.e. with observation
spacing h = 0.05. Table 1 shows the values of the param-
eters (a j,b j,c j,σξ ) estimated from a training dataset of
length N = 105, i.e. 5000 time units, approximately equal
to 69 atmospheric years. Further tests showed that a data-
length of N = 104 could also lead to models with good
statistical properties. The minimum data-length necessary
to identify a NARMA model is problem dependent, and a
general criterion is beyond the scope of the current study.

TABLE 1. Values of the parameters in the NARMA model.

a1 a2 b1 b2

1.8992 -0.9022 0.9946 -0.9058
c0 c1 (×10−5) c2 (×10−5) σξ

0.0024 -0.3903 0.9396 0.0084

NARMA as an improved forecast model for the L96x
model. Figure 1 shows the empirical probability density
function (PDF) and the autocorrelation function (ACF) of
the full model, the L96x model and the NARMA model,
computed from time averaging of a long trajectory of each
model. The NARMA model reproduces the PDF and the
ACF faithfully, while the L96x model misses the shape
of the PDF and the oscillation of the ACF. The PDF ap-
proximates the invariant measure of the large-scale vari-
ables, and the ACF approximates the dynamical transition.
Hence, the NARMA model captures the statistical and dy-
namical features of the large-scale variables much better
than the L96x model.

By accounting for the model error, the NARMA model
significantly improves state estimation of the filters over
the L96x model. Table 2 shows the mean and standard
deviation of the relative errors of state estimation on 100
simulations, in which the variance of observation noise is
σε = 0.2 and the ensemble size is M = 1000. Here we
judge the quality of the state estimates by the relative er-
ror in the ensemble means, that is, the relative difference
between the ensemble means and the truth,

erel =

(
N

∑
n=N0+1

K

∑
k=1
|xk,n− xk,n|2

/
N

∑
n=N0+1

K

∑
k=1
|xk,n|2

)1/2

,

(14)
where (xk,n,n = N0 + 1, . . . ,N) are the ensemble means,
and (xk,n,n = N0 + 1, . . . ,N) are the true state values. We
skipped the first N0 steps so as to eliminate the transients
in assimilation. In the tests, it took only a few steps for
the filters to reach a stationary state, so we took N = 400
and N0 = 200. We implemented both the standard EnKF
and the EnKF with block update using block length L = 2.
In both cases, the NARMA model successfully reduced
the relative error in the state estimation to below 2.10%,
which is the relative uncertainty induced by the obser-
vation noise; the filter with L96x model performs very
poorly, due to the model error.

We also tested a parametrization using a Markovian
model in the form of NARMA (1,0) similar to equation
(13). The Markovian model reproduced the empirical
PDF and ACF well, but is slightly inferior to the NARMA
model (data not shown here). The Markovian model suc-
cessfully reduced the relative error to 0.0210± 0.0022 in
the above 100 simulations, which is slightly larger than
those of the NARMA model (0.0156± 0.0019). Also, the
NARMA model yielded better forecast performance than
the Markovian model. Therefore it is important to choose
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TABLE 2. The mean and standard deviation of the relative errors
of state estimation on 100 simulations, in which the ensemble size is
M = 1000 and the variance of the observation noise is σε = 0.2. Both
the standard EnKF and the EnKF with the block update algorithm are
implemented, with the L96x model and the NARMA model as forecast
model.

Standard EnKF EnKF with Block Update
L96x 0.7884 ± 0.0774 0.8022 ± 0.0818

NARMA 0.0182 ± 0.0016 0.0156 ± 0.0011

a good model for the model error, and we consider only
the NARMA model in this study.

These results show that discrete-time stochastic
parametrization can effectively account for model error,
and therefore improve the performance of ensemble filter.

Note also that the block update algorithm reduces the er-
ror of state estimation for the NARMA model, but it does
not improve the performance of the filter with the L96x
model. Hence, in the following tests, we use the block
update algorithm for the NARMA model and the standard
EnKF for the L96x model.

b. Accounting for model error by tuning inflation and lo-
calization

Covariance inflation and localization (denoted by IL
hereafter) can account for both model error and sampling
error, but the parametrization can only reduce model error.
To compare their effectiveness in accounting for model er-
ror, we consider two situations, one with an ensemble suf-
ficiently large for sampling error to be negligible, and one
with a practical small ensemble. In the first situation, we
compare filter performance of the NARMA model using
no IL, with the performance of the L96x model using best
tuned IL. This highlights the impact of the two methods
on accounting for model error. In the second situation, we
apply IL to both the L96x and the NARMA models; in
the L96x model, IL accounts for both sampling error and
model error; in the NARMA model, IL accounts mainly
for sampling error.

