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Abstract

Optimal prediction methods estimate the solution of nonlinear time-dependent problems when that solution is too complex
to be fully resolved or when data are missing. The initial conditions for the unresolved components of the solution are
drawn from a probability distribution, and their effect on a small set of variables that are actually computed is evaluated via
statistical projection. The formalism resembles the projection methods of irreversible statistical mechanics, supplemented
by the systematic use of conditional expectations and new methods of solution for an auxiliary equation, the orthogonal
dynamics equation, needed to evaluate a non-Markovian memory term. The result of the computations is close to the best
possible estimate that can be obtained given the partial data. We present the constructions in detail together with several useful
variants, provide simple examples, and point out the relation to the fluctuation–dissipation formulas of statistical physics.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many problems in science and engineering are described by nonlinear differential equations whose solutions
are too complicated to be properly resolved and/or where needed data are unavailable. The problem of predicting
the evolution of such systems has been addressed by the present authors and others in[1–11]. Nothing can be
predicted without some knowledge about the unresolved (“subgrid”) degrees of freedom. In the papers just cited it
is assumed that one possesses, as one often does, prior statistical information about the system in the form of an
initial probability distribution; what is sought is a mean solution with respect to this initial distribution, compatible
with the partial information available initially as well as with the limitations on the computing power one can bring
to bear. This mean solution is the conditional expectation of the solution given the partial initial data, and is the best
available estimate of the solution of the full problem.
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The simplest construction of this conditional expectation, first-order optimal prediction ([3–5], see also below),
produces a small system of ordinary differential equations and works well for a time that depends on the degree of un-
derresolution and on the uncertainty in the initial conditions. This approximation is optimal in the class of Markovian
approximations[10], but eventually exhibits errors because the influence of partial initial data on the distribution of
the solutions weakens in time, and this loss of information is not captured, see[6,7]. As shown in the present paper,
an accurate estimate of a subset of variables requires the addition of a “memory” term, and the resulting prediction
scheme becomes a generalized Langevin equation, similar to those in irreversible statistical mechanics[12–16].

Some of the relations between conditional expectations and irreversible statistical mechanics have been discussed
in [6]. The memory depends on a solution of an auxiliary equation, the orthogonal dynamics equation, and in the
present paper we also present algorithms for finding this solution. We also explain how the machinery can lead to
novel ways of using prior measurements to predict the future behavior of complex systems. We apply our methods
to a simple model problem. Related, partial and more heuristic, constructions have been presented in[1,17].

2. Projections of dynamical systems and Langevin equations

Consider a system of ordinary differential equations,

d

dt
ϕ(t) = R(ϕ(t)), ϕ(0) = x, (1)

whereϕ andx aren-dimensional vectors with componentsϕi andxi , andR a vector-valued function with compo-
nentsRi ; t is the time. We denote the vector space in whichϕ andx reside byΓ ; in classical statistical physics this
space is then = 6N -dimensional space of coordinates and momenta(qj , pj ), whereN is the number of particles
in the system. The case whereΓ is infinite-dimensional and(1) is a partial differential equation can be analyzed by
the methods of[18].

To each initial conditionx in (1) corresponds a trajectory,ϕ(t) = ϕ(x, t); the initial valuex is emphasized by this
notation in view of its key role in what follows. The mapx �→ ϕ(x, t) is the flow map. Our goal is to calculate average
values of the firstm components ofϕ, m < n, without necessarily calculating all the components; the average is
over all the values that the remainingn − m components may initially take. We assume that prior information
allows us to make statistical statements about the missing initial data. To shorten notations, we denote byx̂ the
m-dimensional vector whose entries are the resolved components,(x1, . . . , xm), and byx̃ the(n−m)-dimensional
vector of unresolved components,(xm+1, ... , xn); thus,x = (x̂, x̃). Similarly, ϕ̂(x, t) = (ϕ1(x, t), . . . , ϕm(x, t))

denotes them components of the solution that we focus on.
Let L = ∑n

i=1 Ri(x)∂i , (∂i = ∂/∂xi), and consider the linear partial differential equation

∂

∂t
u(x, t) = Lu(x, t), u(x,0) = g(x) (2)

for some functiong(x). This is the Liouville equation. One can verify that the solution of this equation isu(x, t) =
g(ϕ(x, t)). In particular, ifg(x) = xi , the solution isu(x, t) = ϕi(x, t), theith component of the solution of(1).

We use the semigroup notationu(x, t) = (etL g)(x) = g(ϕ(x, t)), where etL is the evolution operator associated
with the Liouvilleequation (2)(see, e.g.[19]). A short calculation shows that etL L = LetL. Eq. (2)becomes

∂

∂t
etL g = LetL g = etL Lg.

