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Abstract

Optimal prediction methods estimate the solution of nonlinear time-dependent problems when that solution is too complex
to be fully resolved or when data are missing. The initial conditions for the unresolved components of the solution are
drawn from a probability distribution, and their effect on a small set of variables that are actually computed is evaluated via
statistical projection. The formalism resembles the projection methods of irreversible statistical mechanics, supplemented
by the systematic use of conditional expectations and new methods of solution for an auxiliary equation, the orthogonal
dynamics equation, needed to evaluate a non-Markovian memory term. The result of the computations is close to the best
possible estimate that can be obtained given the partial data. We present the constructions in detail together with several useful
variants, provide simple examples, and point out the relation to the fluctuation—dissipation formulas of statistical physics.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many problems in science and engineering are described by nonlinear differential equations whose solutions
are too complicated to be properly resolved and/or where needed data are unavailable. The problem of predicting
the evolution of such systems has been addressed by the present authors and ¢thdrs].iNothing can be
predicted without some knowledge about the unresolved (“subgrid”) degrees of freedom. In the papers just cited it
is assumed that one possesses, as one often does, prior statistical information about the system in the form of an
initial probability distribution; what is sought is a mean solution with respect to this initial distribution, compatible
with the partial information available initially as well as with the limitations on the computing power one can bring
to bear. This mean solution is the conditional expectation of the solution given the partial initial data, and is the best
available estimate of the solution of the full problem.
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The simplest construction of this conditional expectation, first-order optimal predi¢gies](see also below),
produces a small system of ordinary differential equations and works well for a time that depends on the degree of un-
derresolution and on the uncertainty in the initial conditions. This approximation is optimal in the class of Markovian
approximation$10], but eventually exhibits errors because the influence of partial initial data on the distribution of
the solutions weakens in time, and this loss of information is not capturef,3¢eAs shown in the present paper,
an accurate estimate of a subset of variables requires the addition of a “memory” term, and the resulting prediction
scheme becomes a generalized Langevin equation, similar to those in irreversible statistical mgchattgs

Some of the relations between conditional expectations and irreversible statistical mechanics have been discusse
in [6]. The memory depends on a solution of an auxiliary equation, the orthogonal dynamics equation, and in the
present paper we also present algorithms for finding this solution. We also explain how the machinery can lead to
novel ways of using prior measurements to predict the future behavior of complex systems. We apply our methods
to a simple model problem. Related, partial and more heuristic, constructions have been pregéritétl in

2. Projections of dynamical systemsand L angevin equations

Consider a system of ordinary differential equations,

d
39O = Rle®), ¢(0) = x, 1)

wheregp andx aren-dimensional vectors with componemrtsandx;, andR a vector-valued function with compo-
nentsR;; t is the time. We denote the vector space in whicdndx reside byl™; in classical statistical physics this
space is the = 6N-dimensional space of coordinates and momeaqtap;), whereN is the number of particles
in the system. The case whares infinite-dimensional anfll) is a partial differential equation can be analyzed by
the methods of18].

To each initial conditionr in (1) corresponds a trajectory(t) = ¢(x, t); the initial valuex is emphasized by this
notation in view of its key role in what follows. The map—~ ¢(x, t) isthe flow map. Our goal is to calculate average
values of the firstn components of, m < n, without necessarily calculating all the components; the average is
over all the values that the remaining— m components may initially take. We assume that prior information
allows us to make statistical statements about the missing initial data. To shorten notations, we dénitte by
m-dimensional vector whose entries are the resolved comporients, ., x,,), and byx the (n — m)-dimensional
vector of unresolved components,, 11, ... , X,); thus,x = (x, X). Similarly, ¢(x, t) = (p1(x, 1), ..., gm(x, 1))
denotes the: components of the solution that we focus on.

LetL = )" _; Ri(x)d;, (3; = 9/dx;), and consider the linear partial differential equation

%u(x, t) = Lu(x, 1), u(x,0) = gx) (2)

for some functiorg (x). This is the Liouville equation. One can verify that the solution of this equatiotxist) =
g(@(x, 1)). In particular, ifg(x) = x;, the solution is«(x, t) = ¢; (x, t), theith component of the solution ¢1).