We also test the standard EnKF using the full model,
which has no model error, as forecast model, so as to pro-
vide a useful yardstick for assessing the results.

We carry out the covariance localization with the local-
ization matrix Crloc defined in (8), using the Gaspari–Cohn
taper function (7), where rloc is the localization radius.
We also tested a Toeplitz circulant matrix with exponen-
tial spectrum decay, but there is no clear improvement in
filter performance over the Gaspari–Cohn matrix (data not
shown here). In the EnKF with block update, the localiza-
tion matrix is an array containing L copies of Crloc in the
row and column dimensions.

We tune the localization and inflation by trying differ-
ent values of rloc and λ for filtering a single set of obser-
vations with noise variance σε = 0.2. Both additive and
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FIG. 1. Empirical probability density function (PDF) and autocor-
relation function (ACF) of the full model, the L96x model and the
NARMA model.

FIG. 2. Relative error of the ensemble fitter for different covariance
localizations and additive inflations, with ensemble size M = 10 for the
full model, and M = 1000 for the reduced models. The letters NaN
indicates that the filter diverged. Here a localization radius rloc = 0
means no localization. An additive inflation λ = 0 means no inflation.

multiplicative inflation were tested, and additive inflation
led to slightly better filter performance for both the full
and the L96x models (data are not shown here). Hence in
the following we only consider additive inflation.
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TABLE 3. The best tuned values of localization radius rloc and additive
inflation parameter λ for the three models using ensemble size M = 10.

L96x NARMA Full model
Localization radius rloc 2 2 2

Additive inflation λ 0.1 0.01 0.01

Tuning in the case of sufficient ensemble size. We first
discuss tuning in the case where the sample size is suf-
ficiently large for sampling error to be negligible. Here,
a large ensemble with M = 1000 members is found to be
sufficient. For the computational cost to be similar to that
of the L96x and NARMA models, the full model uses an
ensemble of size M = 10, with IL to account for the sam-
pling error due to insufficient size. Tests showed that IL
were able to effectively account for the sampling error,
yielding state estimations almost as accurate as the full
model with an ensemble size M = 1000.

Figure 2 shows the relative errors in scaled colors (the
darker the color, the smaller the relative error in state es-
timation) for different rloc and additive inflation λ . Here
a localization radius rloc = 0 means no localization, and
an additive inflation value λ = 0 means no inflation. To
demonstrate the need of tuning for different models, com-
mon values of rloc and λ are plotted. The best tuned values
shown here may not be optimal, but they are close to the
optimal values in finer tuning.

The left plot shows the relative errors of the L96x model
with IL. Because of model error, the L96x model performs
poorly without IL (rloc = 0, λ = 0). As the additive infla-
tion parameter λ increases, the relative error in state esti-
mation first sharply decreases and then slightly increases;
a similar pattern can be observed as the localization radius
rloc increases. To select the best values for rloc and λ , we
do not choose the pair (rloc,λ ) which produces the small-
est relative error in the array, but rather the pair at the inter-
section of the column and the row which have the smallest
sum of relative errors among the columns and rows respec-
tively. This is because tests show that the pair that yields
the smallest error is sensitive to various factors, such as the
number of observations and the initial conditions used to
generate the training data, while the pairs at the intersec-
tion are much more robust to these factors. For the L96x
model, this strategy yields (rloc,λ ) = (2,0.1).

In the middle plot we show the parameter values for
tuning IL for the NARMA model. IL bring negligible im-
provements for the NARMA model: the relative error de-
creases only from 0.016 to 0.014 in this simulation (results
are similar for other simulations). This suggests that the
NARMA model has accounted for the model error so well
that IL cannot help much.

The right plot shows the relative errors in filtering with
the full model. Due to sampling error caused by the small
ensemble size, the EnKF with the full model diverges if
no localization or inflation is used. IL accounts for the

sampling error, stabilizes the filter and leads to accurate
state estimation with relative error 0.013, while the relative
error of the full model with M = 1000 is 0.011. The best
values for the IL parameters in this setup are rloc = 2 and
λ = 0.01.

In summary, when comparing filter performance in the
case of large ensemble size in section c, we use rloc = 2
and λ = 0.1 for the L96x model, and rloc = 2 and λ = 0.01
for the full model. For the NARMA model, we use a block
updating algorithm without any localization or inflation.
We found that even with tuned IL, the filter with the full
model may diverge (with a frequency of about 2 out of
100 simulations). Since the full model only serves as a
reference, we drop the simulation when the filter diverges.