Suppose that the initial conditionsx are drawn from a probability distributionµ, whereµ(dx) = �(x)dx, and�(x)
a probability density function. Given the initial values of them coordinateŝx, the distribution of the remaining
n − m coordinates̃x is given by the conditional measure,µ conditioned byx̂. If the system(1) is Hamiltonian
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with HamiltonianH , one can use as initial distribution the canonical distribution with density�(x) = Z−1 e−H(x),
whereZ is a normalization constant. Hamiltonian systems are often of interest, and the canonical distribution is
often natural for physical reasons. These choices simplify parts of the analysis.

Givenµ, functions onΓ can be viewed as random variables, and one can use the terminology of probability
theory. We define the expected value ofg by

E[g] =
∫
Γ

g(x)�(x)dx.

We endow the space of functions onΓ with the inner product(f, g) = E[fg], which makes it a Hilbert space
L2(Γ, µ) (L2 for brevity). If (1) is a Hamiltonian system and the probability density is�(x) = Z−1 exp(−H(x)),
then the operatorL is skew-adjoint in this Hilbert space.

We now derive an equation, often referred to as the generalized Langevin equation, which is a reformulation of
the equations of motion(1) for the resolved variableŝϕ(x, t). The derivation uses projection operators: functions
in L2 are projected onto the spaceL̂2 of functions of them-dimensional vector̂x. Several different projectionsP
are considered:

(1) Letf ∈ L2, and consider the orthogonal projection off onto the span of all functions of̂x, given by

(Pf )(x̂) =
∫
f (x)�(x)dx̃∫

�(x)dx̃
, dx̃ = dxm+1 · · · dxn.

In the language of probability,(Pf )(x̂) is the conditional expectation off given x̂ and is denoted byE[f |x̂];
see[20]. E[f |x̂] is the best approximation off by a function ofx̂:

E[|f − E[f |x̂]|2] ≤ E[|f − h(x̂)|2]

for all functionsh in L̂2. P is the “nonlinear projection”, used in[16] with a different interpretation, as well as
in [3,4,6].

(2) Givenf ∈ L2, define

(Pf )(x̂) =
m∑

i,j=1

a−1
ij (f, xi)xj ,

wherea−1
ij are the entries of a matrix whose inverse has entriesaij = (xi, xj ). This is the linear projection

widely used in irreversible statistical mechanics (see[12,13,21]).
(3) More generally, pick a set of functions ofx̂, sayhν(x̂), ν = 1, . . . ,M; for convenience, make them orthonormal:

(hν, hµ) = δµν . Define a projection

(Pf )(x̂) =
M∑
ν=1

(f, hν)hν(x̂).

If the hν spanL̂2 asM increases, the result approximates the conditional expectationE[f |x̂]. This is the
finite-rank projection; it interpolates between the linear projection and the conditional expectation.

We now follow the Mori–Zwanzig procedure[12,14,15,21]. We consider the equation of motion for a resolved
coordinateϕj (x, t) = etL xj , and split the time derivative,Rj (ϕ(x, t)) = etL Lxj , into a term that depends only on
ϕ̂(x, t) plus a remainder:

∂

∂t
etL xj = etL Lxj = etL PLxj + etL QLxj , (3)
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whereQ = I − P . Define Rj (x̂) = (PRj )(x̂); the first term is etL PLxj = R(ϕ̂(x, t)) and is a function of the
resolved components of the solution only.

We further split the remaining term etL QLxj as follows: Letw(x, t) be a solution of the orthogonal dynamics
equation:

∂

∂t
w(x, t) = QLw(x, t) = Lw(x, t) − PLw(x, t), w(x,0) = QLxj . (4)

In semigroup notation,w(x, t) = etQL QLxj . An existence proof forEq. (4)may be found in[22]. One verifies that
if Pf = 0, thenP etQL f = 0 for all timet , i.e., etQL maps the null space ofP into itself.

The evolution operators etL and etQL satisfy the Dyson formula[12]:

etL = etQL +
∫ t

0
e(t−s)L PL esQL ds,

which can be checked by differentiation. Hence,

etL QLxi = etQL QLxj +
∫ t

0
e(t−s)L PL esQL QLxj ds. (5)

Let

Fj (x, t) = etQL QLxj , Kj (x̂, t) = PLFj (x, t).

Note that multiplication byP always yields a function of̂x. Collecting terms, we obtain the generalized Langevin
equation:

∂

∂t
etL xj = etL Rj (x̂, t) +

∫ t

0
e(t−s)L Kj (x̂, s)ds + Fj (x, t).

