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Abstract6

We show, using idealized models, that numerical data assimilation can be7

successful only if an effective dimension of the problem is not excessive.8

This effective dimension depends on the noise in the model and the data,9

and in physically reasonable problems it can be moderate even when the10

number of variables is huge. We then analyze several data assimilation11

algorithms, including particle filters and variational methods. We show12

that well-designed particle filters can solve most of those data assimilation13

problems that can be solved in principle, and compare the conditions under14

which variational methods can succeed to the conditions required of particle15

filters. We also discuss the limitations of our analysis.16

1 Introduction17

Many applications in science and engineering require that the predictions of18

uncertain models be updated by information from a stream of noisy data19

(see e.g. [Doucet et al., 2001, van Leeuwen, 2009, Bocquet et al., 2010]).20
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The model and data jointly define a conditional probability density func-21

tion (pdf) p(x0:n|z1:n), where the discrete variable n = 0, 1, 2, . . . can be22

thought of as discrete time, xn is a real m-dimensional vector to be esti-23

mated, called the “state”, x0:n is a shorthand for the set of vectors {x0, x1, . . . , xn},24

and where the data sets zn are a k-dimensional vectors (k ≤ m). All infor-25

mation about the state at time n is contained in this conditional pdf and a26

variety of methods are available for its study, e.g. the Kalman filter [Kalman,27

1960], the extended and ensemble Kalman filter [Evensen, 2006], particle28

filters [Doucet et al., 2001], or variational methods [Talagrand and Courtier,29

1987,Bennet et al., 1993]. Given a model and data, each of these algorithms30

will produce a result. We are interested in the conditions under which this31

result is reasonable, i.e. consistent with the real-life situation one is model-32

ing.33

We say that data assimilation is feasible in principle, if it is possible to34

calculate the mean of the conditional probability density that it defines with35

a small-to-moderate uncertainty; we discuss what we mean by “moderate”36

below after we develop the appropriate tools. If data assimilation is feasible37

in this sense, it is possible to find an estimate of the state of a system38

whose distance from an outcome of the physical experiment described by39

the dynamics is small-to-moderate, with a high probability, i.e. reliable40

conclusions can be reached based on the results of the assimilation. Our41

definition of success is in line with what is required in the physical sciences,42

where one wants to make reliable predictions given a model and data. We43

do not consider data assimilation to be successful if the posterior variance44

is reduced (e.g. when compared to the variance of the data) but remains45
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large. We consider a data assimilation algorithm, e.g. a particle filter or a46

variational method, to be successful of it can produce an accurate estimate of47

the state of the system. A data assimilation algorithm can only be successful48

if data assimilation is feasible in principle.49

Generally, we restrict the analysis to linear state space models driven50

by Gaussian noise and supplemented by a synchronous stream of data per-51

turbed by Gaussian noise, i.e. the noisy data are available at every time step52

of the model and only then. We further assume that all model parameters53

(including the covariance matrices of the noise) are known, i.e. we consider54

state estimation rather than combined state and parameter estimation. We55

study this class of problems because it can be examined in some generality56

and we can explain qualitatively its important aspects; however, we also57

discuss its limitations.58

In section 2 we derive conditions under which data assimilation is feasible59

in principle, without regard to a specific algorithm. We define the effective60

dimension of a Gaussian data assimilation problem as the Frobenius norm61

of the steady state posterior covariance, and show that data assimilation is62

feasible in the sense described above only if this effective dimension is mod-63

erate. We argue that realistic problems have a moderate effective dimension.64

In the remainder of the paper we discuss the conditions under which par-65

ticular data assimilation algorithms can succeed in solving problems (where66

success is defined as above) that are solvable in principle. In section 3 we67

briefly review particle filters. In section 4, we use the results of [Snyder, 2011]68

to show that the optimal particle filter (which in the linear synchronous case69

coincides with the implicit particle filter [Atkins et al., 2013, Chorin et al.,70
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2010,Morzfeld et al., 2012]) performs well if the problem is solvable in prin-71

ciple, provided a certain balance condition is satisfied. We conclude that72

optimal particle filters can solve many data assimilation problems even if73

the number of variables to be estimated is large. Building on the results74

in [Snyder et al., 2008, Bengtsson et al., 2008, Bickel et al., 2008], we show75

that another filter fails under conditions that are frequently met. Thus,76

how a particle filter is implemented is very important, since a poor choice of77

algorithm may lead to poor performance. In section 5 we consider particle78

smoothing and variational data assimilation and show that these methods as79

well can only be successful under conditions comparable to those we found80

in particle filtering. We discuss limitations of our analysis in section 6 and81

present conclusions in section 7.82

The effective dimension defined in the present paper is different from83

the effective dimensions introduced in [Snyder et al., 2008,Bengtsson et al.,84

2008,Bickel et al., 2008,Snyder, 2011]. The effective dimensions in [Snyder85

et al., 2008,Bengtsson et al., 2008,Bickel et al., 2008,Snyder, 2011] are de-86

fined for particular particle filters, whereas the effective dimension defined in87

the present paper is a characteristic of the model and data stream, i.e. inde-88

pendent of the data assimilation algorithm used. We show in particular that89

the effective dimension (as defined in the present paper) remains moderate90

for realistic models, even when the state dimension is large (asymptotically91

infinite), and that numerical data assimilation can be successful in these92

cases; in particular, a moderate effective dimension in our sense can imply93

moderate effective dimensions in the sense of [Snyder et al., 2008,Bengtsson94

et al., 2008,Bickel et al., 2008,Snyder, 2011] for a suitable algorithm.95
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2 The effective dimension of linear Gaussian data96

assimilation problems97

We consider autonomous, linear Gaussian state space models of the form98

xn+1 = Axn + wn (1)99

where n = 0, 1, 2, . . . is a discrete time, A is a given m×m matrix and wn
100

are independent and identically distributed (iid) Gaussian random variables101

with mean zero and given covariance matrix Q, which we write as wn ∼102

N (0, Q). The initial conditions may be random and we assume that their103

pdf is also Gaussian, i.e. x0 ∼ N (µ0,Σ0), with both µ0 and Σ0 given. We104

assume further that the data satisfy105

zn+1 = Hxn+1 + vn+1, (2)106

where H is a given k ×m matrix (k ≤ m) and the vn+1 ∼ N (0, R) are iid,107

where R is a given k× k matrix. The wn’s and vn’s are independent of each108

other and also independent of x0.109

In principle, but not necessarily in practice, the covariance matrix Pn110

of the state xn conditioned on the data z1:n can be computed recursively,111
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starting with P0 = Σ0:112

Xn = APnA
T +Q,113

Kn = XnH
T (HXnH

T +R)−1,114

Pn+1 = (Im −KnH)Xn,115

where Im is the identity matrix of order m and the m × k matrix Kn is116

often called the “Kalman gain”. This is the Kalman formalism. We as-117

sume that the pair (H,A) is d-detectable and that (A,Q) is d-stabilizable.118

Detectability and stabilizabilty can respectively be interpreted (roughly) as119

requiring that the observation operator be sufficiently rich to determine the120

dynamics and the noise be able to affect the whole dynamics (see [Lancaster121

and Rodman, 1995], pp. 90–91 for technical definitions). These assumptions122

allow unstable dynamics, as often encountered in geophysics, but also make123

it possible to perform a steady state analysis because the covariance matrix124

reaches a steady state so that125

Pn+1 = Pn = P = (I −KH)X,126

where X is the unique positive semi-definite solution of the discrete algebraic127

