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Hermite Expansions in Monte-Carlo Computation* 
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The expansion of estimators and estimands in Hermite (or Wiener-Hermite) series 
can substantially improve the accuracy and efficiency of Monte-Carlo algorithms. 

INTRODUCTION 

Monte-Carlo computations often yield numerical answers of limited accuracy, 
and are therefore employed as a last resort. It has been found, however, that some 
of the limitations of Monte-Carlo methods can be overcome through a judicious 
use of orthogonal expansions. When a numerical answer is obtained as the expected 
value of an estimator, expansion of that estimator in a series of orthogonal func- 
tions (or functionals) can reduce the variance of the estimate. Expansion of the 
estimand in orthogonal polynomials can increase accuracy and efficiency and 
simplify the solution of nonlinear problems. Hermite polynomials will be seen to 
play a particularly important role, and the purpose of this paper is to explain 
various aspects of their use through the solution of simple problems in one dimen- 
sion. Generalization to multidimensional problems is immediate, and justifies the 
introduction of these methods. 

The Hermite polynomials 

H,(u) = (-1)” eU2 2 e-U2/c, , n = 0, l,..., c, = d2”n! 

are orthonormal with respect to the weight +J2e-ua, i.e., 

rr-lJa 
I 

H,(u) H,(u) e-+‘du = &, ; 

the set (H,(u) e-U2/2} is complete in L,( - co, + co) [5]. 
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VARIAKE REDUCTION; SOLUTION OF THE HEAT EQUATION 

Let u(x, t) denote the solution of the heat equation 

vt = c,, ) 

with initial data L;(x, 0) -=f(x). We have 

or, writing 

and 

we obtain 

g(x, 24) :- f(x’), 

where 5 is a gaussianly distributed random variable, i.e., the probability that [ lie 
between y and JJ f ~$1 is 

and E[g(x, t)] denotes the expected value of g(x, E). 5 can be readily sampled, e.g., 
by an algorithm due to Paley and Wiener [7, p. 1461. E[g] can be estimated by 
(see [41) 

where the fi arc drawn from the distribution above. The standard deviation SD 
of this estimate, which yields the order of magnitude of the error: is 

and may be inacceptably large for reasonable sample sizes N. Our goal is to obtain 
an estimate of v with smaller SD. 

581/8/3-1x 



474 CHORIN 

Assume g(x, U) e-u2/2 lies in L,(--co, +co) as a function of U, and expand 
g(x, U) e-ua/2 in Hermite series as a function of U: 

g(x, 24) e-u2/2 = f, a,H,(u) e-u2/2, 
n=l 

or 

where 

a IL = Z--V 
s 

H,(u) g(x, u) eP2 du 

We note (i) a,, = U(X, t), (ii) E[a,H,([)] = 0, II 2 1, (iii) a, can be evaluated by 
the same process, using the same samples Ei as U(X, t) = a, . The method of 
reduction of the SD will be based on the following observations: For any n + 1 
constants b, , b, ,..., b, , we have 

This identity does not imply that if the expectation on the left side and the expecta- 
tion on the right side are estimated by a Monte-Carlo algorithm, the SD’s will be 
equal. Thus we look for constants b, which would lead to a SD as small as 
possible. If we could set b, = a, , the function whose expected value is being taken 
on the right side would be small, and so would be the SD of the estimate. Since 
the a, are not known, we estimate them in the course of computation; these 
estimates will differ from the true a,, but will still lead to a major reduction in 
variance if the resulting estimator is used rather than the original estimator; this 
will be shown below. 

It is worth noting that for m = 0 (i.e., only the zero order term is used in the 
series), our method reduces to the standard variance reduction by subtraction of 
the estimate [4]. 

We thus proceed as follows: We generate N samples fi , estimate an by 

N 
a,* = N-l C g(x, fi) IT,(&), n = 0, l,..., m, 
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and then pick N new samples Ei and estimate c(x, t) using 

c(x, t) = a,* + E 
[ 
g(x, 0 -- f u,*H,(() ) 

I !4a) 
0 0 

i.e., 

It should be noted that although the a,* are random variables, the expected value 
in (4a) is not, since this expected value is independent of the values of the coefficients 
of H,(t). Furthermore, the a,* are independent of the H,(E,‘), since new samples 
Ei have been generated. We have, in fact, a random estimator with a nonrandom 
expected value. However, the SD of the estimate (4b) will, of course, be random. 