We use the semigroup notatianx, 1) = (e'“ g)(x) = g(¢(x, 1)), where & is the evolution operator associated
with the Liouville equation (2)(see, e.g[19]). A short calculation shows thatd. = L €. Eq. (2)becomes

d
Eeﬂ_g —Lelg—dllg
Suppose that the initial conditiorsare drawn from a probability distributiqm, wherew (dx) = o(x) dx, ande(x)

a probability density function. Given the initial values of thecoordinatest, the distribution of the remaining
n — m coordinatest is given by the conditional measure,conditioned byx. If the system(1) is Hamiltonian
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with HamiltonianH, one can use as initial distribution the canonical distribution with deipgity = ZleH&),
whereZ is a normalization constant. Hamiltonian systems are often of interest, and the canonical distribution is
often natural for physical reasons. These choices simplify parts of the analysis.

Given u, functions onI” can be viewed as random variables, and one can use the terminology of probability
theory. We define the expected valuegdly

E[g] =/Fg(X)Q(x) dx.

We endow the space of functions éhwith the inner product f, ¢) = E[fg], which makes it a Hilbert space
L2(I", ) (L2 for brevity). If (1) is a Hamiltonian system and the probability density(s) = Z~ 1 exp(— H (x)),
then the operatak. is skew-adjoint in this Hilbert space.
We now derive an equation, often referred to as the generalized Langevin equation, which is a reformulation of
the equations of motio(i) for the resolved variableg(x, ¢). The derivation uses projection operators: functions
in L2 are projected onto the spaté of functions of them-dimensional vectof. Several different projection8
are considered:

(1) Let f € L?, and consider the orthogonal projectionfobnto the span of all functions df, given by

[ f(x)o(x)dx
[o(x)di

In the language of probabilityPf)(x) is the conditional expectation gf givenx and is denoted b¥[ f|x];
seg[20]. E[ f|x] is the best approximation of by a function ofx:

E[lf — E[fIZ11?] < E[If — h(D)[*]

for all functionsh in L2. P is the “nonlinear projection”, used 6] with a different interpretation, as well as
in [3,4,6].
(2) Givenf e L?, define

(PHX) = dxX = dxyq1- - - dy.

(PO = Y ay*(f x)x),

ij=1

Whereaij*1 are the entries of a matrix whose inverse has entrijes= (x;, x;). This is the linear projection
widely used in irreversible statistical mechanics (ge213,21).

(3) More generally, pick a set of functionsofsayr’ (x),v = 1, ..., M; for convenience, make them orthonormal:
(h¥, h*) = §,,. Define a projection

M
(PHE) = Y (f h")R" ).
v=1
If the A spani2 as M increases, the result approximates the conditional expectatiginz]. This is the
finite-rank projection; it interpolates between the linear projection and the conditional expectation.

We now follow the Mori—-Zwanzig procedufé&2,14,15,21] We consider the equation of motion for a resolved
coordinatep; (x,t) = el xj, and split the time derivative’ ; (¢ (x, 1)) = el Lx;, into a term that depends only on
¢(x, 1) plus a remainder:

0
Eeﬂ- x; = € Lx; = e- PLx; + € QLx;, ®)
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whereQ = I — P. Define R (¥) = (PR;)(%); the first term is [ PLx; = R(¢(x, 1)) and is a function of the
resolved components of the solution only.

We further split the remaining terrﬁLeQij as follows: Letw(x, t) be a solution of the orthogonal dynamics
equation:

%w(x, t) = QLw(x,t) = Lw(x,t) — PLw(x, 1), w(x, 0) = QLX;. (4)

In semigroup notationy (x, r) = e QLx;. An existence proof foEq. (4)may be found i22]. One verifies that
if Pf = 0, thenP Q- f = 0 for all timer, i.e., €2 maps the null space df into itself.
The evolution operatorsleand &9 satisfy the Dyson formulgl2]:

t
etL — etQL + / e(t—s)L PL eSQL ds,
0

which can be checked by differentiation. Hence,

&szé@q&+£éﬂﬂm§1@ym (5)
Let

Fi(x,1) = QLx;,  K;(%,1) =PLF;(x,1).
Note that multiplication byP always yields a function of. Collecting terms, we obtain the generalized Langevin
equation:

3 Lo .
Ee“xj =ét Rj(;e,z)+/ eI K (%, 5)ds 4 Fj(x,1).
0

This is an identity, which in a more transparent form reads

0 ! R
afpj(x, ) =R;(@x,1)+ /0 Ki(@(x,t —s),s)ds + Fj(x,1). (6)

The various terms iiq. (6)have conventional interpretations. The first term on the right-hand side is the Markovian
contribution t0d;¢; (x, t)—it depends only on the instantaneous value of the resajedr). The second term
depends onx through the values af(x, s) at timess between 0 and, and embodies a memory—a dependence
on the past values of the resolved variables. Finally, the third term, which depends on full knowledge of the initial
conditionsy, lies in the null space aP and can be viewed as noise with statistics determined by the initial conditions.
The fact that the memory depends on the noise is known in the physics literature as a fluctuation—dissipation theorem
The specific form of this relation given in physics books is obtained whénthe linear projection.

The last step is the multiplication ¢8) by P:

t

%P(pj(x, 1) = PR;j(¢(x,1)) + /0 PK;(@(x,1 —s),s)ds. @)
This identity involves only the known componeritof the initial data. WherP is the conditional expectation,
Po(x,t) = E[@(x, 1)|x], the right-hand side oEq. (7)is exactly what we want: the derivative of the average of
¢(x, t) conditioned by the initially given data.

Egs. (6) and (7are identities; their solution is exactly equivalent to the solution of the full prolfigriollowed
by averaging. In practice these equations have to be solved approximately; we shall show below how to perform the
approximation term by term.
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3. A model problem

We introduce a model problem to illustrate the formalism of the previous section and to test the accuracy of
various approximations described below.
Consider the dynamical systemsfih= R*:

d

d ) d d ,
GL= e 2= —p1(1 + ¢3), =4 = —3(1+ ¢7). 8

Eqg. (8)are derived from the Hamiltonian

H(x) = %x%—l—x%—}—x%—i—xﬁ—l—x%x%
with (x1, x2) and (x3, x4) canonical pairs of coordinates. This system describes two oscillators with a nonlinear
coupling.

We take initial data randomly distributed with the canonical probability dergity = Z~1e 7™ thus en-
dowing the space of functions dnwith the inner product

[ f0)gx) e ) dy 9
=T Jefod ©)

(f, &)

where d = dx1 - - - dx4. We retain only two of the four variableg; andgs,, thusx = (x1, x2) andx = (x3, x4).
The goal is to compute the averagegfx, t) andgs(x, ¢) over all initial choices ofcz andx,.

In Fig. 1, we plot the time evolution of the mean valuesg@f(x, t) and p2(x, 1), given ¢1(x,0) = 1 and
¢2(x, 0) = 0. This graph was obtained by a Monte Carlo calculation: we generated a collection bd5initial

time

15 I ! I L I

0 20 40 60 80 100 120
time

Fig. 1. Mean solutiong[¢1(x, 1)|x] (top) and E[¢2(x, 1)|x] (bottom) for the initial datat = (1, 0). The mean solution was computed by
evolving in time a set of 5 10* solutions with initial conditions generated by Monte Carlo sampling.
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conditionsy by fixingx = (1, 0) and sampling3,x4 from the canonical distribution. Each initial datum was evolved

in time with an ODE solver. At each> 0 the mean values afy (x, r) andga(x, ) were evaluated by averaging

over the set of solutions. Note the decay of the mean solution towards its equilibrium value; this phenomenon has
been explained if6].

We now write down explicitly each of the projections define®gction 2
(1) The conditional expectation of a functigifx) is

—H(x) di
(PH(®) = ELf13] = fj}(’;ff,—()dxx (10)

with dx = dxz dxs4. The density 87 is Gaussian wheny, x» are fixed, thus the integrals {f10) can often
be calculated explicitly. For example,

F’X%n:<22n>(1—i-)6:|2_)117|:)X£21n=<22n>7 n=12....

(2) ltis easy to verify thatx1, x1) = ¢ = 0.715, (x2, x2) = 1, and(x1, x2) = 0, and so the linear projection is
(PHY(&) = ¢ (£, x)x1 + (f. x2)x2.