This is an identity, which in a more transparent form reads

∂

∂t
ϕj (x, t) = Rj (ϕ̂(x, t)) +

∫ t

0
Kj(ϕ̂(x, t − s), s)ds + Fj (x, t). (6)

The various terms inEq. (6)have conventional interpretations. The first term on the right-hand side is the Markovian
contribution to∂tϕj (x, t)—it depends only on the instantaneous value of the resolvedϕ̂(x, t). The second term
depends onx through the values of̂ϕ(x, s) at timess between 0 andt , and embodies a memory—a dependence
on the past values of the resolved variables. Finally, the third term, which depends on full knowledge of the initial
conditionsx, lies in the null space ofP and can be viewed as noise with statistics determined by the initial conditions.
The fact that the memory depends on the noise is known in the physics literature as a fluctuation–dissipation theorem.
The specific form of this relation given in physics books is obtained whenP is the linear projection.

The last step is the multiplication of(6) by P :

∂

∂t
Pϕj (x, t) = PRj (ϕ̂(x, t)) +

∫ t

0
PKj (ϕ̂(x, t − s), s)ds. (7)

This identity involves only the known componentsx̂ of the initial data. WhenP is the conditional expectation,
P ϕ̂(x, t) = E[ϕ̂(x, t)|x̂], the right-hand side ofEq. (7) is exactly what we want: the derivative of the average of
ϕ̂(x, t) conditioned by the initially given data.

Eqs. (6) and (7)are identities; their solution is exactly equivalent to the solution of the full problem(1) followed
by averaging. In practice these equations have to be solved approximately; we shall show below how to perform the
approximation term by term.
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3. A model problem

We introduce a model problem to illustrate the formalism of the previous section and to test the accuracy of
various approximations described below.

Consider the dynamical systems inΓ = R4:

d

dt
ϕ1 = ϕ2,

d

dt
ϕ2 = −ϕ1(1 + ϕ2

3),
d

dt
ϕ3 = ϕ4,

d

dt
ϕ4 = −ϕ3(1 + ϕ2

1). (8)

Eq. (8)are derived from the Hamiltonian

H(x) = 1
2x

2
1 + x2

2 + x2
3 + x2

4 + x2
1x

2
3

with (x1, x2) and(x3, x4) canonical pairs of coordinates. This system describes two oscillators with a nonlinear
coupling.

We take initial data randomly distributed with the canonical probability density�(x) = Z−1 e−H(x), thus en-
dowing the space of functions onΓ with the inner product

(f, g) =
∫
f (x)g(x)e−H(x) dx∫

e−H(x) dx
, (9)

where dx = dx1 · · · dx4. We retain only two of the four variables,ϕ1 andϕ2, thusx̂ = (x1, x2) andx̃ = (x3, x4).
The goal is to compute the average ofϕ1(x, t) andϕ2(x, t) over all initial choices ofx3 andx4.

In Fig. 1, we plot the time evolution of the mean values ofϕ1(x, t) and ϕ2(x, t), given ϕ1(x,0) = 1 and
ϕ2(x,0) = 0. This graph was obtained by a Monte Carlo calculation: we generated a collection of 5× 104 initial

Fig. 1. Mean solutionsE[ϕ1(x, t)|x̂] (top) andE[ϕ2(x, t)|x̂] (bottom) for the initial datax̂ = (1,0). The mean solution was computed by
evolving in time a set of 5× 104 solutions with initial conditions generated by Monte Carlo sampling.
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conditionsx by fixing x̂ = (1,0) and samplingx3,x4 from the canonical distribution. Each initial datum was evolved
in time with an ODE solver. At eacht > 0 the mean values ofϕ1(x, t) andϕ2(x, t) were evaluated by averaging
over the set of solutions. Note the decay of the mean solution towards its equilibrium value; this phenomenon has
been explained in[6].

We now write down explicitly each of the projections defined inSection 2:

(1) The conditional expectation of a functionf (x) is

(Pf )(x̂) = E[f |x̂] =
∫
f (x)e−H(x) dx̃∫

e−H(x) dx̃
(10)

with dx̃ = dx3 dx4. The density e−H(x) is Gaussian whenx1, x2 are fixed, thus the integrals in(10) can often
be calculated explicitly. For example,

Px2n
3 =

(
2n
2

)
(1 + x2

1)
−n,Px2n

4 =
(

2n
2

)
, n = 1,2, . . . .

(2) It is easy to verify that(x1, x1) = c = 0.715,(x2, x2) = 1, and(x1, x2) = 0, and so the linear projection is

(Pf )(x̂) = c−1(f, x1)x1 + (f, x2)x2.

(3) For functionsf, g that depend only on̂x, the inner product(9) takes the form:

(f, g) = Z−1

2π

∫
e−(1/2)x2

1 e−(1/2)x2
2√

1 + x2
1

f (x̂)g(x̂)dx̂,

where

Z = 1

2π

∫
e−(1/2)x2

1 e−(1/2)x2
2√

1 + x2
1

dx̂ = 0.78964.