Tuning in the case of small ensemble size. We use the
same tuning strategy as above for different small ensem-
ble sizes, ranging from 10 to 100. Table 3 shows the best
pair of the localization radius rloc and the additive infla-
tion parameter λ in the case of ensemble size M = 10.
The best pair (rloc,λ ) for the L96x model did not change
much when ensemble size changed. The best pairs of
(rloc,λ ) for the NARMA model and the full model were
sensitive to changes in ensemble size, with λ varying be-
tween 0.001 and 0.01 and rloc varying between 2 to 10.
But the relative errors corresponding to these pairs in the
array were very close to each other (data not shown here,
but this can be readily seen from the middle and right plots
in Figure 2). Therefore, we accept these suboptimal pairs
and use them in the table for other ensemble sizes when
comparing filter performance in section d.

c. Filter performance comparison: the case of sufficient
ensemble size

We consider first the case of a large ensemble size
M = 1000. This setup aims to answer the main question of
this paper: whether the parametrization can be as effective
as IL in accounting for the model error due to unresolved
scales. With this M, the sampling error in the ensemble co-
variance is negligible compared to the model error, there-
fore the filter performance depends on how well the two
methods can account for the model error.

Their performance is measured by the resulting state es-
timates and ensemble forecasts. We first compare them
in a single simulation, and then consider the statistics of
the errors over 100 simulations. Results from the full
model, with ensemble size M = 10 and IL with (rloc,λ ) =
(2,0.01) are included to provide a sense of the best possi-
ble results at a comparable computational cost.

State Estimation. The trajectories in a short single sim-
ulation with observation noise σε = 0.2 are shown in Fig-
ure 3. The filtered trajectories (the magenta lines) are in
the time interval [0,6]. The ensemble and its mean (the
black dash dot lines) follow the true trajectory (the blue
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FIG. 3. Ensembles of trajectories in filtering and forecasting. Each
plot contains a true trajectory (blue line), an ensemble of filtering tra-
jectories (magenta lines) in the time interval [0,6] (in gray shade) and
forecasting trajectories (cyan lines) in the time interval (6,10], and the
ensemble mean (black dash-dot line). Covariance inflation and local-
ization (IL) accounts for the model error of the L96x model in the filter,
and the parametrization reduces the model error through the NARMA
model, in the case of a large ensemble size M = 1000. The full model
provides a yardstick for performance at a comparable cost by using
tuned IL with ensemble size M = 10.

line) relatively well for all the three forecast models. The
relative errors of state estimation are 1.91%, 1.59% and
1.31% for the L96x, NARMA and full model, respectively.

The difference in state estimation is clear in the statis-
tics of the relative error in 100 simulations, as shown in
Figure 4. To test the robustness of the filter, we consider
different variances of observation noise, with σε taking
the values {0.1,0.2,0.4,0.8}, for which the relative error
of the observation noise ranges from 1.05% to 8.40%. The
NARMA model, using no covariance localization or infla-
tion, has smaller errors than the L96x model using tuned
IL. For example, in the case σε = 0.2, the average rel-
ative errors are 1.73%, 1.33% and 1.11% for the L96x,
NARMA and full model, respectively. The relative er-
ror of the L96 model is about 1.3 times the relative er-
ror of the NARMA model. This shows that the stochastic
parametrization is more effective than IL in dealing with
model error. On the other hand, with the help of IL, the full
model with a small ensemble size has slightly smaller er-
rors than the NARMA model. This indicates that (i) tuned
covariance IL are effective in dealing with sampling error,
(ii) there is still model error in the NARMA model.

Forecasting. The goal of state estimation is to provide
initial conditions for the forecast model to use in fore-
casting the future evolution of the resolved scales. Af-
ter assimilating the last observation, the filtering ensemble
provides the desired initial conditions, and by running the
forecast model, we obtain a forecasting ensemble.
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FIG. 4. Mean and standard deviation of the relative error of state es-
timation calculated with 100 simulations for different variances of ob-
servation noise. The ensemble size is 1000 for the L96x and NARMA
model, and 10 for the full model. The L96x model and the full model
use tuned inflation and localization (IL), and the NARMA uses neither.

The difference in the ensemble forecasts of these mod-
els is clear in the single simulation shown in Figure 3. The
forecasting trajectories (the cyan lines) are in the time in-
terval (6,10]. It is desirable that the ensemble of fore-
casting trajectories follow the true trajectory as long as
possible before spreading out. The ensemble of the full
model follows the true trajectory for about 2.5 time units
(from t = 6 to t = 8.5), and the L96x and NARMA models
for about 1 and 1.8 time units respectively. The ensemble
means keep following the true trajectory slightly longer.
This shows that the NARMA model has better prediction
skills than the L96x model in this simulation.