(3) For functionsf, g that depend only ofi, the inner producf9) takes the form:

771 [ e Wiy
(f.8) = ?/ f(D)g[X)dx,

,/1+xf

1 [ e W% o= (1/2)x5
2= |
21 J1+ x%

Lete > —1/2 be a parameter. For each fixed value difie following family of functions constitutes an orthonormal
basis in the space of square integrable functions of

where

dx = 0.78964

hY (%) = ZY2( + xDHYA A, (x1) Hyy (x2), (11)
wherev = (v1,v2),v12=0,1,...,and
Hi(z) = (1+ 20)Y4H, (VI F 2az) e %%/2.

Here theH; (z) are Hermite polynomials satisfying the recursion relation

1 —
Ho(z) =1, Hi(z) =z, Hi(z) = ﬁZkal(Z) - . Hy 2(2).
For future use, we also note that
d - ~ -
—H(2) = V14 20 Hy—1(z) — azHi(2). (12)

dz

The span of a finite collection of these functions changes whelmanges; we will use the freedom of choosing
to optimize the rate at which the finite-rank projection converges to the conditional expectation.
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4. Conditional expectations calculated from previous measurements

Consider the probleri) and suppose we know a large number of its solutigis ) for various initial conditions
x drawn from the distributiop ; these solutions may come from prior Monte Carlo computation or from experiment.
The bestL? estimate of the solution whehis given iSE[¢(x, 1)|x].

Let 2V (x), v in some finite index sek, be a set of orthonormal basis functions; we approximate the conditional
expectationE[¢; (x, t)|x] by a finite-rank projection

Elp;(x, DIR] = Y (¢, (1), k)R @) = Y el (" (%), (13)
v vel
where the inner products are integrations aver

This approximation makes it possible to use information from collections of prior measurements to predict the
behavior of a particular system with partially known initial conditions. If one has many funations), one can
evaluate the coefficients;(r) and then make an optimal prediction for a specific case by substituting the known
values of the initial data into the right-hand side dfL3).

Here we remind the reader of a basic fact of numerical analysis: Approximation by a finite set of orthogonal
functions, especially on an infinite interval, may converge poorly (sed28.@4)); itis prudent to check the conver-
gence, for example by checking the Bessel inequality. As an illustrative example, suppose we want to approximate
the functionf (x) = cos(xt) (¢ is a parameter) in the inner product space,

(fig) = J% f_ Z F)g() & @22 dy. (14)

In this case, the function&y (x) defined above form an orthonormal basis. If one approximates by a finite
sum of the form

N
cos(xt) & " ax(t) Hi(x), a5
k=0
where
ar(1) = J% f_z cos(xt) A (x) e /2% gy,

the quality of the approximation can be assessed by #error:

N 1/2
(E[cosz(xt)] — Za,f(t)) )
k=0

In Fig. 2, we compare the variation in time of t& norm of the function cogxt) (solid line) with theL? norm
of the finite sum(15) with N = 7 terms (dashed line). The dotted lines represent the contributionsd}(zm
fork = 1, 3,5, 7; by symmetryug (r) = 0. The four graphs correspond to four different values of the parameter
a. The finite sums approximate cog) well for short times; the larget, more modes are needed for an accurate
approximation. These graphs demonstrate that a proper scaling of the basis is important for accuracy with an
acceptable number of terms.

We now return to the model problgi®) and approximate the conditional expectatiefp; (x, 7)|x] by a finite-rank
projection of the forn{13), with theh" (x) given by(11). The functions:; (r) are evaluated by averaging the products
¢1(x, 1)k (2) over a collection of 5 10* numerical solutions o) with initial conditions drawn from the canonical
distribution.
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Fig. 2. Solid lines: the variation of th&2 norm of cogxt) in the inner product spacg4). Dashed lines: thé.?2 norm of the finite-rank
approximation(15) with N = 7 terms. Dotted lines:2(¢) for k = 1, 3,5, 7. The four plots correspond to: (@)= 0, (b)o = 0.5, ()« = 1,
and (d)o = 2.
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Fig. 3.c] (¢) versust for o = 0 and various values of. The two dominant functions correspondite= (1, 0) andv = (0, 1).

In Fig. 3, we plot several of the functiong (1) with « = 0, and observe that the two dominant contributions
come from the components= (1, 0) andv = (0, 1). This is consistent with the assumption often made in physics
that the lower order terms are the most significant.

