Kontsevich's Formula for Rational Plane Curves

An adventure in enumerative algebraic geometry

Connor Halleck-Dubé

Table of contents

1. Enumerative Algebraic Geometry
2. Counting Curves
3. Counting Rational Curves

Enumerative Algebraic Geometry

What is enumerative algebraic geometry?

- enumerative $=$ counting

What is enumerative algebraic geometry?

- enumerative = counting
- algebraic geometry = the geometry of polynomial equations

What is enumerative algebraic geometry?

- enumerative $=$ counting
- algebraic geometry = the geometry of polynomial equations

- The Problem of Apollonius: Given 3 circles in the plane, how many circles are tangent to all three?

What is enumerative algebraic geometry?

- enumerative = counting
- algebraic geometry = the geometry of polynomial equations

- The Problem of Apollonius: Given 3 circles in the plane, how many circles are tangent to all three?

The Problem of Apollonius

Counting Curves

A problem in enumerative algebraic geometry

- In this talk, a curve means a projective plane curve over the complex numbers

A problem in enumerative algebraic geometry

- In this talk, a curve means a projective plane curve over the complex numbers
- That is, curves are considered inside the projective plane \mathbb{P}^{2} over \mathbb{C}

A problem in enumerative algebraic geometry

- In this talk, a curve means a projective plane curve over the complex numbers
- That is, curves are considered inside the projective plane \mathbb{P}^{2} over C
- This is a space (topological space, manifold, variety, scheme, ...) given by adding some points at infinity to \mathbb{C}^{2}

A problem in enumerative algebraic geometry

- In this talk, a curve means a projective plane curve over the complex numbers
- That is, curves are considered inside the projective plane \mathbb{P}^{2} over C
- This is a space (topological space, manifold, variety, scheme, ...) given by adding some points at infinity to \mathbb{C}^{2}
- The points of \mathbb{P}^{n} are homogeneous coordinates: $(n+1)$-tuples up to rescaling $\left[x_{0}: \cdots: x_{n}\right] \sim\left[c x_{0}: \cdots: c x_{n}\right]$

A problem in enumerative algebraic geometry

- In this talk, a curve means a projective plane curve over the complex numbers
- That is, curves are considered inside the projective plane \mathbb{P}^{2} over C
- This is a space (topological space, manifold, variety, scheme, ...) given by adding some points at infinity to \mathbb{C}^{2}
- The points of \mathbb{P}^{n} are homogeneous coordinates: $(n+1)$-tuples up to rescaling $\left[x_{0}: \cdots: x_{n}\right] \sim\left[c x_{0}: \cdots: c x_{n}\right]$
- A curve in \mathbb{P}^{2} is defined by the vanishing of a single homogeneous polynomial in three variables

A problem in enumerative algebraic geometry

- In this talk, a curve means a projective plane curve over the complex numbers
- That is, curves are considered inside the projective plane \mathbb{P}^{2} over \mathbb{C}
- This is a space (topological space, manifold, variety, scheme, ...) given by adding some points at infinity to \mathbb{C}^{2}
- The points of \mathbb{P}^{n} are homogeneous coordinates: $(n+1)$-tuples up to rescaling $\left[x_{0}: \cdots: x_{n}\right] \sim\left[c x_{0}: \cdots: c x_{n}\right]$
- A curve in \mathbb{P}^{2} is defined by the vanishing of a single homogeneous polynomial in three variables
- E.g. $C: y^{2} z=x^{3}-x z^{2}$ is the curve in \mathbb{P}^{2} corresponding to elliptic curve $y^{2}=x^{3}-x$ in \mathbb{C}^{2}

A problem in enumerative algebraic geometry

- In this talk, a curve means a projective plane curve over the complex numbers
- That is, curves are considered inside the projective plane \mathbb{P}^{2} over \mathbb{C}
- This is a space (topological space, manifold, variety, scheme, ...) given by adding some points at infinity to \mathbb{C}^{2}
- The points of \mathbb{P}^{n} are homogeneous coordinates: $(n+1)$-tuples up to rescaling $\left[x_{0}: \cdots: x_{n}\right] \sim\left[c x_{0}: \cdots: c x_{n}\right]$
- A curve in \mathbb{P}^{2} is defined by the vanishing of a single homogeneous polynomial in three variables
- E.g. C : $y^{2} z=x^{3}-x z^{2}$ is the curve in \mathbb{P}^{2} corresponding to elliptic curve $y^{2}=x^{3}-x$ in \mathbb{C}^{2}
- E.g. $C^{\prime}: y^{2}-x^{2}=0$ and $(y-x)^{2}=0$ both define degree 2 "curves" (Rather degenerate ones)

A problem in enumerative algebraic geometry

- Question: How many plane curves of degree d go through k points?