Riccati equation (DARE)128

X = AXAT −AXHT (HXHT +R)−1HXAT +Q,129
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and where130

K = XHT (HXHT +R)−1,131

is the “steady state” Kalman gain. Note that the steady state covariance132

matrix P is independent of the initial covariance matrix Σ0 and that the133

rate of convergence to this limit is at least linear, in many cases quadratic134

(see [Lancaster and Rodman, 1995], p. 313). This means that, after a135

relatively short time, the samples of the state given the data are normally136

distributed with mean µn and covariance matrix P (the mean µn of the137

variables is not needed here, but it can also be computed using Kalman’s138

formulas).139

The steady state covariance matrix, P = (pij) determines the posterior140

uncertainty, i.e. the uncertainty after we considered the data. If P is “large”,141

the uncertainty is large, which translates to a large spread of the samples142

in state space. We suggest to measure uncertainty with the Frobenius norm143

of ||P ||F = (
∑

ij p
2
ij)

1/2, because this norm determines the spread of the144

posterior samples in state space.145

To see this, consider the random variable y = (xn−µn)T (xn−µn), where146

xn − µn ∼ N (0, P ), i.e. consider the squared distances of the samples from147

their mean (their most likely value). Let U be an orthogonal m×m matrix148

whose columns are the eigenvectors of P . Then149

y = (xn − µn)T (xn − µn) = sT s =

m∑
j=1

s2
j ,150

where s = UT (xn − µn) ∼ N (0,Λ), and Λ = UTPU is a diagonal matrix151
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whose diagonal elements are the m eigenvalues λj of P . It is now straightfor-152

ward to compute the mean and variance of y because the sj ’s (the elements153

of s) are independent:154

E(y) =
m∑
j=1

λj , var(y) = 2
m∑
j=1

λ2
j .155

Note that y = r2, where r is the distance from the sample to the most156

likely state (the mean). Assuming that m is large, we obtain, using Taylor157

expansion of r/
√∑

λj = (y/
∑
λj)

1/2 around 1 and assuming that λj =158

O(1), that159

E(r) =

2

 m∑
j=1

λj

2

− 1

m∑
j=1

λ2
j

2

 m∑
j=1

λj

1.5 +Op



m∑
j=1

λ4
j m∑

j=1

λj

4


= Ê(r) +Op



m∑
j=1

λ4
j m∑

j=1

λj

4


,160

var(r) =

m∑
j=1

λ2
j

2
m∑
j=1

λj

+Op



m∑
j=1

λ4
j m∑

j=1

λj

3


= v̂(r) +Op



m∑
j=1

λ4
j m∑

j=1

λj

3


.161

The techniques in [Bickel et al., 2008] can be used to extend the above162

formulas for m → ∞,
∑
λ → ∞ and with λj = O(1), i.e. to the case163

for which the moments of y do not necessarily exist. We use standard164
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inequalities to show that165

√√√√ m∑
j=1

λ2
j ≤

m∑
j=1

λj ≤

√√√√m
m∑
j=1

λ2
j ,166

and, with these, obtain upper bounds for Ê and v̂:167

Ê ≤ m

 m∑
j=1

λ2
j

1/4

, v̂ ≤ 1

2

 m∑
j=1

λ2
j

1/2

.168

The Frobenius norm of a matrix is the square root of the sum of its eigenval-169

ues squared, i.e. ||P ||F =
√∑

λ2. Thus, the above upper bounds indicate170

that the Frobenius norm of P determines the mean and variance of the dis-171

tance of a sample from the most likely state, i.e. the spread of the samples172

in the state space.173

Based on the calculations above, we now investigate what a large pos-174

terior covariance, i.e. a large spread of posterior samples, means for data175

assimilation. Suppose that m is large and that λj = O(1) for j = 1, . . . ,m;176

then Ê = O(m1/2) and v̂ = O(1). This means that the samples collect on a177

shell of thickness O(1) at a distance O(m1/2) from their mean and are dis-178

tributed over a volume O(m(m+1)/2), i.e., for large m, the predictions spread179

out over a large volume at a large distance from the most likely state. By180

considering both the model (1) and the data (2), one concludes that the181

true state is likely to be found somewhere on this shell. However, since182

this shell is huge, the various states on it can correspond to very different183

physical situations. Knowing that the state is somewhere on this shell is184
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not satisfactory if one wants to compute a reliable estimate of the state; the185

uncertainties in the model and the observation error are too large.186

What we have shown is that data assimilation makes sense, according187

to our definitions, only if the Frobenius norm of the posterior steady state188

covariance matrix is moderate. We thus define the effective dimension of189

the Gaussian data assimilation problem defined by equations (1) and (2) to190

be this Frobenius norm:191

meff
.
= ||P ||F =

√∑
λ2
j .192

Data assimilation can only be successful if this effective dimension is mod-193

erate. The precise value of the effective dimension that can not be exceeded194

if one wants to reach reliable conclusions varies from one problem to the195

next and, in particular, depends on the level of accuracy required, so that196

it is very difficult to pin down an upper bound for the effective dimension197

in general. In cases where one can interpret the data assimilation problem198

defined by (1) and (2) as an approximation to an infinite dimensional prob-199

lem, e.g. in problems that arise from partial differential equations (PDE),200

our requirements imply that the effective dimension remains bounded as201

m → ∞. This is connected to well-posedness, stability and accuracy of202

infinite dimensional Bayesian inverse problems discussed in [Stuart, 2010].203

We expect that the effective dimension is moderate in practice, since204

the data assimilation problem reflects an experimental situation, and we205

wish that the numerical samples behave like experimental samples: if the206

uncertainty is large, one will observe that the outcomes of repeated experi-207
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ments exhibit a large spread; if the uncertainty is small, then the spread in208

the outcomes of experiments is also small. Since the outcomes of repeated209

experiments rarely exhibit large variations, one should expect that the sam-210

ples of numerical data assimilation all fall into a small “low-dimensional”211

ball, centered around the most likely state, i.e. the radius, E(r) ≈ Ê, is212

comparable to the thickness, var(r) ≈ v̂ (see below).213

For the reminder of this section we will investigate conditions for success-214

ful data assimilation by studying conditions on the errors in the model (1),215

represented by the covariance matrix Q, and conditions on the errors in the216

data (2), represented by the covariance matrix R, that lead to a moderate217

effective dimension.218

Finally, we point out that the effective dimension defined above is differ-219

ent from the effective dimensions defined in [Snyder et al., 2008, Bengtsson220

et al., 2008, Bickel et al., 2008, Snyder, 2011], which came up in connection221

with specific particle filters. The effective dimension defined here is de-222

fined from the posterior pdf and, thus, is independent of a data assimilation223

technique; it is a characteristic of the model (1) and data stream (2). How-224

ever, since we consider the posterior pdf of linear Gaussian data assimilation225