In Fig. 4, we compare the mean solutiaBif¢;(x, 1)|x], £ = (1, 0), generated by Monte Carlo sampling (dotted
lines), with the finite-rank projectiofi3) (solid lines). The top two graphs correspondte- 0 and to (a) 3« 3 and
(b) 6 x 6 basis functions. In the first case, the finite-rank approximation deviates from the true solution already at
short times, although the qualitative properties of the mean solution are well captured. With four times as many basis
functions, better accuracy is preserved for a long timéi¢n 4 (c) and (d), the value af is modified, indicating
how a significant reduction in computational effort can be obtained by scaling the basis functions.

Finally, note that the integrals that define the coefficients in the expansions are over all the componeshiteof
the basis functions are functions onlyigftherefore the series expansion is an expansion, netafr) which may
be very noisy, but o[ (x, r)|x] which is much smoother.

5. The Markovian term in the Langevin equation

We now examine the Markovian term(®x, ¢)) in the Langevirequation (6) For the model probler(8) and P
the conditional expectation, this term can be calculated explicitly:

w2(x, 1)
R(@(x, 1)) = 1
_ 14 -
p1(x, 1) |: + mn @f(x, t):|
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Fig. 4. Comparison of the mean solutidéifip; (x, 1)|X] (dotted lines) and the finite-rank approximatidn, ., ¢y (/)" (X) (solid lines) for the
initial datax = (1, 0). The different graphs correspond to: (a= {0, 1, 2}2 anda = 0, (b)I = {0, ...,5}% ande = 0, (c) I = {0, 1, 2}2 and
a=1,d)I={0,...,5°2anda = 2.
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This expression is a function of all the components aiot only of them = 2 that we wish to work with. Next we
apply the projectior? and we do so now by interchanging the evaluations of RRnd

PR(@(x,1) ~ R(P@(x,1)).

The reader should not be horrified by the commutation of an average with a nonlinear function. The randomness in the
problem is a reflection of the unresolved degrees of freedom@ne alternative to our methodology is neglecting
these degrees of freedom, which removes the randomness and makes the commutation perfectly legitimate. One
is better off preserving these degrees of freedom and mistreating them slightly rather than omitting them. Another
possible construction, more accurate but more expensive, consists of storing samplgécof R for initial data
drawn from the initial distribution and then projecting R just as we proje@ted:) in the previous section.

In what was called “first-order optimal prediction”[i8-5], the second and third terms in the generalized Langevin
equation (6)are dropped; writingb (t) = P(x, t) one obtains the approximate equations:

%@(r) = R(®(2)), @(0) = x. (16)

A convergence proof for this approximation applied to a nonlinear partial differential equation can be ffLO]d in
For the model problen(8), @ (x, t) = (P1(x, t), P2(x, t)), and the first-order optimal prediction equations are

d d 1
— P =@ —Pr=—-P1|1 . 17
! 2, 3 22 1( + 1+®%) (17)

As observed iff6], Eq. (16)are Hamilton’s equations derived from the “effective” Hamiltonian
H®) = —Iog/e‘H(“ dx

provided that if a variable is resolved so is its canonically conjugate variable.

In Fig. 5 we comparebd(¢), obtained by the integration &q. (17)with initial conditions® (0) = (1, 0), to
the functionE[g1(x, 1)|x], £ = (1, 0), resulting from the Monte Carlo sampling. The discrepancy between the two
curves is due to the omission of the memory, [§€6].

While first-order optimal prediction is accurate (in fact, optimal) only for short times, it may be exploited for
longer times as a numerical “predictor” to improve the convergence rate of the finite-rank approxifha}idmne
system(16) is Hamiltonian and in particular time reversible, hence the flow map @ (x, r) is continuous and
invertible (although it may be very complex). Thus, the mean soluliff(x, t)|x] can be written as a function
of @ (x,1). Sinced (x, r) approximatesE[¢(x, r)|x] well for short times, a finite-rank expansion of the latter in
terms of the former may exhibit better convergence. The change of variables tmd(x, ¢) is made easier for a
Hamiltonian system by the following observation#zlf(x), v € I, are orthonormal functions in the inner product
space(9), and® (x, 1) is the solution of(16), then the composite function8'[® (X, )], ¢ fixed, are orthonormal
with respect to the same inner product. Indeedylet € I. Fix 7, and consider

E””=/h"[q§()2,t)]h”[<b()2,t)]e_H(x) drx = /h"[@()?,t)]h”[@()?,t)] (/ e H™ di) di
=/hﬂ[q>(;e,t)]h”[q>(£,t)]e—H@) ds.