A problem in enumerative algebraic geometry

- Question: How many plane curves of degree d go through k points?
- $(d=1, k=2)$

A problem in enumerative algebraic geometry

- Question: How many plane curves of degree d go through k points?
- $(d=1, k=2)$

There is 1 line through 2 points.

A problem in enumerative algebraic geometry

- Question: How many plane curves of degree d go through k points?
- $(d=1, k=2)$

There is 1 line through 2 points.

- $(d=2, k=2)$

A problem in enumerative algebraic geometry

- Question: How many plane curves of degree d go through k points?
- $(d=1, k=2)$

There is 1 line through 2 points.

- $(d=2, k=2)$

A problem in enumerative algebraic geometry

- Question: How many plane curves of degree d go through k points?
- $(d=1, k=2)$

There is 1 line through 2 points.

- $(d=2, k=2)$

There are ∞ degree 2 curves through 2 points.

A problem in enumerative algebraic geometry

- $(d=1, k=3)$

There are (usually) 0 lines (degree 1 curves) through 3 points.

A problem in enumerative algebraic geometry

- $(d=1, k=3)$

There are (usually) 0 lines (degree 1 curves) through 3 points.

- Let's tabulate the results:

A problem in enumerative algebraic geometry

- $(d=1, k=3)$

There are (usually) 0 lines (degree 1 curves) through 3 points.

- Let's tabulate the results:

k															
d	1	2	3	4	5	6	7	8	9	10					
1	∞	1	0	0	0	0	0	0	0	0					
2	∞	∞	∞	∞	1	0	0	0	0	0					
3	∞	1	0												

A problem in enumerative algebraic geometry

- $(d=1, k=3)$

There are (usually) 0 lines (degree 1 curves) through 3 points.

- Let's tabulate the results:

k															
d	1	2	3	4	5	6	7	8	9	10					
1	∞	1	0	0	0	0	0	0	0	0					
2	∞	∞	∞	∞	1	0	0	0	0	0					
3	∞	1	0												

- A "sweet spot": $k=\frac{1}{2}\left(d^{2}+3 d\right)$

A problem in enumerative algebraic geometry

- $(d=1, k=3)$

There are (usually) 0 lines (degree 1 curves) through 3 points.

- Let's tabulate the results:

	1	2	3	4	5	6	7	8	9	10
1	∞	1	0	0	0	0	0	0	0	0
2	∞	∞	∞	∞	1	0	0	0	0	0
3	∞	1	0							

- A "sweet spot": $k=\frac{1}{2}\left(d^{2}+3 d\right)$
- Uninteresting counting problem: answer is always $\infty, 1,0$.

A problem in enumerative algebraic geometry

- $(d=1, k=3)$

There are (usually) 0 lines (degree 1 curves) through 3 points.

- Let's tabulate the results:

| | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | ∞ | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | ∞ | ∞ | ∞ | ∞ | 1 | 0 | 0 | 0 | 0 | 0 |
| 3 | ∞ | 1 | 0 |

- A "sweet spot": $k=\frac{1}{2}\left(d^{2}+3 d\right)$
- Uninteresting counting problem: answer is always $\infty, 1,0$.

Caviat: to get uniform answers, we need to assume the points are in "general position": no three lie on a line.

Counting Plane Curves

- Geometric context: interpret in terms of the moduli space of plane curves of degree d.

Counting Plane Curves

- Geometric context: interpret in terms of the moduli space of plane curves of degree d.
- Roughly, a moduli space is some way of equipping the set of such curves with geometric structure.

Counting Plane Curves

- Geometric context: interpret in terms of the moduli space of plane curves of degree d.
- Roughly, a moduli space is some way of equipping the set of such curves with geometric structure.
- General plane curve of degree d is determined by its coefficients $a_{0} x^{3}+a_{1} x^{2} y+a_{2} x^{2} z+a_{3} x y^{2}+a_{4} x y z+a_{5} x z^{2}+a_{6} y^{3}+a_{7} y^{2} z+a_{8} y z^{2}+a_{9} z^{3}$ up to rescaling. How many?