Letα > −1/2 be a parameter. For each fixed value ofα the following family of functions constitutes an orthonormal
basis in the space of square integrable functions ofx̂:

hν(x̂) = Z1/2(1 + x2
1)

1/4H̃ν1(x1)H̃ν2(x2), (11)

whereν = (ν1, ν2), ν1,2 = 0,1, . . . , and

H̃k(z) = (1 + 2α)1/4Hk(
√

1 + 2αz)e−αz2/2.

Here theHk(z) are Hermite polynomials satisfying the recursion relation

H0(z) = 1, H1(z) = z, Hk(z) = 1√
k

zHk−1(z) −
√

k − 1

k
Hk−2(z).

For future use, we also note that

d

dz
H̃k(z) = √

1 + 2αH̃k−1(z) − αzH̃k(z). (12)

The span of a finite collection of these functions changes whenα changes; we will use the freedom of choosingα

to optimize the rate at which the finite-rank projection converges to the conditional expectation.
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4. Conditional expectations calculated from previous measurements

Consider the problem(1)and suppose we know a large number of its solutionsϕ(x, t) for various initial conditions
x drawn from the distributionµ; these solutions may come from prior Monte Carlo computation or from experiment.
The bestL2 estimate of the solution when̂x is given isE[ϕ(x, t)|x̂].

Let hν(x̂), ν in some finite index setI , be a set of orthonormal basis functions; we approximate the conditional
expectationE[ϕj (x, t)|x̂] by a finite-rank projection

E[ϕj (x, t)|x̂] =
∑
ν

(ϕj (t), h
ν)hν(x̂) ≈

∑
ν∈I

cνj (t)h
ν(x̂), (13)

where the inner products are integrations overΓ .
This approximation makes it possible to use information from collections of prior measurements to predict the

behavior of a particular system with partially known initial conditions. If one has many functionsϕ(x, t), one can
evaluate the coefficientscνj (t) and then make an optimal prediction for a specific case by substituting the known
values of the initial datâx into the right-hand side of(13).

Here we remind the reader of a basic fact of numerical analysis: Approximation by a finite set of orthogonal
functions, especially on an infinite interval, may converge poorly (see, e.g.[23,24]); it is prudent to check the conver-
gence, for example by checking the Bessel inequality. As an illustrative example, suppose we want to approximate
the functionf (x) = cos(xt) (t is a parameter) in the inner product space,

(f, g) = 1√
2π

∫ ∞

−∞
f (x)g(x)e−(1/2)x2

dx. (14)

In this case, the functions̃Hk(x) defined above form an orthonormal basis. If one approximatesf (x) by a finite
sum of the form

cos(xt) ≈
N∑
k=0

ak(t)H̃k(x), (15)

where

ak(t) = 1√
2π

∫ ∞

−∞
cos(xt)H̃k(x)e−(1/2)x2

dx,

the quality of the approximation can be assessed by theL2 error:(
E[ cos2(xt)] −

N∑
k=0

a2
k (t)

)1/2

.

In Fig. 2, we compare the variation in time of theL2 norm of the function cos(xt) (solid line) with theL2 norm
of the finite sum(15) with N = 7 terms (dashed line). The dotted lines represent the contributions froma2

k (t)

for k = 1,3,5,7; by symmetrya2k(t) = 0. The four graphs correspond to four different values of the parameter
α. The finite sums approximate cos(xt) well for short times; the largert , more modes are needed for an accurate
approximation. These graphs demonstrate that a proper scaling of the basis is important for accuracy with an
acceptable number of terms.

We now return to the model problem(8)and approximate the conditional expectationE[ϕ1(x, t)|x̂] by a finite-rank
projection of the form(13), with thehν(x̂) given by(11). The functionscν1(t) are evaluated by averaging the products
ϕ1(x, t)h

ν(x̂) over a collection of 5×104 numerical solutions of(8)with initial conditions drawn from the canonical
distribution.
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Fig. 2. Solid lines: the variation of theL2 norm of cos(xt) in the inner product space(14). Dashed lines: theL2 norm of the finite-rank
approximation(15) with N = 7 terms. Dotted lines:a2

k (t) for k = 1,3,5,7. The four plots correspond to: (a)α = 0, (b)α = 0.5, (c)α = 1,
and (d)α = 2.
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Fig. 3.cν1(t) versust for α = 0 and various values ofν. The two dominant functions correspond toν = (1,0) andν = (0,1).

In Fig. 3, we plot several of the functionscν1(t) with α = 0, and observe that the two dominant contributions
come from the componentsν = (1,0) andν = (0,1). This is consistent with the assumption often made in physics
that the lower order terms are the most significant.