The SD of the estimate an* of a, is bounded by 

1/e J 
Let C = = lim sup ;f(x); ; the SD of a,* is bounded by 

-CC<.T.:32 

thus, a,* :.: a,, + 6a, , Sa, -= O(CN-‘I’). Put 

rtn = &7(x, u) - f %JL(u), 
n=n 

:i rnr ,;2 =-.: sT-v r,2@ &; 

r,,, is the remainder in the expansion of 0”. Thus 

Ax, 8 - fj a,*ZfdE> = r, - f hH,(5) 
n=n n-n 

and the estimate (4b) of v has SD 
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which is bounded by 

which, in turn, is bounded by 

N-1/2 (j r, I; + N-lo(cm). (5) 

For fixed m, (5) is O(N-‘12) for large N, but the constant may be small; thus we 
have an effective way for reducing variance. Forfsmooth enough and m == O(M); 
E > 0, (5) is O(N-cl-‘)). For each N, an optimum m could be determined by trial 
and error. For moderate m, the amount of labor required is not substantially larger 
than twice the amount required in a more standard computation; the recursion 
relations between Hermite polynomials can be put to good use. The increase in 
accuracy may be substantial. In Table I the results of a test computation are 
exhibited. The initial data are f(x) = sin TX; t = 0.049382. The results of a 
nonaccelerated computation, a computation with m = 4, as well as their respective 
SD’s, are compared with the exact answer. A method for reducing variance further 
with no increase in N will be presented in the next section. 

TABLE I 

Hermite Acceleration of a Monte-Carlo Computation 
(t = 0.049382, N L 1000) 

X,!P No acceleration In -x 4 Exact answer 

0.1 0.2070 k 0.019 0.1902 f 0.0013 0.1898 
0.2 0.3654 i 0.018 0.3627 & 0.0015 0.3610 
0.3 0.4945 rt 0.016 0.4963 i- 0.0019 0.4969 
0.4 0.5806 & 0.014 0.5841 * 0.0007 0.5841 
0.5 0.6041 :: 0.014 0.6146 + 0.0004 0.6142 

It should be noted that, in quadrature problems over bounded intervals, ortho- 
gonal polynomials other than Hermite polynomials may be used. In particular, the 
uniform boundedness of Legendre polynomials in the maximum norm makes 
possible an iterated use of the preceding procedure and further drastic reduction 
in variance. 

The solution of the heat equation was reduced to a quadrature problem because 
the Green’s function was known in advance. The acceleration method is in no way 
restricted to such special cases, and, in fact, may be used to generate Green’s 
functions. In particular, the acceleration method is applicable whenever the solution 
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can be represented, explicitly or implicitly, as a function-space integral. It is 
obvious that c:(x, rj has such a representation: Let C be the space of real functions 
z(t), continuous on the interval 0 <. t ~2: I1 such that z(0) : 0; let c/z denote the 
Wiener measure on C [7, 81. Let f[z] be the functional on C dcfincd by 

Then 
F[z] = g(x, z(l)). 

6(X, t) = j F[z] LIZ. 

As a further illustration, consider the solution L.,,~(x: t) of the heat Eq. (1) on 
a *.:; x :-.: h, with c,,[,(x, 0) -f( x , ~,.~,(a, t) : A, z(b: t) =. B. Put (x - x’); &i&1, ) 
f(x-‘) = g(x. u): as above, and CI’ :- (x - a)/t’a, h’ := (x -- h)!;@. 

Let FflFh[z] be the functional on C defined by Fg:;.Jz] == g(x, z(1)) if z(t) 2’. a’; 
~(1) / h’, 0 :.< t :<: I, I;;,Jz] =- A if z(tl) -= n’, t, in [0, I], and z(t) iI’ L7’, 0 ::::. 1 -;c I, 
Ffl,b[~] = B otherwise. 
Then 

2:,.7,(x, r) =- I‘ F,‘,,[Z] dz. 

the random paths z(t) are readily constructed, and an estimator of 17,,J;c. t) 
obtained. Our goal is to reduce the variance of the estimate. To achieve this 
reduction, we expand Fn,Jz] in Wiener-Hermite functionals (for definitions and 
proof of completeness, see [l]). Wiener-Hcrmite functionals are Hermite functions 
of “linear functionals of the paths”. If q is an integer such that in the time 
interval t;‘q a negligible fraction of paths z(t) can reach the boundary z :--. U’ 
or z =- b’: then at most q arguments need be used in the expansion. There is no 
crucial difference between the expansion of a functional of a one-dimensional 
path in Wiener-Hermite functionals in q arguments and the expansion of a Cunc- 
tional of a q-dimensional path in q-dimensional Hermite polynomial series. The 
construction of expansion coeffkients is obvious. 