problems (for which the Kalman formalism gives the answer), our analysis226

is valid only for such models. We discuss the limitations of our analysis in227

more detail in section 6.228

2.1 Bounds on the effective dimension229

To discover the real-life interpretation of the effective dimension, we study its230

upper bounds in terms of the Frobenius norms of Q and R. From Khinchin’s231
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theorem (see e.g. [Chorin and Hald, 2009]) we know that the Frobenius232

norms of Q and R must be bounded as m, k →∞ or else the energies of the233

noises are infinite, which is unrealistic. We show that a moderate Frobenius234

norm of Q and R can lead to a moderate effective dimension. We start235

by a simple example, which is also useful in the study of data assimilation236

methods in later sections.237

2.1.1 Example238

Put A = H = Im and let Q = qIm, R = rIm. The Riccati equation can be239

solved analytically for this example and we find the effective dimension240

meff =
√
m

√
q2 + 4qr − q

2
.241

In a real-life problem, we would expect ||P ||F and thus meff to grow slowly,242

if at all, when the number of variables increases. In fact, we have just shown243

that meff must be moderate or else data assimilation can not be successful.244

The condition of moderate effective dimension induces a “balance con-245

dition” between the errors in the model (represented by q) and the errors246

in the data (represented by r). In this simple example, an O(1) effective247

dimension gives rise to the balance condition248

√
q2 + 4qr − q

2
≤ 1√

m
,249

where the 1 in the numerator of the right-hand side stands for a constant;250

we set this constant equal to 1 because this already captures the general251
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behavior. The constant cannot be pinned down precisely because an ac-252

ceptable level of accuracy may vary from one application to the next; the253

balance condition above, and its generalizations below, do however provide254

guidance as to what can be done.255

Figure 1 illustrates the condition for successful data assimilation and256

shows a plot of the function that is defined by the left-hand-side of the257

above inequality as well as three level sets, corresponding to m = 5, 10, 100258

respectively; for a given dimension m, all values of q and r below the corre-259

sponding level set lead to an O(1) effective dimension, i.e. to a scenario in260

which data assimilation is feasible in principle.261
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Figure 1: Conditions for successful sequential data assimilation.

The condition implies that, for fixed m, the smaller the errors in the262

data (represented by r), the larger can be the uncertainty in the model263

(represented by q) and vice versa. Moreover, note that for very small q, the264
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boundaries for successful data assimilation are (almost) vertical lines. The265

reason is that if the model is very good, neither accurate nor inaccurate data266

can improve it, i.e. data assimilation is not necessary. If the model is poor,267

only nearly perfect data can help. We will encounter this balance condition268

(in more complicated forms) again in the general case in the next section269

and also in the analysis of particle filters and variational data assimilation.270

Finally, note that the Frobenius norms ||Q||F = q
√
m and ||R||F = r

√
m271

increase with the number of dimensions unless q or r or both decrease with272

m as shown in figure 1. We will argue in section 2.2 that in realistic cases,273

the Frobenius norms of Q and R are moderate even if m or k are large274

(asymptotically infinite). We also expect, but cannot prove in general, that275

a balance condition as in figure 1 is valid in the general case (arbitrary276

A,H,Q,R), with q and r replaced by the Frobenius norms of Q and R.277

2.1.2 The general case278

In the general case, the condition for successful data assimilation that must279

be satisfied by uncertainties in the model (||Q||F ) and data (||R||F ) is more280

complicated because the effective dimension is the Frobenius norm of the281

solution of a Riccati equation which in general does not admit a closed form282

solution.283

However, if the covariance matrices Q and R have moderate Frobenius284

norms, then the effective dimension of the problem can be moderate even285

if m and k are large and, thus, data assimilation can be successful. To see286

this, let X and P be the solution of the DARE respectively the steady state287
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covariance matrix of a given (A,Q,H,R) data assimilation problem and let288

Q̃ ≤ Q, i.e. Q̃−Q is symmetric positive semi-definite (SPD). If R̃ ≤ R, then,289

by the comparison theorem (Theorem 13.3.1) in [Lancaster and Rodman,290

1995], X̃ ≤ X, where X̃ is the solution of the DARE associated with the291

(A, Q̃,H, R̃) data assimilation problem. From the Kalman formulas we know292

that293

P = X −XHT (HXHT +R)−1HX,294

which implies that P ≤ X. Moreover, for two SPD matrices C and D,295

C ≤ D implies ||C||F ≤ ||D||F . Thus, the smaller the Frobenius norm of Q296

and R, the smaller is the upper bound ||X||F on the effective dimension.297

However, the requirement that these Frobenius norms be moderate is not298

sufficient to ensure that the effective dimension of the problem is moderate;299

in particular, it is evident that the properties of A must play a role; for300

example, if the L2 norm of A exceeds unity, the model (1) is unstable and301

successful data assimilation is unlikely unless the data are sufficiently rich to302

compensate for the instabilities (see also [Stuart, 2010]). We have assumed303

such difficulties away by assuming the pair (H,A) to be d-detectable and304

(A,Q) to be d-stabilizable. However, unstable dynamics should be treated305

carefully and in specific cases (for nonlinear problems) as in [Brett et al.,306

2013].307

While the model, or A, is implicitly accounted for in X, the solution308

of the DARE, one can construct sharper bounds on the effective dimension309

by accounting for the model (1) and data stream (2) more explicitly. To310

that extent, we construct matrix bounds on P , from matrix bounds for the311
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solution of the DARE [Kwon et al., 1992]. Let X ≤ Xu, and Xl ≤ X, be312

upper and lower matrix bounds for the solution of the DARE, for example,313

we can choose the lower bound in [Komaroff, 1992]314

Q ≤ Xl = A(Q−1 +HTR−1H)−1AT +Q ≤ X,315

and the upper bound in [Kwon et al., 1992]316

X ≤ Xu = A(X−1
∗ +HTR−1H)−1AT +Q,317

whereX∗ = A(η−1+HTR−1H)−1AT+Q, η = f(−λ1(A)−λn(HTR−1H)λ1(Q)+318

1, 2λn(HTR−1H), 2λ1(Q))), f(a, b, c) = (
√
a2 + bc − a)/2) and λ1(C) and319

λn(C) are the largest respectively smallest eigenvalue of the matrix C. Then320

an upper matrix bound for the steady state covariance matrix is321

P ≤ Xu −XlH
T (HXuH

T +R)−1HXl.322

The Frobenius norm of this upper matrix bound is an upper bound for the323

effective dimension.324

2.2 The real-world interpretation of effective dimension325

We have shown that there is little hope for reaching reliable conclusions326

unless the effective dimension of the data assimilation problem defined by327

equations (1) and (2) is moderate. We now give more detail about the328

physical interpretation of this result.329
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Suppose the variables x one is estimating are point values of, for example,330

the velocity of a flow field (as they often are in applications). The Frobenius331

norm of the covariance matrix Q is proportional to the specific kinetic energy332

of the noise field that is perturbing an underlying flow. This energy should333

be a small fraction of the energy of the flow, or else there is not enough334

information in the model (1) to examine the flow one is interested in. We335

can thus assume that the Frobenius norm of Q is moderate. By the same336

arguments, we can assume that the Frobenius norm of R is moderate, or else337

the noise in the data equation overpowers the actual measurements. Since338

moderate Frobenius norms of Q and R often imply a moderate Frobenius339

norm of P , we typically are dealing with a data assimilation problem with340

a moderate effective dimension, even if m and k are arbitrarily large.341

Point values of a flow field usually come from a discretization of a stochas-342

tic differential equation. As one refines this discretization, one can expect the343