Change variablest = @(x, r). Since the mag — & (x, r) is Hamiltonian, it preserves the Lebesgue measure
dx = dy and the effective Hamiltonian®#) = H(® (x, 1)). Thus,

o = / hE ()R (5) e MO dj = / W)Y (§) e T dy =8,
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E[(p1 (x,t)lx1 ,x2]

Fig. 5. Comparison of the mean solutiéifig; (x, ¢)|x] (solid line) and the componeut; () of the solution of the optimal predicticequation

(17) (dashed line) for the initial data = (1, 0).

One can therefore replace the finite-rank projectids) by

Elp;(x, DIEF] ~ Y (9 (v, 1), i [@, DDA [P (&, 1)].

vel

6. Orthogonal dynamics and the memory kernel

We turn now to a general formalism for the evaluation of the néiée, t) and the memory kernét (x, ¢). For
eachj < m, the componenfF; (x, ¢) of the noise is the solution of the orthogonal dynamics equation

d
EF/‘(X, 1) =QLF;(x,t) =LF;(x,t) — PLF;(x, 1), (18)
Fj(x, 0 = QLXj = Rj(x) — R,()’f)
EachF; is computed independently of the otheEs}. (18)is equivalent to the Dyson formula:
19)

t
Fi(x,1) =€ Fj(x,0) —/ e ILPLF; (x, 5) ds.
0
This is a Volterra integral equation fdf; (x, ¢), which we next decompose into its components in an orthonormal
basis: LetP be a finite-rank projection. Then,
Kj(%.5) =PLF;(x.s) = Y _aj(s)h" @), (20)

vel
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where
aj(s) = (LF;(s), h").
Consequently,
e"ILPLF(x,5) = Y al(s)h"(@(x. 1 — 5)).
vel

Substitute this equation in{d9), multiply both sides by, and take the inner product witlt; the result is

t
(LF; (1), ") = (L " F;(0), h*) — / Z a¥(s)(L "™ ¥, b ds.
0 .

vel

This is a Volterra integral equation for the functiarig), which can be rewritten as follows:

t
af (1) = f}' (1) — /0 D aj ()" (1 —5)ds, (21)

vel

where
[l =@ Fj,n", g = Letn, nh.

The functionsfj” (1), g"¥(¢) can be found by averaging over a collection of experiments or simulations, with initial
conditions drawn from the initial distribution without reference to any specific realization; they are time-correlation
functions (i.e., inner products of the for@" g1, g») for some functionsg1, g2) and not dependent on the orthogonal
dynamics. The number of componentsdepends only on the resolution needed in the space of functiafis of
Once thez’ (r) have been calculated, the memory kernel is give(20y.

Finally, we perform the projectio(¥) of the Mori—-Zwanzig equation. The finite-rank projection of the memory
term

t
/ Pel™IEK (%, 5)ds
0

t
/ Z af(s)y""(t — s)h™ (%) ds,
0 .

v,uel

where
AROESC N O}

This implementation of relies on an expansion of the severalp(x, t)) in scaled Hermite series and cannot be
expected to be accurate with a moderate number of terms.

To formulate the algorithms compactly we introduce the matuge8, G, I': A, = a?, Fj, = f]f‘, Gy =g"",
andl,, = y"#,forl<j <mandv, u € I. FirstletF, G be given and solve

t

A1) =F(t)—/ A(s)G(t — s) .
0

The functionP¢(x, t) is approximated by (x, r) obtained by solving either
t

%@(r) = R(®(1)) —l—/ A(S)h(P(r — 5)) ds, @ (0) = x, (22)
0
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Fig. 6. Comparison of the mean solutififip1 (x, 7)|x] (thick line) and the componends, (¢) obtained by solvingq. (22)(thin line) andEg. (23)
(dashed line). The initial data afe= (1, 0).