The improved forecast of NARMA model over the
L96x + IL combination can be attributed to two factors:
a better forecast model and more accurate two-step ini-
tial distributions. To dis-entangle these two factors, we
tested a Markovian model in the form of NARMA(1,0)
simultaneously with the above non-Markovian NARMA
and L96x model. Results showed that the Markovian
NARMA(1,0) model made forecast slightly inferior to the
NARMA model but much better than L96x + IL, while it
has relative errors in state estimation similar to L96x+ IL.
This suggests that the improvement of the forecast of the
NARMA model over L96x + IL comes mainly from the
better forecast model.

We further compare the forecast performance on 100
simulations, by studying the root mean square error
(RMSE) and the anomaly correlation (ANCR) between
the mean trajectories of the forecast ensembles and the
true trajectories. The RMSE measures the average dif-
ference between trajectories whereas the ANCR measures
the average correlation between them (Crommelin and
Vanden-Eijnden 2008). Figure 5 shows the RMSE and
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FIG. 5. RMSE and ANCR of ensemble forecasting on 100 simula-
tions, with σε = 0.2. The ensemble size is 1000 for the L96x model and
the NARMA model, and the ensemble size is 10 for the full model. The
L96x model and the full model use tuned inflation and localization (IL),
and the NARMA uses neither.

the ANCR of the forecast ensemble in the 100 simu-
lations, when σε = 0.2. A small and slowly increas-
ing RMSE, combined with a large and slowly decreas-
ing ANCR, indicate a good forecast performance. The
NARMA model shows a significant improvement over
the L96x model, and is close to the full model, which
has the smallest RMSE and the largest ANCR. With the
threshold of RMSE less than 9 and the ANCR larger than
0.8, the forecast time of the NARMA model is about two
time units (approximately 10 atmospheric days), which
is double of the L96x model’s one time unit (approxi-
mately five atmospheric days), and is slightly less than the
full model’s 2.5 time units (approximately 13 atmospheric
days). We also computed the rank histogram (Crommelin
and Vanden-Eijnden 2008) at lead time 1.6, see Figure 6.
The rank histogram of the full model is almost flat as de-
sired, NARMA has a rank histogram close to flat, but L96x
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FIG. 6. Rank histograms of the 100 simulations at lead time τ = 1.6.
An ideal rank histogram should be flat. The full model has the flattest
rank histogram, NARMA’s rank histogram is close to flat, but L96x +
IL has a U-shaped rank histogram.
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FIG. 7. Comparison of RMSE with ensemble spread (i.e. the trace
of the ensemble covariance). The ensemble spread of the full model
matches the RMSE well, and the ensemble spread of NARMA is close
to the RMSE, but there is a big mismatch between the ensemble spread
and the RMSE for L96x+IL.

+ IL has a U-shaped rank histogram. We also compared
the RMSE with ensemble spread (i.e. the trace of the en-
semble covariance) in Figure 7. The ensemble spread of
the full model matches the RMSE well, and the ensem-
ble spread of NARMA is close to the RMSE, but there is a
big mismatch between the ensemble spread and the RMSE
for L96x + IL. The results for the other values of σε are
similar (data not shown here).

In short, the NARMA model has significantly better
state estimation and prediction performance than the L96x
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FIG. 8. Mean and standard deviation of the relative error of state es-
timation in the EnKF with different ensemble sizes on 100 simulations.
All the three models use inflation and localization (IL). The mean of
the NARMA model without IL is also plotted to indicate that sampling
error decreases as ensemble size increases.

model, and its performance is close to that of the full
model. Recall that the NARMA accounts for the model er-
ror by discrete-time stochastic parametrization of the un-
resolved scales, while the L96x model accounts for the
model error by covariance inflation and localization. This
suggests that the discrete-time stochastic parametrization
is more effective in dealing with model error than covari-
ance inflation and localization.

d. Filter performance comparison: the case of small en-
semble size

Due to limited computational resources, in many appli-
cations one can afford only a small ensemble, and signif-
icant sampling error may be present. In this case, local-
ization and/or inflation are needed to account for the sam-
pling error.

In this subsection, we compare the filter performance
for several small ensemble sizes, ranging from M = 10 to
M = 100, with all the models using tuned IL with param-
eters given in Table 3. In all of them, the variance of the
observation noise is σε = 0.2.