In Fig. 4, we compare the mean solution,E[ϕ1(x, t)|x̂], x̂ = (1,0), generated by Monte Carlo sampling (dotted
lines), with the finite-rank projection(13)(solid lines). The top two graphs correspond toα = 0 and to (a) 3×3 and
(b) 6× 6 basis functions. In the first case, the finite-rank approximation deviates from the true solution already at
short times, although the qualitative properties of the mean solution are well captured. With four times as many basis
functions, better accuracy is preserved for a long time. InFig. 4 (c) and (d), the value ofα is modified, indicating
how a significant reduction in computational effort can be obtained by scaling the basis functions.

Finally, note that the integrals that define the coefficients in the expansions are over all the components ofx while
the basis functions are functions only ofx̂; therefore the series expansion is an expansion, not ofϕ(x, t) which may
be very noisy, but ofE[ϕ(x, t)|x̂] which is much smoother.

5. The Markovian term in the Langevin equation

We now examine the Markovian term R(ϕ̂(x, t)) in the Langevinequation (6). For the model problem(8) andP
the conditional expectation, this term can be calculated explicitly:

R(ϕ̂(x, t)) =




ϕ2(x, t)

−ϕ1(x, t)

[
1 + 1

1 + ϕ2
1(x, t)

] .
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Fig. 4. Comparison of the mean solutionE[ϕ1(x, t)|x̂] (dotted lines) and the finite-rank approximation,
∑

ν∈I c
ν
1(t)h

ν(x̂) (solid lines) for the
initial datax̂ = (1,0). The different graphs correspond to: (a)I = {0,1,2}2 andα = 0, (b)I = {0, . . . ,5}2 andα = 0, (c)I = {0,1,2}2 and
α = 1, (d)I = {0, . . . ,5}2 andα = 2.
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This expression is a function of all the components ofx, not only of them = 2 that we wish to work with. Next we
apply the projectionP and we do so now by interchanging the evaluations of R andP :

PR(ϕ̂(x, t) ≈ R(P ϕ̂(x, t)).

The reader should not be horrified by the commutation of an average with a nonlinear function. The randomness in the
problem is a reflection of the unresolved degrees of freedom inx. One alternative to our methodology is neglecting
these degrees of freedom, which removes the randomness and makes the commutation perfectly legitimate. One
is better off preserving these degrees of freedom and mistreating them slightly rather than omitting them. Another
possible construction, more accurate but more expensive, consists of storing samples of R(ϕ̂(x, t)) for initial data
drawn from the initial distribution and then projecting R just as we projectedϕ̂(x, t) in the previous section.

In what was called “first-order optimal prediction” in[3–5], the second and third terms in the generalized Langevin
equation (6)are dropped; writingΦ(t) = P ϕ̂(x, t) one obtains the approximate equations:

d

dt
Φ(t) = R(Φ(t)), Φ(0) = x̂. (16)

A convergence proof for this approximation applied to a nonlinear partial differential equation can be found in[10].
For the model problem(8), Φ(x̂, t) = (Φ1(x̂, t), Φ2(x̂, t)), and the first-order optimal prediction equations are

d

dt
Φ1 = Φ2,

d

dt
Φ2 = −Φ1

(
1 + 1

1 + Φ2
1

)
. (17)

As observed in[6], Eq. (16)are Hamilton’s equations derived from the “effective” Hamiltonian

H(x̂) = −log
∫

e−H(x) dx̃

provided that if a variable is resolved so is its canonically conjugate variable.
In Fig. 5, we compareΦ1(t), obtained by the integration ofEq. (17)with initial conditionsΦ(0) = (1,0), to

the functionE[ϕ1(x, t)|x̂], x̂ = (1,0), resulting from the Monte Carlo sampling. The discrepancy between the two
curves is due to the omission of the memory, see[7,6].

While first-order optimal prediction is accurate (in fact, optimal) only for short times, it may be exploited for
longer times as a numerical “predictor” to improve the convergence rate of the finite-rank approximation(13). The
system(16) is Hamiltonian and in particular time reversible, hence the flow mapx̂ �→ Φ(x̂, t) is continuous and
invertible (although it may be very complex). Thus, the mean solutionE[ϕ̂(x, t)|x̂] can be written as a function
of Φ(x̂, t). SinceΦ(x̂, t) approximatesE[ϕ̂(x, t)|x̂] well for short times, a finite-rank expansion of the latter in
terms of the former may exhibit better convergence. The change of variables fromx̂ toΦ(x̂, t) is made easier for a
Hamiltonian system by the following observation: Ifhν(x̂), ν ∈ I , are orthonormal functions in the inner product
space(9), andΦ(x̂, t) is the solution of(16), then the composite functionshν [Φ(x̂, t)], t fixed, are orthonormal
with respect to the same inner product. Indeed, letµ, ν ∈ I . Fix t , and consider

0µν =
∫

hµ[Φ(x̂, t)]hν [Φ(x̂, t)] e−H(x) dx =
∫

hµ[Φ(x̂, t)]hν [Φ(x̂, t)]

(∫
e−H(x) dx̃

)
dx̂

=
∫

hµ[Φ(x̂, t)]hν [Φ(x̂, t)] e−H(x̂) dx̂.