correlation between the errors at neighboring grid-points to increase. These344

errors are represented by the covariance matrix Q and from Khinchin’s theo-345

rem (see e.g. [Chorin and Hald, 2009]) we know that a random field with suf-346

ficiently correlated components has a finite energy density (and vice versa).347

This implies for the finite dimensional case that the Frobenius norm of Q348

does not grow without bound as we increase m.349

Another and perhaps even more dramatic instance of this situation is350

one where the random process we are interested in is smooth so that the351

spectrum of its covariance matrix decays quickly [Adler, 1981, Rasmussen352

and Williams, 2006]. For practical purposes one may then consider m−d of353

the eigenvalues to be equal to zero (rather than just very small). This is an354
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instance of “partial noise” [Morzfeld and Chorin, 2012], i.e. the state space355

splits into two disjoint subspaces, one of dimension d, which contains state356

variables, u, that are directly driven by Gaussian noise, and one of dimension357

m−d, which contains the remaining variables, v, that are (linear) functions358

of the random variables u. Thus, the steady state covariance matrix is of359

size d× d and the effective dimension is independent of the state dimension360

and moderate even if m is large. Smoothness of the random perturbations361

may be particularly important in data assimilation for PDE (e.g. in fluid362

mechanics), since the PDE itself can require regularity conditions [Stuart,363

2010].364

Note that the key to the moderate effective dimension in all of the365

above cases is the correlation among the errors and indeed, the data as-366

similation problems derived by various practitioners and theorists show a367

strong correlation of the errors (see e.g. [van Leeuwen, 2003, Ganis et al.,368

2008,Zhang and Lu, 2004,Rasmussen and Williams, 2006,Adler, 1981,Miller369

and Cane, 1989,Miller et al., 1995,Richman et al., 2005,Morzfeld and Chorin,370

2012,Bennet and Budgell, 1987]). The correlations are also key to the well-371

boundedness of infinite dimensional problems [Stuart, 2010] where the spec-372

tra of the covariances (which are compact operators in this case) decay; a373

well correlated noise model was obtained from an infinite dimensional prob-374

lem in [Bennet and Budgell, 1987].375

The geometrical interpretation of this situation is as follows: because376

of correlations in the noise, the probability mass is concentrated on a d-377

dimensional manifold, regardless of the dimension m ≥ d of the state space.378

In addition one must be careful that the noise in the observations not be379
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too strong. Otherwise the data can push the probability mass away from380

the d-dimensional manifold (i.e. the data increase uncertainty, instead of381

decreasing it). This assumption is reasonable, because typically the data382

contain information and not just noise. Similar observations were reported383

for infinite dimensional, strong constraint problems for low-observation noise384

(covariance of the error in the data goes to 0), see Theorem 2.5 in [Stuart,385

2010].386

Next, suppose that the vector x in (1) and (2) represents the components387

of an abstract model with the several components representing various indi-388

cators, for example of economic activity (so that the concept of energy is not389

well-defined). It is unreasonable to assume that each source of error affects390

only one component of x. As an example of what happens when each source391

of error affects many components, consider a model where Gaussian sources392

of error are distributed with spherical symmetry in the space of the x’s and393

have a magnitude independent of the dimension m. In an m dimensional394

space, the components of the unit vector of length 1 have magnitude of order395

O(m−0.5), so that the variance of each component must decrease like m−1.396

Thus, the covariance matrices in (1) and (2) are proportional to m−1Im and397

the effective dimension (for A = H = Im) is ||P ||F = (
√

5− 1)/2m, which is398

small when m is large. This is a plausible outcome, because the more data399

and indicators are considered, the less uncertainty there should be in the400

outcome (because the new indicators provide additional information).401
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3 Review of particle filters402

In importance sampling one generates samples from a hard-to-sample pdf p403

(the “target” pdf) by producing weighted samples from an easy-to-sample404

pdf, π, called the “importance function” (see e.g. [Kalos and Whitlock, 1986,405

Chorin and Hald, 2009]). Specifically, if the random variable one is interested406

in is x ∼ p, one generates samples Xj ∼ π, j = 1, . . . ,M, (we use capital407

letters for realizations of random variables) and weighs each by the weight408

Wj ∝
p(Xj)

π(Xj)
.409

The weighted samples {Xj ,Wj} (called particles in this context) form an410

empirical estimate of the target pdf p, i.e. for a smooth function u, the sum411

EM (u) =
M∑
j=0

u(Xj)Ŵj ,412

where Ŵj = Wj/
∑M

j=0Wj , converges almost surely to the expected value413

of u with respect to the pdf p as M → ∞, provided that the support of π414

includes the support of p.415

Particle filters apply these ideas to the recursive formulation of the con-416

ditional pdf:417

p(x0:n+1|z1:n+1) = p(x0:n|z1:n)
p(xn+1|xn)p(zn+1|xn+1)

p(zn+1|z1:n)
.418

20



This requires that the importance function factorize in the form:419

π(x0:n+1|z0:n+1) = π0(x0)

n+1∏
k=1

πk(xk|x0:k−1, z1:k). (3)420

where the πk are updates for the importance function. The factorization of421

the importance function leads to the recursion422

Wn+1
j ∝ Ŵn

j

p(Xn+1
j |Xn

j )p(Zn+1|Xn+1
j )

πn+1(Xn+1
j |X0:n

j , Z0:k)
, (4)423

for the weights of each of the particles, which are then scaled so that their424

sum equals one. Using “resampling” techniques, i.e. replacing particles425

with small weights with ones with large weights (see e.g. [Doucet et al.,426

2001, Gordon et al., 1993] for resampling algorithms), makes it possible to427

set Ŵn
j = 1/M when one computes Wn+1

j . Once one has set Ŵn
j = 1/M428

but before sampling a new state at time n + 1, each of the weights can be429

viewed as a function of the random variable xn+1
j and is therefore a random430

variable.431

The weights determine the efficiency of particle filters. Suppose that,432

before the normalization and resampling step, one weight is much larger433

than all others; then upon rescaling of the weights such that their sum434

equals one, one finds that the largest normalized weight is near 1 and all435

others are near 0. In this case the empirical estimate of the conditional436

pdf by the particles is very poor (it is a single, often unlikely point) and437

the particle filter is said to have collapsed. The collapse of particle filters438

can be studied via the variance of the logarithm of the weights, and it was439
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argued rigorously in [Snyder et al., 2008,Bengtsson et al., 2008,Bickel et al.,440