SCALING 

The method of acceleration discussed above is of course most effective when the 
Hermite expansion of g(x, u) is rapidly convergent. The rate of convergence of 
the expansion is to some extent under our control. For any x > 0 WC have 

or 

c(x, t) =v E[gJx, f,)], P(y < f, < y J dy) := (T:.x)y’2 c-f? dy. 

58X/8/3-1 I * 
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& is readily sampled. We now expand g, in Hermite series with argument l/;;;u, 
which may converge more rapidly than the expansion of g(x, U) in a series with 
argument U. No optimal determination of 01 has been made. The following heuristic 
consideration is helpful: cy should be chosen so that g, and H,( 6~) have com- 
parable characteristic lengths, i.e., they vary by comparable relative amounts over 
equal ranges of u. We have, of course, 

The scaling is essential for estimating U(X, t) for large t. For n: < 1 we have the 
added advantage that g,, decays more rapidly as u -> &-cc than g, thus reducing 
the variance of a,” for n large enough. 

TABLE II 

Hermite Acceleration with Scaling 
(t = 0.049382, 1 = 4, N s= 1000) 

Scaled problem 
X/X (no acceleration) m-4 Exact solution 

__-.- .--.-- -. - -..-_- - - -. -__-_ - -. .- 
0.1 0.2032 I: 0.020 0.1892 5 0.0009 0.1898 
0.2 0.3563 f- 0.019 0.3610 k 0.001 I 0.3610 
0.3 0.4948 5 0.019 0.4961 t 0.0009 0.4969 
0.4 0.5922 I 0.018 0.5851 h 0.0013 0.5841 
0.5 0.6109 + 0.018 0.6141 ~1 0.0007 0.6142 

TABLE III 

Hcrmite Acceleration with Scaling 
(t = 0.049382, YX = 4, N = 10000) 

Scaled problem 
X/T (no acceleration) m-4 

.--- -.- -----..- --.- - 
0.1 0.1906 f 0.0064 0.1893 -I. 0.0003 
0.2 0.3713 .+ 0.0063 0.3610 3 O.OW3 
0.3 0.4906 * 0.0061 0.4969 + 0.0002 
0.4 0.5841 + 0.0060 0.5841 + 0.0002 
0.5 0.6204 + 0.0059 0.61421 T 0.0001 

Exact solution 
.-.- ---- 

0.1898 
0.3610 
0.4969 
0.5841 
0.61422 

Tables II and III exhibit the result of a computation with OL --: h on the example 
of the preceding section. One can see that scaling of the unaccelerated computation 
is harmful, while its effect on the acceleration is mildly beneficial. Table III is 
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similar to Table 11 except for the increase in N. The increase in accuracy through 
acceleration is of order 30, which would have required a 900-fold increase in 
computational elrort were it to be achieved by an increase in hr. The SD’s Iistcd 
in the third column of Table 111 are as small as can be achieved without special 
precautions to limit the effect of round-off error. Qualitatively similar results 
were obtained in a number of examples, and in particular for all values of 1. 

EXPANSION OFTHE ESTIMAND;SOLUTION OF AN INTEGRAL EQUATION 

A Monte-Carlo computation typically yields estimates of a finite set of numbers. 
In the preceding sections it was shown how the expansion of the estimator can 
make these estimates more accurate. If the solution of the problem is a function, 
the question arises: which finite set of numbers should be evaluated to yield the 
most information about that function and to take advantage of the fact that 
Monte-Carlo computations arc not tied to a finite grid. A reasonable answer can 
often be obtained by expending the estimated function in Hermite polynomials. 
For example: if the object of the calculations is to obtain a Green’s function, one 
can readily construct an estimator for the n-th coefficient of its Hermite expansion, 
to which the acceleration technique can then be applied. 