Change variables:̂y = Φ(x̂, t). Since the map̂x → Φ(x̂, t) is Hamiltonian, it preserves the Lebesgue measure
dx̂ = dŷ and the effective Hamiltonian H(x̂) = H(Φ(x̂, t)). Thus,

0µν =
∫

hµ(ŷ)hν(ŷ)e−H(ŷ) dŷ =
∫

hµ(ŷ)hν(ŷ)e−H(y) dy = δµν.
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Fig. 5. Comparison of the mean solutionE[ϕ1(x, t)|x̂] (solid line) and the componentΦ1(t) of the solution of the optimal predictionequation
(17) (dashed line) for the initial datâx = (1,0).

One can therefore replace the finite-rank projection(13)by

E[ϕj (x, t)|x̂] ≈
∑
ν∈I

(ϕj (y, t), h
ν [Φ(ŷ, t)])hν [Φ(x̂, t)].

6. Orthogonal dynamics and the memory kernel

We turn now to a general formalism for the evaluation of the noiseF(x, t) and the memory kernelK(x̂, t). For
eachj ≤ m, the componentFj (x, t) of the noise is the solution of the orthogonal dynamics equation

∂

∂t
Fj (x, t) = QLFj (x, t) = LFj (x, t) − PLFj (x, t), (18)

Fj (x,0) = QLxj = Rj (x) − Rj (x̂).

EachFj is computed independently of the others.Eq. (18)is equivalent to the Dyson formula:

Fj (x, t) = etL Fj (x,0) −
∫ t

0
e(t−s)L PLFj (x, s)ds. (19)

This is a Volterra integral equation forFj (x, t), which we next decompose into its components in an orthonormal
basis: LetP be a finite-rank projection. Then,

Kj(x̂, s) = PLFj (x, s) =
∑
ν∈I

aνj (s)h
ν(x̂), (20)
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where

aνj (s) = (LFj (s), h
ν).

Consequently,

e(t−s)L PLFj (x, s) =
∑
ν∈I

aνj (s)h
ν(ϕ̂(x, t − s)).

Substitute this equation into(19), multiply both sides byL, and take the inner product withhµ; the result is

(LFj (t), h
µ) = (LetL Fj (0), h

µ) −
∫ t

0

∑
ν∈I

aνj (s)(Le(t−s)L hν, hµ ds.

This is a Volterra integral equation for the functionsaνj (t), which can be rewritten as follows:

a
µ
j (t) = f

µ
j (t) −

∫ t

0

∑
ν∈I

aνj (s)g
νµ(t − s)ds, (21)

where

f
µ
j (t) = (LetL Fj (0), h

µ), gνµ(t) = (LetL hν, hµ).

The functionsf ν
j (t), g

µν(t) can be found by averaging over a collection of experiments or simulations, with initial
conditions drawn from the initial distribution without reference to any specific realization; they are time-correlation
functions (i.e., inner products of the form(etL g1, g2) for some functions(g1, g2)and not dependent on the orthogonal
dynamics. The number of componentsaν depends only on the resolution needed in the space of functions ofx̂.
Once theaνj (t) have been calculated, the memory kernel is given by(20).

Finally, we perform the projection(7) of the Mori–Zwanzig equation. The finite-rank projection of the memory
term∫ t

0
P e(t−s)L Kj (x̂, s)ds

is ∫ t

0

∑
ν,µ∈I

aνj (s)γ
νµ(t − s)hµ(x̂)ds,

where

γ νµ(t) = (etL hν, hµ).

This implementation ofP relies on an expansion of the severalhν(ϕ(x, t)) in scaled Hermite series and cannot be
expected to be accurate with a moderate number of terms.

To formulate the algorithms compactly we introduce the matricesA,F,G, Γ :Ajµ = a
µ
j ,Fjµ = f

µ
j ,Gνµ = gνµ,

andΓνµ = γ νµ, for 1 ≤ j ≤ m andν, µ ∈ I . First letF,G be given and solve

A(t) = F(t) −
∫ t

0
A(s)G(t − s)ds.

The functionP ϕ̂(x, t) is approximated byΦ(x̂, t) obtained by solving either

d

dt
Φ(t) = R(Φ(t)) +

∫ t

0
A(s)h(Φ(t − s))ds, Φ(0) = x̂, (22)
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Fig. 6. Comparison of the mean solutionE[ϕ1(x, t)|x̂] (thick line) and the componentsΦ1(t) obtained by solvingEq. (22)(thin line) andEq. (23)
(dashed line). The initial data arex̂ = (1,0).