2008, Snyder, 2011] that a large variance of the logarithm of the weights441

leads to the collapse of particle filters. The choice of importance function π442

is critical for avoiding the collapse and many different importance functions443

have been considered in the literature (see e.g. [Weir et al., 2013, Weare,444

2009, Vanden-Eijnden and Weare, 2012, van Leeuwen, 2010, Ades and van445

Leeuwen, 2013, Chorin and Tu, 2009, Chorin et al., 2010, Morzfeld et al.,446

2012]). Here we we follow [Snyder et al., 2008,Bengtsson et al., 2008,Bickel447

et al., 2008,Snyder, 2011] and discuss two particle filters in detail.448

3.1 The SIR filter449

A natural choice for the importance function is to generate samples with450

the model (1), i.e. to choose πn+1 = p(xn+1|xn). When a resampling step is451

added, the resulting filter is often called a sequential importance sampling452

with resampling (SIR) filter [Gordon et al., 1993] and its weights are453

Wn+1
j ∝ p(Zn+1|Xn+1

j ).454

It is known that the SIR filter collapses if the probability measure induced455

by the importance function πn+1 = p(xn+1|xn), and the probability measure456

induced by the target pdf, p(yn+1|xn+1)p(xn+1|xn), have supports such that457

an event that has significant probability in one of them has a very small458

probability in the other. This can happen even in one dimensional problems,459

however the situation becomes more dramatic as the dimension m increases.460

A rigorous analysis of the asymptotic behavior of weights of the SIR filter461
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(as the number of particles and the dimension go to infinity) is given in462

[Snyder et al., 2008, Bengtsson et al., 2008, Bickel et al., 2008] and it is463

shown that the number of particles required to avoid the collapse of the SIR464

filter grows exponentially with the variance of the observation log likelihood465

(the logarithm of the weights).466

3.2 The optimal particle filter467

One can avoid the collapse of particle filters in low-dimensional problems468

by choosing the importance function wisely. If one chooses an importance469

function π so that the weights in (4) are close to uniform, then all particles470

contribute equally to the empirical estimate they define. In [Doucet et al.,471

2000,Zaritskii and Shimelevich, 1975,Liu and Chen, 1995,Snyder, 2011] the472

importance function πn+1(xn+1|x0:n, z0:n+1) = p(xn+1|xn, zn+1), is discussed473

and it is shown that this importance function is“optimal” in the sense that474

it minimizes the variance of the weights given the data and Xn
j . For that475

reason, a filter that uses this importance function is called “optimal particle476

filter” and the optimal weights are477

Wn+1
j ∝ p(Zn+1|Xn

j ).478

For the class of models and data we consider, the optimal particle filter is479

identical to the implicit particle filter [Atkins et al., 2013, Morzfeld et al.,480

2012, Chorin et al., 2010]. The asymptotic behavior of the weights of the481

optimal particle filter was studied in [Snyder, 2011] and it was found that482

the optimal filter collapses if the variance of the logarithm of its weights is483
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large. A connection to the collapse of the implicit particle filter (for linear484

Gaussian models) was made in [Ades and van Leeuwen, 2013].485

4 The collapse and non-collapse of particle filters486

The conditions for the collapse have been reported in [Snyder et al., 2008,487

Bengtsson et al., 2008,Bickel et al., 2008] for SIR and in [Snyder, 2011] for488

the optimal particle filter; here we connect these to our analysis of effective489

dimension.490

4.1 The case of the optimal particle filter491

It was shown in [Snyder, 2011], that the optimal particle filter collapses if492

the Frobenius norm of the covariance matrix of
(
HQHT +R

)−0.5
HAxn−1 is493

large (asymptotically infinite as k →∞). However if this Frobenius norm is494

moderate, then the variance of the logarithm of the weights is also moderate495

so that the optimal particle filter works just fine (i.e. it does not collapse)496

even if k is large. We now investigate the role the effective dimension of497

section 2 plays for the collapse of the optimal particle filter.498

Following [Snyder, 2011] and assuming that the conditional pdf has499

reached steady state, i.e. that the covariance of xn−1 is P , the steady state500

solution of the Riccati equation, one finds that the Frobenius norm of the501

symmetric matrix502

Σ = HAPATHT
(
HQHT +R

)−1
, (5)503

24



governs the collapse of the optimal particle filter. If the Frobenius norm of Σ504

is moderate then the optimal particle filter will work, even for large m and k.505

A condition for successful data assimilation with the optimal particle filter506

is thus that the Frobenius norm of Σ is moderate. This condition induces507

a balance condition between the errors in the model and in the data, which508

must be satisfied or else the optimal particle filter will fail; the situation is509

analogous to what we observed in section 2.510

To understand the balance condition better, we consider again the simple511

example of section 2, i.e. we set H = A = Im and Q = qIm, R = rIm. We512

already computed P in section 2 and find from (5) that513

||Σ||F =
√
m

√
q2 + 4qr − q
2(q + r)

.514

so that the balance condition becomes515

√
q2 + 4qr − q
2(q + r)

≤ 1√
m
,516

where the 1 in the numerator again stands for a constant O(1), which we set517

equal to 1 because this already captures the general behavior. Note that, for518

m fixed, the left-hand-side depends only on the ratio of the covariances of519

the noise in the model and in the data, so that the level sets are rays. In the520

center panel of figure 2, we superpose these rays, for which optimal particle521

filtering can be successful, with the (q, r)-region in which data assimilation522

is feasible in principle (as computed in section 2). The left panel of the523

figure shows what is in principle possible, for comparison.524
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Figure 2: Conditions for successful sequential data assimilation (left panel),
and for successful particle filtering; center panel: optimal/implicit particle
filter; right panel: SIR filter. The broken ellipse in the right panel locates
the area where the SIR filter works.

We find that the optimal particle filter can successfully solve most of525

the data assimilation problems that are feasible to solve in principle (see526

section 2). The exception are problems for which q ≈ r, i.e. the noise in the527

model and data are equally strong.528

Another way to see this is to set ε = q/r so that the balance condition529

for successful optimal particle filtering becomes530

√
ε2 + 4ε− ε
2(1 + ε)

≤ 1√
m
,531

which we solve for m and then plot the maximum dimension m as a function532

of the ratio of the noise in the model and the noise in the data; all values533

smaller than this maximum dimension are shown in figure 3 as the light blue534

area. We conclude that the optimal particle filter works for high-dimensional535

data assimilation problems if ε is either small or large. The case of large ε is536

the case typically encountered in practice. The reasons are as follows: if ε537
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is small, then the model is very accurate. In this case, neither accurate nor538

inaccurate data can improve the model predictions (this case corresponds539

to the vertical line in figure 2), i.e. data assimilation is unnecessary since540

one can simply trust the predictions of the model (1). If ε is large, then the541

uncertainty in the data is much less than the uncertainty in the model, i.e.542

we can learn a lot from the data. This is the interesting case and the optimal543

particle filter (or the implicit particle filter) can be expected to work in such544

scenarios. However, problems occur when ε ≈ 1. We expect this case to545

occur infrequently, because typically the data are more accurate than the546

model.547

It is however important to realize that the collapse of the optimal par-548

ticle filter for ε ≈ 1 does not imply that Monte Carlo sampling in general549
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is not applicable in this case. Particle filtering induces variance into the550

weights because of its recursive problem formulation and this variance can551

be reduced by particle smoothing. The reason is as follows: the variance of552

the weights of the optimal particle filter depends only on the variance of the553

particles’ positions at time n (see section 4.1), i.e. each particle is updated554

to time n + 1 such that no additional variance is introduced (this is why555

this filter is called optimal); however the particles at time n may be unlikely556