Counting Plane Curves

- Geometric context: interpret in terms of the moduli space of plane curves of degree d.
- Roughly, a moduli space is some way of equipping the set of such curves with geometric structure.
- General plane curve of degree d is determined by its coefficients $a_{0} x^{3}+a_{1} x^{2} y+a_{2} x^{2} z+a_{3} x y^{2}+a_{4} x y z+a_{5} x z^{2}+a_{6} y^{3}+a_{7} y^{2} z+a_{8} y z^{2}+a_{9} z^{3}$
up to rescaling. How many?
- 3 choose d with replacement: $\binom{d+2}{2}=\frac{1}{2}(d+2)(d+1)=\frac{1}{2}\left(d^{2}+3 d\right)+1$.

Counting Plane Curves

- Geometric context: interpret in terms of the moduli space of plane curves of degree d.
- Roughly, a moduli space is some way of equipping the set of such curves with geometric structure.
- General plane curve of degree d is determined by its coefficients $a_{0} x^{3}+a_{1} x^{2} y+a_{2} x^{2} z+a_{3} x y^{2}+a_{4} x y z+a_{5} x z^{2}+a_{6} y^{3}+a_{7} y^{2} z+a_{8} y z^{2}+a_{9} z^{3}$
up to rescaling. How many?
- 3 choose d with replacement:
$\binom{d+2}{2}=\frac{1}{2}(d+2)(d+1)=\frac{1}{2}\left(d^{2}+3 d\right)+1$.
- The moduli space of plane curves of degree d is $M_{d}:=\mathbb{P}^{N}$, $N=\frac{1}{2}\left(d^{2}+3 d\right)$.

Geometric interpretation

- The condition of containing a point is a linear condition on the coefficients

Geometric interpretation

- The condition of containing a point is a linear condition on the coefficients
- E.g. the condition of containing $p=[1: 0: 0]$ gives the linear condition $a_{0}=0$.

Geometric interpretation

- The condition of containing a point is a linear condition on the coefficients
- E.g. the condition of containing $p=[1: 0: 0]$ gives the linear condition $a_{0}=0$.
- Thus, each point determines a hyperplane (codimension 1 linear subspace) in the moduli space of degree d curves

Geometric interpretation

- The condition of containing a point is a linear condition on the coefficients
- E.g. the condition of containing $p=[1: 0: 0]$ gives the linear condition $a_{0}=0$.
- Thus, each point determines a hyperplane (codimension 1 linear subspace) in the moduli space of degree d curves
- Points in general position \Longleftrightarrow the conditions are linearly independent, so this is essentially linear algebra

Geometric interpretation

- The condition of containing a point is a linear condition on the coefficients
- E.g. the condition of containing $p=[1: 0: 0]$ gives the linear condition $a_{0}=0$.
- Thus, each point determines a hyperplane (codimension 1 linear subspace) in the moduli space of degree d curves
- Points in general position \Longleftrightarrow the conditions are linearly independent, so this is essentially linear algebra
- Geometric interpretation: intersecting N independent hyperplanes inside $M=\mathbb{P}^{N}$ gives a single point

Geometric interpretation

- The condition of containing a point is a linear condition on the coefficients
- E.g. the condition of containing $p=[1: 0: 0]$ gives the linear condition $a_{0}=0$.
- Thus, each point determines a hyperplane (codimension 1 linear subspace) in the moduli space of degree d curves
- Points in general position \Longleftrightarrow the conditions are linearly independent, so this is essentially linear algebra
- Geometric interpretation: intersecting N independent hyperplanes inside $M=\mathbb{P}^{N}$ gives a single point
- Translated an enumerative problem into a problem about the geometry of a single object, the moduli space

Counting Rational Curves

Rational Curves

- A (projective, plane) curve is called rational if it admits a rational parameterization

Rational Curves

- A (projective, plane) curve is called rational if it admits a rational parameterization
- E.g. if there exist rational functions $x(t), y(t)$ such that $t \mapsto[x(t): y(t): 1]$ bijects points of the curve with \mathbb{C} (wherever defined).