or

d

dt
Φ(t) = R(Φ(t)) +

∫ t

0
A(s)Γ (t − s)h(x̂)ds, Φ(0) = x̂. (23)

Some results are shown inFig. 6. The thick line represents the exact solutionE[ϕ1(x, t)|x̂], the thinner line is
the functionΦ1(t) resulting from the integration of(22), whereas the dashed line results from the integration of
(23). The quadratures in the Volterra equation were performed by the trapezoidal rule, 21 basis functionshν were
used, the parameterα in the Hermite expansion wasα = 7/6, the ordinary differential equations were solved by
a Runge–Kutta method, modified to take into account the integral term. The Monte Carlo summations used 104

sample solutions.
To improve the accuracy of these calculations one can: (1) increase the number of Monte Carlo samples, (2)

decrease the time step, (3) allow the coefficient alpha to change with time, (4) truncate the integral kernel at an
appropriateτ .

7. Short-memory approximations

In some situations of interest one can expect the support in time of the integrand inEq. (7)to be small, and this
can simplify the calculations. To analyze this situation, start from the Dyson formula(5) which can be the starting
point of a perturbative evaluation of etQL. The zeroth-order approximation of this relation is

etQL ∼= etL, (24)
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in which one replaces the flow in the orthogonal complement of the range ofP by the real flow induced byL. Now
consider the second term inEq. (6):∫ t

0
e(t−s)L PL esQL QLxj ds =

∫ t

0
e(t−s)L PLQ esQL QLxj ds,

where the insertion of the extraQ is legitimate since esQL maps functions in the null space ofP back into the same
subspace. Adding and subtracting equal quantities, we find:

PL esQL QLxj = PLQ esL QLxj + PLQ(esQL − esL)QLxj ,

a Taylor series yields:

esQL − esL = I + sQL + · · · − I − sL − · · · = −sPL + O(s2),

and therefore, usingQP = 0, we find∫ t

0
e(t−s)L PL esQL QLxj ds =

∫ t

0
e(t−s)L PLQ esL QLxj ds + O(t3).

If P is the finite-rank projection then

PL esQL QLxj =
∑
ν∈I

(QL esQL QLxj , h
ν)hν(x̂).

If the correlations(LesQL QLxj , hν) are significant only over short times, the approximation(24) provides an
acceptable approximation without requiring the solution of the orthogonal dynamics equation. In statistical physics,
one often makes an even more drastic approximation, in which it is assumed that the correlations vanish fort �= 0
(see, e.g. the “high frequency approximation” in[12, p. 86]). Some applications of the short-memory approximation
have been presented in[1].

8. The t-damping equation

A short-memory approximation of particular interest can be derived as follows: Write the memory term of the
Langevin equation∫ t

0
Kj(ϕ̂(x, t − s), s)ds. (25)

Expand the integrand in a Taylor series abouts = 0, retaining only the leading term. The memory term reduces to∫ t

0
Kj(ϕ̂(x, t),0)ds = tSj (ϕ̂(x, t)), (26)

where

Sj (x) = PLQLxj .

An alternative derivation uses the formalism of the previous section: write(25)as∫ t

0
e(t−s)L PL esQL QRj (x) =

∫ t

0
Le(t−s)L esQL QRj (x) −

∫ t

0
e(t−s)L esQL QLQRj (x),
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where we have used the commutation ofL andQL with etL and etQL, respectively. At this point, make the ap-
proximation(24) and replace the evolution operator of the orthogonal dynamics by the evolution operator of the
Liouvillian flow, which eliminates thes dependence of both integrands, and(26) follows readily.

Writing Φ(t) ≈ P ϕ̂(x, t), thet-damping equations are

d

dt
Φ(t) = R(Φ(t)) + tS(Φ(t)), Φ(0) = x̂. (27)

The form of this equation is surprising. All that remains of the memory is the coefficientt and one is left with a
non-autonomous system of ordinary differential equations. No previously computed averages are needed.

For the model problem(8) Eq. (27)takes the explicit form

d

dt
Φ1 = Φ2,

d

dt
Φ2 = −Φ1

(
1 + 1

1 + Φ2
1

)
− 2t

Φ2
1Φ2

(1 + Φ2
1)

2
. (28)

In Fig. 7, we present a comparison of the componentΦ1(t) of the solution ofEq. (28)with E[ϕ1(x, t)|x̂]. The new
term,tS(Φ(t)), leads to a damping of the solution.