in view of the data at n + 1 (due to accumulation of errors up until this557

point). In this case, one can go back and correct the past, i.e. use a particle558

smoother (see also section 5). However, the number of steps one needs to go559

back in time for successful smoothing is problem dependent and, thus, we560

cannot provide a full analysis here (given that we work in a restrictive linear561

setting it seems more realistic to do this analysis on a case by case basis).562

In particular, it was indicated in two independent papers [Vanden-Eijnden563

and Weare, 2012, Weir et al., 2013] that smoothing a few steps backwards564

can help with making Monte Carlo sampling applicable in situations where565

particle filters fail or perform poorly. In [Vanden-Eijnden and Weare, 2012],566

the particle smoothing for the “low-noise regime” (which is an instance of567

the case where ε ≈ 1) is considered in connection with an application in568

oceanography. In [Weir et al., 2013], particle smoothing was found to give569

superior results than particle filtering for combined parameter and state esti-570

mation, again in connection with an application in oceanography. However571

the approximations for (optimal) particle smoothers become difficult and572

computationally expensive as the problems get nonlinear.573

In the general case (arbitrary A,H,Q,R), we can simplify the balance574
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condition for successful particle filtering by using the upper bound for the575

Frobenius norm of Σ :576

||Σ||F ≤ ||A||2F ||H||2F ||P ||F ||
(
HQHT +R

)−1 ||F .577

If we require that this upper bound is less than
√
m, then we find, using the578

upper bound579

√
m = ||I||F ≤ ||

(
HQHT +R

)
||F ||

(
HQHT +R

)−1 ||F ,580

that581

||A||2F ||H||2F ||P ||F ≤ ||H||2F ||Q||F + ||R||F ,582

is a sufficient condition that the Frobenius norm of Σ is moderate. As in583

section 2, we find that the balance condition in terms of ||R||F and ||Q||F ,584

is simple in simple cases, but delicate in general.585

4.2 The case of the SIR filter586

The collapse of the SIR filter has been studied in [Snyder et al., 2008,Bengts-587

son et al., 2008, Bickel et al., 2008], and it was shown that, for a properly588

normalized model and data equation, this collapse is governed by the Frobe-589

nius norm of the covariance of Hxn; undoing the scaling, and noting that590

xn−1 has covariance P (the steady state solution of the Riccati equation),591

we find that the Frobenius norm of592

Σ = H
(
Q+APAT

)
HTR−1.593
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governs the collapse of SIR filters. If ||Σ||F is moderate, the SIR filter can594

work even if m or k are large. This condition induces a balance condition595

for the covariance matrices of the noises which must be satisfied or else the596

SIR filter fails. For the simple example considered earlier (A = H = Im,597

Q = qIm, R = rIm), this condition becomes598

√
q2 + 4qr + q

2r
≤ 1√

m
.599

For m = 100, the (q, r)-region for which data assimilation with an SIR filter600

can be successful is plotted in the right panel of figure 2. We observe that601

this region is very small compared to the region for which data assimilation602

is feasible with an optimal particle filter.603

We can also set ε = q/r and obtain604

√
ε2 + 4ε+ ε

2
≤ 1√

m
,605

which we solve for m so that we can plot the maximum dimension for which606

SIR particle filtering can be successful as a function of the covariance ra-607

tio ε (see figure 3). Again, we observe that the SIR particle can only be608

useful in a limited class of problems. In particular, we find that the SIR609

particle filter works in high-dimensional problems only if the model is very610

accurate (compared to the data). However, we argued before that this case611

is somewhat unrealistic, since we expect that the errors in the model be612

typically larger than the errors in the data (or else the data are not very613

useful, or particle filtering unnecessary because the model is very good). In614
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these realistic scenarios, the SIR particle filter collapses and we conclude615

that, as the dimension m increases, it becomes more and more important616

to use the optimal importance function or a good approximation of it (see617

e.g. [Morzfeld et al., 2012, Weir et al., 2013, Weare, 2009, Vanden-Eijnden618

and Weare, 2012] for approximations of the optimal filter).619

In the general case, we can use an upper bound, e.g.620

||Σ||F ≤ ||H||2F ||R−1||F
(
||Q||F + ||A||2F ||P ||

)
,621

and if we require that this bound is less than
√
m, we obtain the simplified622

balance condition623

||H||2F
(
||Q||F + ||A||2F ||P ||

)
≤ ||R||F .624

The above condition implies that the Frobenius norm of the covariance ma-625

trix of the model noise, Q, must be much smaller than the Frobenius norm626

of the covariance matrix of the errors in the data, which is unrealistic.627

4.3 Discussion628

We wish to point out differences and similarities of our work and the asymp-629

totic studies in [Snyder et al., 2008, Bengtsson et al., 2008, Bickel et al.,630

2008, Snyder, 2011]. Clearly, the results of [Snyder et al., 2008, Bengtsson631

et al., 2008,Bickel et al., 2008,Snyder, 2011] are used in our analysis of the632

optimal particle filter (section 4.1) and the SIR filter (section 4.2). Moreover,633

our analysis confirms Snyder’s findings in [Snyder, 2011], that the optimal634
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particle filter is more robust in applications with large m and k because it635

“dramatically reduces the required sample size” (by lowering the exponent636

in the relation between the number of particles and the state dimension).637

In [Snyder et al., 2008, Bengtsson et al., 2008, Bickel et al., 2008, Snyder,638

2011], it was shown that the number of particles required grows exponen-639

tially with the variance of the logarithm of the weights; the variance of the640

logarithm of the weights is governed by the Forbenius norms of covariance641

matrices (which are different for SIR and the optimal particle filter). Our642

main contribution is to study the connection of these Frobenius norms with643

the effective dimension of section 2: if the effective dimension is moderate,644

then these Frobenius norms can be small even if m or k are large. Thus, one645

can find conditions under which the SIR and optimal particle filters work.646

We also explain the physical interpretation of our results and conclude that647

the optimal/implicit particle filter can work for many realistic and large648

dimensional problems.649

5 Particle smoothing and variational data assimi-650

lation651

We now consider the role of the effective dimension in particle smoothing652

and variational data assimilation. The idea here is to replace the step-by-653

step construction of the conditional pdf in a particle filter (or Kalman filter)654

by direct sampling of the full pdf p(x0:n|z1:n), i.e. all available data are655

assimilated in one sweep. Particle smoothers apply importance sampling to656

obtain weighted samples from this pdf, and in variational data assimilation657
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one estimates the state of the system by the mode of this pdf.658