Rational Curves

- A (projective, plane) curve is called rational if it admits a rational parameterization
- E.g. if there exist rational functions $x(t), y(t)$ such that $t \mapsto[x(t): y(t): 1]$ bijects points of the curve with \mathbb{C} (wherever defined).
- Equivalently (theorem): the curve admits a map from \mathbb{P}^{1} which is injective away from finitely many points ("generically").

Rational Curves

- A (projective, plane) curve is called rational if it admits a rational parameterization
- E.g. if there exist rational functions $x(t), y(t)$ such that $t \mapsto[x(t): y(t): 1]$ bijects points of the curve with \mathbb{C} (wherever defined).
- Equivalently (theorem): the curve admits a map from \mathbb{P}^{1} which is injective away from finitely many points ("generically").
- Also equivalently: topologically, the curve is a sphere minus finitely many points

Rational Curves

- A (projective, plane) curve is called rational if it admits a rational parameterization
- E.g. if there exist rational functions $x(t), y(t)$ such that $t \mapsto[x(t): y(t): 1]$ bijects points of the curve with \mathbb{C} (wherever defined).
- Equivalently (theorem): the curve admits a map from \mathbb{P}^{1} which is injective away from finitely many points ("generically").
- Also equivalently: topologically, the curve is a sphere minus finitely many points
- The curve $y^{2} z=x^{3}-x^{2} z$ is rational: $t \mapsto\left[t^{2}+1: t\left(t^{2}+1\right): 1\right]$ is a rational parameterization

Rational Curves

- A (projective, plane) curve is called rational if it admits a rational parameterization
- E.g. if there exist rational functions $x(t), y(t)$ such that $t \mapsto[x(t): y(t): 1]$ bijects points of the curve with \mathbb{C} (wherever defined).
- Equivalently (theorem): the curve admits a map from \mathbb{P}^{1} which is injective away from finitely many points ("generically").
- Also equivalently: topologically, the curve is a sphere minus finitely many points
- The curve $y^{2} z=x^{3}-x^{2} z$ is rational: $t \mapsto\left[t^{2}+1: t\left(t^{2}+1\right): 1\right]$ is a rational parameterization
- (Exercise) The elliptic curve $y^{2} z=x^{3}-x z^{2}$ is not rational

Rational Curves

- A (projective, plane) curve is called rational if it admits a rational parameterization
- E.g. if there exist rational functions $x(t), y(t)$ such that $t \mapsto[x(t): y(t): 1]$ bijects points of the curve with \mathbb{C} (wherever defined).
- Equivalently (theorem): the curve admits a map from \mathbb{P}^{1} which is injective away from finitely many points ("generically").
- Also equivalently: topologically, the curve is a sphere minus finitely many points
- The curve $y^{2} z=x^{3}-x^{2} z$ is rational: $t \mapsto\left[t^{2}+1: t\left(t^{2}+1\right): 1\right]$ is a rational parameterization
- (Exercise) The elliptic curve $y^{2} z=x^{3}-x z^{2}$ is not rational
- Theorem: For degree-d plane curves, rationality is equivalent to the curve having $(d-1)$ singularities (counted appropriately)

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?
- The "sweet spot" is $k=3 d-1$

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?
- The "sweet spot" is $k=3 d-1$
- Again we tabulate: (Antiquity, Steiner 1848)

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?
- The "sweet spot" is $k=3 d-1$
- Again we tabulate: (Antiquity, Steiner 1848)

		1	2	3	4	5	6	7	8	9	10
		∞	?	0	0	0	0	0	0	0	0
		∞	∞	∞	∞	?	0	0	0	0	0
		∞	?	0	0						

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?
- The "sweet spot" is $k=3 d-1$
- Again we tabulate: (Antiquity, Steiner 1848)

		1	2	3	4	5	6	7	8	9	10
		∞	1	0	0	0	0	0	0	0	0
		∞	∞	∞	∞	?	0	0	0	0	0
		∞	?	0	0						

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?
- The "sweet spot" is $k=3 d-1$
- Again we tabulate: (Antiquity, Steiner 1848)

		1	2	3	4	5	6	7	8	9	10
		∞	1	0	0	0	0	0	0	0	0
		∞	∞	∞	∞	1	0	0	0	0	0
		∞	?	0	0						

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?
- The "sweet spot" is $k=3 d-1$
- Again we tabulate: (Antiquity, Steiner 1848)

Counting Rational Curves: Some History

- Question: How many rational curves of degree d pass through k points?
- The "sweet spot" is $k=3 d-1$
- Again we tabulate: (Antiquity, Steiner 1848)

- (Zeuthen 1873) $N_{4}=620$

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?
- Build a moduli space of rational curves (much more interesting geometry than all curves!)