or
t
%(P(t) = R(®(1)) +/ AG)C(t —s)h(E)ds,  @(0) = %. (23)
0

Some results are shown ffig. 6. The thick line represents the exact solutiBfy; (x, t)|x], the thinner line is
the function®1 () resulting from the integration dR2), whereas the dashed line results from the integration of
(23). The quadratures in the \Volterra equation were performed by the trapezoidal rule, 21 basis furictiens
used, the parameterin the Hermite expansion was = 7/6, the ordinary differential equations were solved by
a Runge—Kutta method, modified to take into account the integral term. The Monte Carlo summations*used 10
sample solutions.

To improve the accuracy of these calculations one can: (1) increase the number of Monte Carlo samples, (2)
decrease the time step, (3) allow the coefficient alpha to change with time, (4) truncate the integral kernel at an
appropriater.

7. Short-memory approximations

In some situations of interest one can expect the support in time of the integrnd(f)to be small, and this
can simplify the calculations. To analyze this situation, start from the Dyson for@@)Nehich can be the starting
point of a perturbative evaluation of. The zeroth-order approximation of this relation is

O gl (24)
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in which one replaces the flow in the orthogonal complement of the ranBégfthe real flow induced by.. Now
consider the second term ig. (6)

/O -9l p gL QLx; ds = fo et PLQ e QLx; ds,
where the insertion of the exti@ is legitimate since - maps functions in the null space Bfback into the same
subspace. Adding and subtracting equal quantities, we find:

PLe® QLx; = PLQe™ QLx; + PLQ(e™ — eh)QLx;,
a Taylor series yields:

e et =7 4+QL+---—T—sL—--. = —sPL+O(s?),

and therefore, usin@QP = 0, we find
t t
/ =L PLeX QLx; ds = f e~ PLQe™ QLx; ds + O(t%).
0 0

If P is the finite-rank projection then

PLeXQLx; = ) "(QLe-QLx;, h")h"(%).

vel

If the correlations(L eXQ- QLx;, k") are significant only over short times, the approximat{@d) provides an
acceptable approximation without requiring the solution of the orthogonal dynamics equation. In statistical physics,
one often makes an even more drastic approximation, in which it is assumed that the correlations vas#s@ for
(see, e.g. the “high frequency approximation[ig, p. 86). Some applications of the short-memory approximation
have been presented|i.

8. The¢-damping equation

A short-memory approximation of particular interest can be derived as follows: Write the memory term of the
Langevin equation

[ k-5 as (25)
Expand the integrand in a Taylor series about 0, retaining only the leading term. The memory term reduces to
[ K6 0.08 =150, (26)

where

S;(x) = PLQLX;.

An alternative derivation uses the formalism of the previous section: (@&eas

t t t
/ eI pLeRL QR; (x) = / Le' 9L e QR;(x) — / e =L e QLQR; (x),
0 0 0
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where we have used the commutationZofind QL with e and L, respectively. At this point, make the ap-
proximation(24) and replace the evolution operator of the orthogonal dynamics by the evolution operator of the
Liouvillian flow, which eliminates the dependence of both integrands, 86) follows readily.

Writing @ (r) ~ P¢(x, t), ther-damping equations are

%05(0 =R(@(®) +tS(P(1), @(0) =1 (27)

The form of this equation is surprising. All that remains of the memory is the coefficiemdl one is left with a
non-autonomous system of ordinary differential equations. No previously computed averages are needed.
For the model problen8) Eq. (27)takes the explicit form

d d 1 P2P,
— @1 = By, —Py=—P1 |1+ —a—r 28
dr 12 T 1( 1+<Df> (1+ ¢2)2 (28)

In Fig. 7, we present a comparison of the compon2it) of the solution ofEq. (28)with E[¢1(x, ¢)|x]. The new
term,tS(®(¢)), leads to a damping of the solution.