We now show that the last term inEq. (28), which approximates the memory term, leads to a decay just like the
original term did. Setq = (q̂, q̃), p = (p̂, p̃), and writeL,P,H as

L =
n∑

j=1

(Hpj
∂qj − Hqj ∂pj

), (29)

Fig. 7. Comparison of the mean solutionE[ϕ1(x, t)|x̂] (thick line) and the componentΦ1(t) of the solution of thet-dampingequation (28)(thin
line) for the initial datax̂ = (1,0).
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(Pf )(q̂, p̂) =
∫
f (q, p)e−H(q,p) dq̃ dp̃∫

e−H(q,p) dq̃ dp̃
, (30)

and

H(q̂, p̂) = −log
∫

e−H(q,p) dq̃ dp̃. (31)

The subscripts in(29) represent differentiation.

Theorem 8.1. Suppose H(q, p) = T (p) + V (q). Let

ṗi = (PL + tPLQL)pi, q̇i = (PL + tPLQL)qi (32)

for i = 1,2, . . . , m with (q̂(0), p̂(0)) given. Then,

d

dt
H(q̂, p̂) = −tP



∣∣∣∣∣∣

m∑
j=1

(Hpj
− Hpj

)Hqj

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣

m∑
j=1

(Hqj − Hqj )Hpj

∣∣∣∣∣∣
2

 .

Thus, if the HamiltonianH(q, p) is separable into a kinetic and a potential energy, then the effective Hamiltonian
H for the solution of thet-dampingequation (32)is a decreasing function of time. Similar results can be obtained
for Fourier methods applied to Euler’s equations in two- and three-dimensional flows.

Proof. We shall writeEq. (32)in terms ofH and H. It follows from(29)–(31)that

Lpi = −Hqi , PLpi = −PHqi = −Hqi , QLpi = (I − P)Lpi = −Hqi + Hqi

for i = 1,2, . . . , m. SinceHqi and Hqi do not depend onpi (due to the assumed separability ofH ) Eqs. (29) and
(30) imply

PLQLpi = −
n∑

j=1

P [Hpj
(Hqi − Hqi )qj ]. (33)

To proceed we writeH(q, p) = T (p) + V (q) and get

P [Hpj
(Hqi − Hqi )qj ] =

∫
Hpj

e−T (p) dp̃∫
e−T (p) dp̃

·
∫
(Hqi − Hqi )qj e−V (q) dq̃∫

e−V (q) dq̃
= PHpj

· P(Hqi − Hqi )qj . (34)

For j > m integration by parts gives

PHpj
= −

∫
(e−H )pj

dq̃ dp̃∫
e−H dq̃ dp̃

= 0. (35)

Using(30)we see that

∂qj P (Hqi − Hqi ) = P(Hqi − Hqi )qj + P [(Hqi − Hqi )(−Hqj )] + P(Hqi − Hqi ) · (−1) · P(−Hqj ).

But Hqi does not depend oñq, p̃ andP(Hqi − Hqi ) = 0. Thus,

P(Hqi − Hqi )qj = P [(Hqi − Hqi )(Hqj − Hqj )]. (36)

Combining(33)–(36)yields

PLQLpi = −P


(Hqi − Hqi )

m∑
j=1

(Hqj − Hqj )Hpj


 .
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The corresponding expression forPLQLqi is

PLQLqi = −P


(Hpi

− Hpi
)

m∑
j=1

(Hpj
− Hpj

)Hqj


 .

We can now rewrite the system(32)as

ṗi = −Hqi + tPLQLpi , q̇i = Hpi
+ tPLQLqi .

Using the chain rule we find

d

dt
H(q̂, p̂)=

m∑
i=1

(Hqi q̇i + Hpi
ṗi) = t

m∑
i=1

(Hqi PLQLqi + Hpi
PLQLpi )

= −tP


 m∑

i=1

(Hpi
− Hpi

)Hqi

m∑
j=1

(Hpj
− Hpj

)Hqj




−tP


 m∑

i=1

(Hqi − Hqi )Hpi

m∑
j=1

(Hqj − Hqj )Hpj


 .

This completes the proof. �

9. Conclusions

We have presented a general method for finding the best approximation of part of the solution of a partially
resolved initial value problem, conditioned by partial initial data. We presented a formula,Eq. (6), which describes
exactly the evolution in time of a few components of an underresolved problem. We have also introduced a collection
of methods for approximating the general formula, in general but not always requiring prior information obtainable
by Monte Carlo or by experiment but without reference to specific initial data. Some of the methods are expensive in
practice but provide theoretical insight; some require additional information, for example about correlation times,
which may be available; some are limited in accuracy by the properties of expansions in orthogonal functions.
Many variants are possible. Theoretical issues remain to be discussed in greater depth. The existence of orthogonal
dynamics is established in[22].

We applied the methods to a model problem which is easy to understand and analyze but is not typical of the
problems one encounters in practice. We have not discussed properties of real problems such as separation of scales
or convergence to a partial differential equation which help the application of our methods. We have not explored
the effect of the choice of initial distribution, for example the possible advantages of a microcanonical distribution.
Once the general framework has been established, further variants and assumptions are best discussed within the
context of specific applications.
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