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?
- Build a moduli space of rational curves (much more interesting geometry than all curves!)
- Starting point: a degree-d map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by 3 binary forms of degree d (up to rescaling) which do not simultaneously vanish:

$$
[x: y] \mapsto\left[a_{0} x^{d}+a_{1} x^{d-1} y+\cdots+a_{d} y^{d}: \cdots: c_{0} x^{d}+\cdots+c_{d} y^{d}\right]
$$

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?
- Build a moduli space of rational curves (much more interesting geometry than all curves!)
- Starting point: a degree-d map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by 3 binary forms of degree d (up to rescaling) which do not simultaneously vanish:

$$
[x: y] \mapsto\left[a_{0} x^{d}+a_{1} x^{d-1} y+\cdots+a_{d} y^{d}: \cdots: c_{0} x^{d}+\cdots+c_{d} y^{d}\right]
$$

- So a moduli space for degree-d maps $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by $W_{d}:=\mathbb{P}^{3 d-1}$

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?
- Build a moduli space of rational curves (much more interesting geometry than all curves!)
- Starting point: a degree-d map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by 3 binary forms of degree d (up to rescaling) which do not simultaneously vanish:

$$
[x: y] \mapsto\left[a_{0} x^{d}+a_{1} x^{d-1} y+\cdots+a_{d} y^{d}: \cdots: c_{0} x^{d}+\cdots+c_{d} y^{d}\right]
$$

- So a moduli space for degree-d maps $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by $W_{d}:=\mathbb{P}^{3 d-1}$
- Two problems:

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?
- Build a moduli space of rational curves (much more interesting geometry than all curves!)
- Starting point: a degree-d map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by 3 binary forms of degree d (up to rescaling) which do not simultaneously vanish:

$$
[x: y] \mapsto\left[a_{0} x^{d}+a_{1} x^{d-1} y+\cdots+a_{d} y^{d}: \cdots: c_{0} x^{d}+\cdots+c_{d} y^{d}\right]
$$

- So a moduli space for degree-d maps $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by $W_{d}:=\mathbb{P}^{3 d-1}$
- Two problems:
- (1) different parameterizations of same curve

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?
- Build a moduli space of rational curves (much more interesting geometry than all curves!)
- Starting point: a degree-d map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by 3 binary forms of degree d (up to rescaling) which do not simultaneously vanish:

$$
[x: y] \mapsto\left[a_{0} x^{d}+a_{1} x^{d-1} y+\cdots+a_{d} y^{d}: \cdots: c_{0} x^{d}+\cdots+c_{d} y^{d}\right]
$$

- So a moduli space for degree-d maps $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by $W_{d}:=\mathbb{P}^{3 d-1}$
- Two problems:
- (1) different parameterizations of same curve
- (2) some maps are not generically injective

Counting Rational Curves

- Question: How many rational curves of degree d pass through k points?
- Build a moduli space of rational curves (much more interesting geometry than all curves!)
- Starting point: a degree-d map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by 3 binary forms of degree d (up to rescaling) which do not simultaneously vanish:

$$
[x: y] \mapsto\left[a_{0} x^{d}+a_{1} x^{d-1} y+\cdots+a_{d} y^{d}: \cdots: c_{0} x^{d}+\cdots+c_{d} y^{d}\right]
$$

- So a moduli space for degree-d maps $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$ is given by $W_{d}:=\mathbb{P}^{3 d-1}$
- Two problems:
- (1) different parameterizations of same curve
- (2) some maps are not generically injective
- Solution: consider the quotient $M_{d}^{\text {rat }}:=W_{d} / \operatorname{Aut}\left(\mathbb{P}^{1}\right)$ geometrically (naturally a stack) - the moduli space of rational degree d plane curves

Compactifying M_{d}

- Sweet spot? What k makes (\# rational deg d curves through k points) finite?