It is clear that either method can only be successful if the Frobenius659

norm of the covariance matrix of the variables conditioned on the data is660

moderate (even if m or k are large), or else the samples of numerical or661

physical experiments collect on a thin shell far from the most likely state662

(to obtain this result, one has to repeat the steps in section 2). We now663

determine the conditions under which this Frobenius norm is moderate.664

As is customary in data assimilation, we distinguish between the “strong665

constraint” and “weak constraint” problem.666

5.1 The strong constraint problem667

In the strong constraint problem one considers a “perfect model”, i.e. the668

model errors are neglected and we set Q = 0 (see e.g. [Talagrand and669

Courtier, 1987]). Since the initial conditions determine the state trajec-670

tory, the goal is to obtain initial conditions that are compatible with the671

data, i.e. we are interested in the pdf672

p(x0|z1:n) ∝ exp

(
−1

2

(
x0 − µ0

)T
Σ−1

0

(
x0 − µ0

))
673

× exp

−1

2

n∑
j=1

(
zj −HAjx0

)T
R−1

(
zj −HAjx0

) .674

675

Straightforward calculation shows that this pdf is Gaussian (under our as-676

sumptions) and its covariance matrix is677

Σ−1 = Σ−1
0 +

n∑
j=1

(Aj)THTR−1HAj .678
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As explained above, successful data assimilation for the Gaussian model679

requires that the Frobenius norm of Σ is moderate so that the samples680

collect on a small and low-dimensional ball, close to the most likely state.681

The condition for successful data assimilation is a moderate ||Σ||F , which in682

turn induces a condition between the errors in the prior (represented by Σ0)683

and the data (represented by R), which can be satisfied even if m and k are684

large. The situation is analogous to the balance conditions we encountered685

before in sequential data assimilation.686

We illustrate the balance condition for the strong constraint problem687

by considering a version of the simple example we used earlier, i.e. we set688

A = H = Im, Q = 0, R = rIm, and, in addition, n = 1, Σ0 = σ0Im. In this689

case, we can compute Σ and its Frobenius norm:690

||Σ||F =
√
m

σ0r

σ0 + r
.691

Figure 4 shows the values of r and σ0 which lead to an O(1) Frobenius norm692

of Σ. Three level sets indicate the state dimensions m = 10, 100, 1000; for a693

given state dimension, the values of r and σ0 below the corresponding curve694

lead to ||Σ||F ≈ O(1). We observe that, for a fixed m, a larger error in the695

prior knowledge (corresponding to larger values of σ0) can be tolerated if696

the error in the data is very small (corresponding to small values of r) and697

vice versa. Similar observations were made in [Haben et al., 2011b, Haben698

et al., 2011a] in connection with the condition number in 3D-Var. Moreover,699

our analysis confirms what we know from the infinite dimensional problem700

[Stuart, 2010]: as the error in the observation (r) goes to zero, the prior (σ0)701
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Figure 4: Conditions for successful data assimilation (strong constraint).

plays no role; however its role is very important even for small observation702

noise (r).703

Variational data assimilation (strong 4D-Var) represents the conditional704

pdf by its mode, i.e. by a single point in the state space. The smaller is705

the ball on which the samples collect (i.e. the smaller the Frobenius norm706

of Σ), the more applicable is strong 4D-Var. Particle smoothers on the707

other hand construct an empirical estimate of the pdf via sampling. Under708

our assumptions, we can construct an optimal particle smoother (minimum709

variance in the weights) by directly sampling the Gaussian posterior pdf710

(the weights of the particle smoother have zero, thus minimum, variance).711

We conclude that under realistic conditions (moderate ||Σ||F ) the optimal712

particle smoother can be expected to perform well, even if m or k are large,713

because it can efficiently represent the pdf one is interested in.714

35



The situation is different for other particle smoothers. Consider, for715

example, the SIR-like particle smoother that uses p(x0) as its importance716

function. This filter produces weights whose negative logarithm is given by717

φ =
1

2

n∑
j=1

(
Zj −HAjx0

)T
R−1

(
Zj −HAjx0

)
.718

For n = 1, the variance of these weights depends on the Frobenius norm of719

the matrix HAΣ0A
THTR−1, which has the upper bound720

||HAΣ0A
THTR−1|| ≤ ||H||2F ||A||2F ||Σ0||F ||R−1||.721

If we require that this upper bound is less than
√
m then we obtain (using722

√
m ≤ ||A||F ||A−1||F ) the condition723

||H||2F ||A||2F ||Σ0||F ≤ ||R||,724

which implies that the errors before we collect the data must be smaller725

than the errors in the data, which is unrealistic. In particular, for the simple726

example considered above we find that σ0 ≤ r/
√
m. We conclude that, as727

in particle filtering, particle smoothing is possible under realistic conditions728

only if the importance function is chosen carefully.729

Note that the results we obtained here are different than those we would730

obtain if would simply put Q = 0 in the Kalman filter formulas of section 2.731

It is easy to show that forQ = 0 the steady state covariance matrix converges732

to the zero matrix, provided the dynamics are stable. What this means is733

that, with enough data, one can wait for steady state, and then accurately734
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estimate the state at large n. What we have done in this section is to735

consider the consequences of having access to only a finite data set, i.e.736

making predictions before steady state is reached.737

Finally, note that, in contrast to the sequential problem, the minimum738

variance of the weights of the smoothing problem is zero, whereas particle739

filters always produce non-zero variance weights. This variance is induced by740

the factorization of the importance function π, and since this factorization741

is not required in particle smoothing, this source of variance can disappear742

(or be reduced) by clever choice of importance functions. As indicated in743

section 4.1, the reason for the reduction in variance of the weights is that744

the data at time n may render the data at time n−1 unlikely; the smoother745

can make use of this information while the filter can not, since it is “blind”746

towards the future. However, as the data sets get larger (and one eventually747

runs out of memory), one will have to assimilate the data in more than one748

sweep, thus inducing additional variance. Ultimately, smoothing as many749

data sets at a time as feasible can not be a (complete) solution to the data750

assimilation problem.751

5.2 The weak constraint problem752

In the weak constraint problem (see e.g. [Bennet et al., 1993]), one is in-753

terested in estimating the full state trajectory given the data, i.e. in the754
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pdf755

p(x0:n|z1:n) ∝ exp

(
−1

2

(
x0 − µ0

)T
Σ−1

0

(
x0 − µ0

))
756

× exp

(
−1

2

n∑
i=1

(
xi −Axi−1

)T
Q−1

(
xi −Axi−1

))
757

× exp

−1

2

n∑
j=1

(
zj −Hxj

)T
R−1

(
zj −Hxj

) .758

759

An easy calculation reveals that this pdf is Gaussian and its covariance760

matrix is761

Σ−1 =



Σ−1
0 + ATQ−1A −ATQ−1 · · · 0

−Q−1A Q−1 + ATQ−1A + HTR−1H −ATQ−1

0
. . .

. . .
. . .