We now show that the last term Eyq. (28) which approximates the memory term, leads to a decay just like the
original term did. Sey = (¢, ¢), p = (p, p), and writeL, P, H as

n
L= Z(HP./' dg; — Hy;0p;), (29)
=

0.6

0.4

0.2

E[q>1 (x,t)Ix1 ,x2]

-1 . . . \ .
0 20 40 60 80 100 120
time

Fig. 7. Comparison of the mean solutififips (x, r)|x] (thick line) and the componedt; (1) of the solution of the-dampingequation (28)thin
line) for the initial datat = (1, 0).
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. [ fq.peferdgdp
Pf =
(Pt)(q. p) [eHardzdp

(30)
and
H@. §) = —log f &P gz dj. (31)

The subscripts ii29) represent differentiation.

Theorem 8.1. Suppose H(g, p) = T(p) + V(q). Let

pi = (PL+tPLQL)pi, ¢ = (PL+tPLQL)g; (32)
fori =1,2,...,mwith (g(0), p(0)) given. Then,
2 2

d , . .

dr +

m m
Z(Hl’j - H,,].)qu Z(qu - qu)HPj
j=1 j=1

Thus, if the HamiltoniarH (¢, p) is separable into a kinetic and a potential energy, then the effective Hamiltonian
H for the solution of the-dampingequation (32)s a decreasing function of time. Similar results can be obtained
for Fourier methods applied to Euler’s equations in two- and three-dimensional flows.

Proof. We shall writeEq. (32)in terms of H and H. It follows from(29)—(31)that
Lp; = —qu., PLp; = _PHq,' = _H(1i’ QLp; = (I — P)Lp; = —Hqi + qu.

fori =1,2,...,m. SinceH, and H, do not depend op; (due to the assumed separabilityj Egs. (29) and
(30) imply

PLQLp; = — Z P[H,,(Hg — Hg)q,1. (33)
j=1

To proceed we writdd (g, p) = T (p) + V(g) and get
f Hp, e T dp f(Hqi - Hq,-)qj e V@ dg _

P[H),(Hy — Hy)g] = e T d7 Fevadg =PH,, - P(Hy — Hy,)g;- (34)
For j > m integration by parts gives
[ ™), dgdp
PH, =——-— =0 35
Using (30) we see that

dg; P(Hyg, —Hg,) = P(Hy, —Hg)g; + P[(Hy, — Hg)(—Hy )] + P(Hy —Hg,) - (=1) - P(=Hy,).
But H,, does not depend ap p andP(H,, — H,,) = 0. Thus,

P(Hy, —Hg)g; = P[(Hy — Hg)(Hy;, —Hg)l (36)
Combining(33)—(36)yields

PLQLp; = —P |:(Hi —Hy) Z(Hq/' - Hq_/)Hl’j:| :
=1
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The corresponding expression ftQLg; is
PLQLG = —P | (Hp, —Hp) Y (Hp, — Hy)Hy,
j=1

We can now rewrite the systef82) as
pi = —Hy +tPLQLp;, gi = Hp, +tPLQLq;.

Using the chain rule we find

d o m ) ) m
1@ D) =) (Hydi +Hp i) =1 ) _(Hg,PLQLG: +H,, PLQLP)
i=1 i=1

m

m
=—tP Z(Hpi - Hpi)Hqi Z(HPJ' - HP_f)H(Ij
Li=1 j=1

m

m
—tP Z(Hfji - Hqi)HPi Z(qu - qu)HPj
_i:l j=1

This completes the proof. O

9. Conclusions

We have presented a general method for finding the best approximation of part of the solution of a partially
resolved initial value problem, conditioned by partial initial data. We presented a foremlé&) which describes
exactly the evolution in time of a few components of an underresolved problem. We have also introduced a collection
of methods for approximating the general formula, in general but not always requiring prior information obtainable
by Monte Carlo or by experiment but without reference to specific initial data. Some of the methods are expensive in
practice but provide theoretical insight; some require additional information, for example about correlation times,
which may be available; some are limited in accuracy by the properties of expansions in orthogonal functions.
Many variants are possible. Theoretical issues remain to be discussed in greater depth. The existence of orthogon:
dynamics is established [&2].

We applied the methods to a model problem which is easy to understand and analyze but is not typical of the
problems one encounters in practice. We have not discussed properties of real problems such as separation of scal
or convergence to a partial differential equation which help the application of our methods. We have not explored
the effect of the choice of initial distribution, for example the possible advantages of a microcanonical distribution.
Once the general framework has been established, further variants and assumptions are best discussed within tt
context of specific applications.
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