Compactifying M_{d}

- Sweet spot? What k makes (\# rational deg d curves through k points) finite?
- $\operatorname{dim} M_{d}^{\text {rat }}=3 d-1$, so expect $k=3 d-1$ (each point should cut down moduli space by 1 dimension)

Compactifying M_{d}

- Sweet spot? What k makes (\# rational deg d curves through k points) finite?
- $\operatorname{dim} M_{d}^{\text {rat }}=3 d-1$, so expect $k=3 d-1$ (each point should cut down moduli space by 1 dimension)
- New problem: $M_{d}^{\text {rat }}$ is not compact - makes intersection theory inside it less uniform

Compactifying M_{d}

- Sweet spot? What k makes (\# rational deg d curves through k points) finite?
- $\operatorname{dim} M_{d}^{\text {rat }}=3 d-1$, so expect $k=3 d-1$ (each point should cut down moduli space by 1 dimension)
- New problem: $M_{d}^{\text {rat }}$ is not compact - makes intersection theory inside it less uniform
- Compare to \mathbb{C}^{2} vs \mathbb{P}^{2} : parallel lines in \mathbb{C}^{2}, none exist in \mathbb{P}^{2}

Compactifying M_{d}

- Sweet spot? What k makes (\# rational deg d curves through k points) finite?
- $\operatorname{dim} M_{d}^{\text {rat }}=3 d-1$, so expect $k=3 d-1$ (each point should cut down moduli space by 1 dimension)
- New problem: $M_{d}^{\text {rat }}$ is not compact - makes intersection theory inside it less uniform
- Compare to \mathbb{C}^{2} vs \mathbb{P}^{2} : parallel lines in \mathbb{C}^{2}, none exist in \mathbb{P}^{2}
- Solution: parameterize a broader class of objects so that the moduli space becomes compact, then study its geometry

Compactifying M_{d}

- Sweet spot? What k makes (\# rational deg d curves through k points) finite?
- $\operatorname{dim} M_{d}^{\text {rat }}=3 d-1$, so expect $k=3 d-1$ (each point should cut down moduli space by 1 dimension)
- New problem: $M_{d}^{\text {rat }}$ is not compact - makes intersection theory inside it less uniform
- Compare to \mathbb{C}^{2} vs \mathbb{P}^{2} : parallel lines in \mathbb{C}^{2}, none exist in \mathbb{P}^{2}
- Solution: parameterize a broader class of objects so that the moduli space becomes compact, then study its geometry
- Specifically: $\bar{M}_{n, d}^{r a t}$ is the moduli space of stable maps of degree d
- a more general class of maps from marked trees of \mathbb{P}^{11} s

Compactifying M_{d}

- Sweet spot? What k makes (\# rational deg d curves through k points) finite?
- $\operatorname{dim} M_{d}^{\text {rat }}=3 d-1$, so expect $k=3 d-1$ (each point should cut down moduli space by 1 dimension)
- New problem: $M_{d}^{\text {rat }}$ is not compact - makes intersection theory inside it less uniform
- Compare to \mathbb{C}^{2} vs \mathbb{P}^{2} : parallel lines in \mathbb{C}^{2}, none exist in \mathbb{P}^{2}
- Solution: parameterize a broader class of objects so that the moduli space becomes compact, then study its geometry
- Specifically: $\bar{M}_{n, d}^{\text {rat }}$ is the moduli space of stable maps of degree d
- a more general class of maps from marked trees of \mathbb{P}^{11} s
- Rich combinatorial structure of these objects!

What's the point?

- These moduli spaces have a certain recursive structure: one can glue two stable maps that send a marked point to the same place

What's the point?

- These moduli spaces have a certain recursive structure: one can glue two stable maps that send a marked point to the same place
- Analyzing the intersection structure of the "boundary" of our moduli space, this structure implies a recursion for the number of rational curves of degree d

What's the point?