... −ATQ−1

0 · · · −Q−1A Q−1 + HTR−1H


.762

For the same arguments as before, successful data assimilation requires that763

the Frobenius norm of Σ is moderate. This condition implies (again) a del-764

icate balance condition between the errors in the prior knowledge (||Σ0||F ),765

the errors in the model (1) (||Q||F ) and the errors in the data (2) (||R||F ).766

If this condition is satisfied, data assimilation is possible even if m or k are767

large.768

As in the strong constraint problem, variational data assimilation (weak769

4D-Var) represents the conditional pdf by its mode (a single point) and this770

approximation is the more applicable, the smaller the Frobenius norm of771

Σ is. An optimal particle smoother can be constructed for this problem772

by sampling directly (zero variance weights) the Gaussian conditional pdf.773
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For the same reasons as in the previous section, we can expect an optimal774

particle smoother to perform well under realistic conditions, but also can775

expect difficulties if the choice of importance function is poor.776

6 Limitations of the analysis777

We wish to point out limitations of the analysis above. To find the condi-778

tions for successful data assimilation, we study the conditional pdf and we779

rely on the Kalman formalism to compute it. Since the Kalman formalism780

is only applicable to linear Gaussian problems, our results are at best in-781

dicative of the general nonlinear/non-Gaussian case. However, we believe782

that the general idea that the probability mass must concentrate on a low-783

dimensional manifold holds in the nonlinear case as well. Since Khinchin’s784

theorem is independent of our linearity assumption, and since we expect785

that correlations amongst the errors also occur in nonlinear models, one786

can speculate that the probability mass does collect on a low-dimensional787

manifold (under realistic assumptions on the noise). However finding (or788

describing) this manifold in general becomes difficult and is perhaps best789

done on a case-by-case basis, so that special features of the model at hand790

can be exploited.791

We have further assumed that all model parameters, including the co-792

variances of the errors in the model and data equations, are known. If these793

must be estimated simultaneously (combined parameter and state estima-794

tion), then the situation becomes far more difficult, even in the case of a795

linear model equation (1) and data stream (2). It seems reasonable that796
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estimating parameters using data at several consecutive time points (as is797

done implicitly in some versions of variational data assimilation or particle798

smoothing) would help with the parameter estimation problem and perhaps799

even with model specification.800

Concerning particle filters, we have examined in detail only two choices of801

importance function, the one in SIR, where the samples are chosen indepen-802

dently of the data, and, at the other extreme, one where the choice of samples803

depends strongly on the data. There is a large literature on importance func-804

tions, see [Weir et al., 2013,Doucet et al., 2000,Weare, 2009,Vanden-Eijnden805

and Weare, 2012, van Leeuwen, 2010, Ades and van Leeuwen, 2013, Chorin806

and Tu, 2009, Morzfeld et al., 2012, Chorin et al., 2010]; it is quite possible807

that other choices can outperform the optimal/implicit particle filter even in808

the present linear synchronous case once computational costs are taken into809

account. In nonlinear problems the optimal particle filter is hard to imple-810

ment and the implicit particle filter is suboptimal, so further analysis may811

be needed to see what is optimal in each particular case (see also [Weare,812

2009, Vanden-Eijnden and Weare, 2012] for approximations of the optimal813

filter).814

More broadly, the analysis of particle filters in the present paper is not815

robust as assumptions change. For example, if the model noise is multiplica-816

tive (i.e. the covariance matrices are state dependent), then our analysis does817

not hold, not even for the linear case. Moreover, the optimal particle filter818

becomes very difficult to implement, whereas the SIR filter remains easy to819

use. Similarly, if model parameters (the elements of A or the covariances Q820

and R) are not known, simultaneous state and parameter estimation using821
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an optimal particle filter becomes difficult, but SIR, again, remains easy to822

use. While the filters may not collapse in these cases, they may give a poor823

prediction. The existence of such important departures is confirmed by the824

fact that the ensemble Kalman filter in the “perturbed observations” im-825

plementation [Evensen, 2006] and the square root filter [Tippet et al., 2003]826

differ substantially in their performance if the effects of nonlinearity are se-827

vere [Lei et al., 2010]. However, our analysis indicates that, if (1) and (2)828

hold, the ensemble Kalman filter, the Kalman filter and the optimal particle829

filter are equivalent in the non-collapse region of the optimal filter.830

Similarly, variational data assimilation or particle smoothing can be suc-831

cessful if (1) and (2) hold. We expect that variational data assimilation and832

particle smoothing can be successful in the nonlinear case, provided that833

the probability mass concentrates on a low-dimensional manifold. In par-834

ticular, particle smoothing has the potential of extending the applicability835

of Monte Carlo sampling to data assimilation, since the variance of weights836

due to the sequential problem formulation in particle filters is reduced (the837

data at time 2 may label what one thought was likely at time 1 as unlikely).838

This statement is perhaps corroborated by the success of variational data839

assimilation in numerical weather prediction. However, the number of ob-840

servations that should be assimilated per sweep depends on the various and841

competing time scales of the problem and, therefore, must be found on a842

case by case basis.843

Finally, it should be pointed out that we assumed throughout the paper844

that the model and data equations are “good”, i.e. that the model and data845

equations are capable of describing the physical situation one is interested846
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in. It seems difficult in theory and practice to study the case where the847

model and data equations are incompatible with the data one has collected848

(although this would be more interesting). For example, it is unclear to849

us what happens if the covariances of the errors in the model and data850

equations are systematically under- or overestimated, i.e. if the various851

data assimilation algorithms work with “wrong” covariances.852

7 Conclusions853

We have investigated the conditions under which data assimilation can be854

successful, according to a criterion motivated by physical considerations, re-855

gardless of the algorithm used to do the assimilation. We quantified these856

conditions by defining an effective dimension of a Gaussian data assimilation857

problem and have shown that this effective dimension must be moderate or858

else one cannot reach reliable conclusions about the process one is model-859

ing, even when the linear model is completely correct. This condition for860

successful data assimilation induces a balance condition for the errors in861

the model and data. This balance condition is often satisfied for realistic862

models, i.e. the effective dimension is moderate, even if the state dimension863

is large.864

The analysis was carried out in the linear synchronous case, where it can865

be done in some generality; we believe that this analysis captures the main866

features of the general case, but we have also discussed the limitations of867

the analysis.868

Building on the results in [Snyder et al., 2008, Bengtsson et al., 2008,869
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Bickel et al., 2008, Snyder, 2011], we studied the effects of the effective870

dimension on particle filters in two instances, one in which the importance871

function is based on the model alone, and one in which it is based on both872

the model and the data. We have three main conclusions:873

1. The stability (i.e., non-collapse of weights) in particle filtering depends874

on the effective dimension of the problem. Particle filters can work well875

if the effective dimension is moderate even if the true dimension is large876

(which we expect to happen often in practice).877

2. A suitable choice of importance function is essential, or else particle878

filtering fails even when data assimilation is feasible in principle with879

a sequential algorithm.880

3. There is a parameter range in which the model noise and the obser-881

vation noise are roughly comparable, and in which even the optimal882

particle filter collapses, even under ideal circumstances.883

We have then studied the role of the effective dimension in variational884

data assimilation and particle smoothing, for both the weak and strong con-885

straint problem. It was found that these methods too require a moderate886

effective dimension or else no accurate predictions can be expected. More-887

over, variational data assimilation or particle smoothing may be applicable888

in the parameter range where particle filtering fails, because the use of more889

than one consecutive data set helps reduce the variance which is responsible890

for the collapse of the filters.891

These conclusions are predicated on the linearity of the model and data892
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equations, and on the assumption that the generative and data models are893

close enough to reality.894
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Figure captions1036

Figure 1, Conditions for successful sequential data assimilation.1037

Figure 2, Conditions for successful sequential data assimilation (left panel),1038

and for successful particle filtering; center panel: optimal/implicit particle1039

filter; right panel: SIR filter. The broken ellipse in the right panel locates1040

the area where the SIR filter works.1041

Figure 3, Maximum dimension for two particle filters.1042

Figure 4, Conditions for successful data assimilation (strong constraint).1043
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