State estimation. Figure 8 shows the means and stan-
dard deviations of the relative errors in state estimation on
100 simulations, with several small ensemble sizes. With
tuned IL, the NARMA model (black triangle) has smaller
errors than the L96x model (red circle) for all sizes. Recall
that IL account for both sampling error and model error
for the L96x model, while in the filter with the NARMA
model, they mainly account for the sampling error while
the stochastic parametrization accounts for model error.
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FIG. 9. RMSE and ANCR of ensemble forecasting on 100 simula-
tions, with σε = 0.2. All the models use ensemble size M = 10 and
tuned inflation and localization.

This shows that the parametrization treats the model er-
ror more effectively than IL and improves the filter perfor-
mance.

We also tested the NARMA model without using infla-
tion or localization (cyan triangle with dash-dot line). Its
error decreases much faster than those using inflation and
localization as ensemble size increases. In particular, it has
smaller errors than L96x with tuned IL when the ensem-
ble size is larger than 60. Also, its performance becomes
close to the NARMA with IL when the ensemble size is
100. This indicates that (i) the NARMA model has effec-
tively reduced the model error of the L96x model; (ii) the
sampling error becomes small when ensemble size reaches
M = 100 (It also verifies that the size M = 1000 used in
section c is sufficienetly large to make the sampling error
negligible).
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Forecasting. Figure 9 shows the RMSE and the ANCR
of the forecast ensemble in 100 simulations, with all
models using ensemble size M = 10 and tuned IL. The
NARMA model is a clear improvement over the L96x
model in forecasting: its RMSE increases much slower,
and its ANCR decreases much slower. But the gap be-
tween the NARMA model and the full model is slightly
larger than the gap in Figure 5, where a large ensemble size
was used. Here the forecast time of the NARMA model
is about 1.5 time units (approximately eight atmospheric
days), which is 50% more than the L96x model’s one time
unit (approximately five atmospheric days), and it is less
than the full model’s 2.5 time units (approximately 13 at-
mospheric days).

In short, in case of insufficient ensemble size, the
NARMA model has better state estimation and predic-
tion properties than the L96x model, when both use tuned
IL. Covariance inflation and localization account for both
sampling error and model error for the L96x model; they
mainly account for sampling error for the NARMA model,
which has quantified the model error by parametrization.
Hence, the discrete-time stochastic parametrization can be
combined with covariance inflation and localization to im-
prove filter performance.

5. Summary and discussion

We have examined discrete-time stochastic
parametrization as a way to account for model error
due to unresolved scales in the version of EnKF with
perturbed observations and compared it with covariance
inflation and localization algorithms.

We carried out numerical experiments on the two-layer
Lorenz 96 system, with the goal of predicting the future
evolution of the observed variables on the basis of noisy
observations of these variables. We assumed that a fore-
cast model in the filter was a truncated system in which
the unobserved variables were unresolved. The model er-
ror comes from this underresolution. We analyzed how
the two methods accounted for this error. The stochastic
parametrization method directly quantified the model error
and led to an improved forecast model, while covariance
inflation and localization corrected the ensemble covari-
ance in the analysis step in the filter. When the ensem-
ble size was sufficiently large for the sampling error to be
negligible, the improved forecast model, without any in-
flation or localization, achieved significantly better perfor-
mance in state estimation and prediction than the unmod-
ified truncated forecast model with tuned inflation and lo-
calization. When the ensemble size was small, covariance
inflation and localization were needed to account for the
sampling error, but the improved forecast model provided
further improvement in filter performance. These results

show that the discrete-time stochastic parametrization ap-
proach was more effective than the inflation and localiza-
tion approach in dealing with model error from unresolved
scales.

As a consequence of this study, we advocate the direct
approach, which works on the root of the problem: the de-
ficiency of the model. The direct approach improves the
forecast model, and therefore improves the overall qual-
ity of the forecast ensemble as well as filtering and pre-
diction performance (Harlim 2016; Chorin et al. 2016).
This is fundamentally different from the covariance infla-
tion and localization approach, which corrects the sample
covariance to improve ensemble quality, but the model de-
ficiency remains. However, the parametrization can only
account for model error, but covariance inflation and lo-
calization can account for both sampling and model er-
ror. When there are both model error and sampling error
because of small ensemble size, these two methods can
work together to achieve better performance than infla-
tion/localization used alone.

This study has been carried out in a setting where the
full model can be solved offline, and its solution used to
tune inflation and localization or to infer parameters in
stochastic parametrization. A more challenging and re-
alistic setting would be one where the full model is un-
known, and one has to use noisy observations to infer a
parametrization (Li et al. 2009; Berry and Harlim 2014;
Harlim 2016). This is the challenging topic of parame-
ter estimation for hidden Markov and non-Markov models
(Kantas et al. 2009). We leave it to future work.
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