- These moduli spaces have a certain recursive structure: one can glue two stable maps that send a marked point to the same place
- Analyzing the intersection structure of the "boundary" of our moduli space, this structure implies a recursion for the number of rational curves of degree d

Theorem (Kontsevich 1994)

Let N_{d} the number of rational curves of degree d passing through 3d-1 points in general position. Then
$N_{d}+\sum_{\substack{d_{A}+d_{B}=d \\ d_{A} \geq 1, d_{B} \geq 1}}\binom{3 d-4}{3 d_{A}-1} N_{d_{A}} N_{d_{B}} d_{A}^{3} d_{B}=\sum_{\substack{d_{A}+d_{B}=d \\ d_{a} \geq 1, d_{B} \geq 1}}\binom{3 d-4}{3 d_{A}-2} N_{d_{A}} N_{d_{B}} d_{A}^{2} d_{B}^{2}$.

What's the point?

- These moduli spaces have a certain recursive structure: one can glue two stable maps that send a marked point to the same place
- Analyzing the intersection structure of the "boundary" of our moduli space, this structure implies a recursion for the number of rational curves of degree d
Theorem (Kontsevich 1994)
Let N_{d} the number of rational curves of degree d passing through 3d-1 points in general position. Then
$N_{d}+\sum_{\substack{d_{A}+d_{B}=d \\ d_{A} \geq 1, d_{B} \geq 1}}\binom{3 d-4}{3 d_{A}-1} N_{d_{A}} N_{d_{B}} d_{A}^{3} d_{B}=\sum_{\substack{d_{A}+d_{B}=d \\ d_{a} \geq 1, d_{B} \geq 1}}\binom{3 d-4}{3 d_{A}-2} N_{d_{A}} N_{d_{B}} d_{A}^{2} d_{B}^{2}$.
- This is a recursion for all N_{d} in terms of base case N_{1}

What's the point?

- These moduli spaces have a certain recursive structure: one can glue two stable maps that send a marked point to the same place
- Analyzing the intersection structure of the "boundary" of our moduli space, this structure implies a recursion for the number of rational curves of degree d
Theorem (Kontsevich 1994)
Let N_{d} the number of rational curves of degree d passing through 3d-1 points in general position. Then
$N_{d}+\sum_{\substack{d_{A}+d_{B}=d \\ d_{A} \geq 1, d_{B} \geq 1}}\binom{3 d-4}{3 d_{A}-1} N_{d_{A}} N_{d_{B}} d_{A}^{3} d_{B}=\sum_{\substack{d_{A}+d_{B}=d \\ d_{a} \geq 1, d_{B} \geq 1}}\binom{3 d-4}{3 d_{A}-2} N_{d_{A}} N_{d_{B}} d_{A}^{2} d_{B}^{2}$.
- This is a recursion for all N_{d} in terms of base case N_{1}
- Kontsevich was a physicist - these moduli spaces appear in some approaches to string theory/QFT!

Morals

1. One can often turn enumerative problems (ranging over many different geometric objects) into problems about the geometry of a single universal object called a moduli space

Morals

1. One can often turn enumerative problems (ranging over many different geometric objects) into problems about the geometry of a single universal object called a moduli space
2. These moduli spaces can often have extremely rich structure (geometry, topology, combinatorics)

Morals

1. One can often turn enumerative problems (ranging over many different geometric objects) into problems about the geometry of a single universal object called a moduli space
2. These moduli spaces can often have extremely rich structure (geometry, topology, combinatorics)
3. If a geometric phenomenon seems irregular, it is often fruitful to try to expand to some larger geometric context where objects behave better (e.g. Projective space and compactifying moduli spaces) and then study your problem inside that larger space

Morals

1. One can often turn enumerative problems (ranging over many different geometric objects) into problems about the geometry of a single universal object called a moduli space
2. These moduli spaces can often have extremely rich structure (geometry, topology, combinatorics)
3. If a geometric phenomenon seems irregular, it is often fruitful to try to expand to some larger geometric context where objects behave better (e.g. Projective space and compactifying moduli spaces) and then study your problem inside that larger space
4. Algebraic geometry is cool

Morals

1. One can often turn enumerative problems (ranging over many different geometric objects) into problems about the geometry of a single universal object called a moduli space
2. These moduli spaces can often have extremely rich structure (geometry, topology, combinatorics)
3. If a geometric phenomenon seems irregular, it is often fruitful to try to expand to some larger geometric context where objects behave better (e.g. Projective space and compactifying moduli spaces) and then study your problem inside that larger space
4. Algebraic geometry is cool
5. Even very abstract algebraic geometry can have shockingly concrete applications

Thank you!