In kinetic theory one encounters problems whose solutions J(xl , xi! ,...) are 
close to Gaussian [a function f(x) is said to be close to Gaussian if, for some 
,8,f(x) eBzc2 has a rapidly converging Hermite expansion], are functions of 2 or 3 
variables, and can be expressed as integrals of higher multiplicity of an integrand 
which is not close to Gaussian. An appropriate procedure is to evaluate these 
functionsJ‘at the roots of a Hermite polynomial and then construct the Hermite 
expansions off by Gauss-Hermite quadrature [5]. As an illustration of this 
technique, consider the integral equation 

2 j p(2u - u)p*(u) du = p(u), (7) 

with 

p*(u) :-= (7~RT,,-lp e+‘lRTo, R, To constants, 

P(U) ‘2 0, J - p(u) du = 1. 

p(u) is the equilibrium velocity distribution in a one-dimensional phase space of 
particles which collide with target particles of another species. When a particle 
with velocity u collide with a target particle of velocity t’, it acquires the velocity 

u’ = u - e(u - u), 6 = * (“soft” collision). 
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The solution of (7) is 

P(M) = (~R7-)-‘i2 e--u’IR=, T = 2 = 1 zPp(u) dzr. 

Introduce an artiticial time t and assume that during a time step each particle in 
phase space undergoes exactly one collision. Let p”(u) be an initial guess of p(u); 
after the n-th time-step we have 

P&d = J%L1(2~~ - 01: 
where 

Define 7,. 1 = J u2pp,-,(u) du, and evaluate u at the I points Us -= DART,-, xi, 
i = I,..., 1. xi the roots of a Hermite polynomial of degree /, using a Monte-Carlo 
method with acceleration. Assume y,(u) is in L, , and expand p,(u) P’I*~~~-I in 
Hcrmite series: 

or 

-- 
p,(u) g 2 djHj(u~~‘RTn-,)(~RT,._,)-‘:;J c’I’I.~=~--I , 

j=fJ 
(8) 

where 

d, =: /” p,(u) Hj(u:‘v’ RTn-,) du. 
. 

The integrals which yield (I, are performed by Gaussian quadrature. In particular, 
sp,(u) & 7 1 (conservation of mass) implies d,, = 1. Define ~LI~~(),,(zI) t/u = T, , 
and proceed to the next step. 

In Table IV the results of such a computation arc exhibited. IZ is the number of 
steps; sp,(u) du = ‘I,, is evaluated by Monte-Carlo and quadrature rather than 
set equal to 1, and affords a check on accuracy. R = 0.1, To = 1; T, should, and 
does, tend to l/3. The calculation uses a four-term acceleration without scaling, 
(m = 4), I -= 7, M -= 6, IV = 10000, p0 = (rrRT,,)--li2 e-“‘lzKTn. After 5 steps, 
1 dj 1 -.< 0.01 forj > 1. 
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TABLE IV 
Solution of an Integral Equation 

(N -. loooo, M :- 4: I = 7) 

No. of steps J P”(U) & r, -- J u~p,,(u) flu 
-__- -. - .-.. - - -. -. - .- -. - -. - -. - - 

0 1 1 
1 0.998 0.491 
2 0.999 0.366 
3 0.997 0.342 
4 1.0009 0.337 
5 1.0007 0.334 

Several points remain to be made: M, the number of terms in (8), should be 
determined in the course of computation. Instead of (8) we could write, more 
generally, 

where 9 is a scale factor, to be chosen for maximum computational convenience, 
and which may very in time (as above) and in multidimensional problems, from 
direction to direction. If M were predetermined and s fixed, (9) would be closely 
related to the expansion used by Grad [3]. 

Most importantly, the present technique can be used in nonlinear problems: 
Suppose the problem were to solve 

2 j-P@ u -- c)p(L’) dc -7 p(u), (10) 

i.e., the molecules collided with their own kind. If p,(u) has the expansion (9), then 

JJ,&. ,(u) = 2 t/‘s E p,,(2u - E) . f 
L 

f/J,(E) 
1 

: 
)=I 

For applications, see [2]. (10) has, of course, only the trivial solution for which 
Jp(u) u* du = 0. 
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