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Enumerative Algebraic Geometry



What is enumerative algebraic geometry?

• enumerative = counting

• algebraic geometry = the geometry of polynomial equations

• The Problem of Apollonius: Given 3 circles in the plane, how
many circles are tangent to all three?
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The Problem of Apollonius
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Counting Curves



A problem in enumerative algebraic geometry

• In this talk, a curve means a projective plane curve over the
complex numbers

• That is, curves are considered inside the projective plane P2 over
C

• This is a space (topological space, manifold, variety, scheme, ...)
given by adding some points at infinity to C2

• The points of Pn are homogeneous coordinates: (n+ 1)-tuples
up to rescaling [x0 : · · · : xn] ∼ [cx0 : · · · : cxn]

• A curve in P2 is defined by the vanishing of a single
homogeneous polynomial in three variables

• E.g. C : y2z = x3 − xz2 is the curve in P2 corresponding to elliptic
curve y2 = x3 − x in C2

• E.g. C′ : y2 − x2 = 0 and (y− x)2 = 0 both define degree 2
“curves” (Rather degenerate ones)
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A problem in enumerative algebraic geometry

• Question: How many plane curves of degree d go through k
points?

• (d = 1, k = 2)
There is 1 line through 2 points.

• (d = 2, k = 2)

There are ∞ degree 2 curves through 2 points.
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A problem in enumerative algebraic geometry

• (d = 1, k = 3)

There are (usually) 0 lines (degree 1 curves) through 3 points.

• Let’s tabulate the results:

k

d

1 2 3 4 5 6 7 8 9 10
1 ∞ 1 0 0 0 0 0 0 0 0
2 ∞ ∞ ∞ ∞ 1 0 0 0 0 0
3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1 0

• A ”sweet spot”: k = 1
2 (d

2 + 3d)
• Uninteresting counting problem: answer is always∞, 1, 0.

Caviat: to get uniform answers, we need to assume the points are in
“general position”: no three lie on a line.
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Counting Plane Curves

• Geometric context: interpret in terms of the moduli space of
plane curves of degree d.

• Roughly, a moduli space is some way of equipping the set of
such curves with geometric structure.

• General plane curve of degree d is determined by its coefficients

a0x3+a1x2y+a2x2z+a3xy2+a4xyz+a5xz2+a6y3+a7y2z+a8yz2+a9z3

up to rescaling. How many?
• 3 choose d with replacement:(d+2

2
)
= 1

2 (d+ 2)(d+ 1) = 1
2 (d

2 + 3d) + 1.
• The moduli space of plane curves of degree d is Md := PN,
N = 1

2 (d
2 + 3d).
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Geometric interpretation

• The condition of containing a point is a linear condition on the
coefficients

• E.g. the condition of containing p = [1 : 0 : 0] gives the linear
condition a0 = 0.

• Thus, each point determines a hyperplane (codimension 1 linear
subspace) in the moduli space of degree d curves

• Points in general position⇐⇒ the conditions are linearly
independent, so this is essentially linear algebra

• Geometric interpretation: intersecting N independent
hyperplanes inside M = PN gives a single point

• Translated an enumerative problem into a problem about the
geometry of a single object, the moduli space
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Counting Rational Curves



Rational Curves

• A (projective, plane) curve is called rational if it admits a
rational parameterization

• E.g. if there exist rational functions x(t), y(t) such that
t 7→ [x(t) : y(t) : 1] bijects points of the curve with C (wherever
defined).

• Equivalently (theorem): the curve admits a map from P1 which is
injective away from finitely many points (“generically”).

• Also equivalently: topologically, the curve is a sphere minus
finitely many points

• The curve y2z = x3 − x2z is rational: t 7→ [t2 + 1 : t(t2 + 1) : 1] is a
rational parameterization

• (Exercise) The elliptic curve y2z = x3 − xz2 is not rational
• Theorem: For degree-d plane curves, rationality is equivalent to
the curve having (d− 1) singularities (counted appropriately)
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Counting Rational Curves: Some History

• Question: How many rational curves of degree d pass through k
points?

• The “sweet spot” is k = 3d− 1
• Again we tabulate: (Antiquity, Steiner 1848)

k

d

1 2 3 4 5 6 7 8 9 10
1 ∞ 0 0 0 0 0 0 0 0
2 ∞ ∞ ∞ ∞ 0 0 0 0 0
3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0
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Counting Rational Curves

• Question: How many rational curves of degree d pass through k
points?

• Build a moduli space of rational curves (much more interesting
geometry than all curves!)

• Starting point: a degree-d map P1 → P2 is given by 3 binary
forms of degree d (up to rescaling) which do not simultaneously
vanish:

[x : y] 7→ [a0xd + a1xd−1y+ · · ·+ adyd : · · · : c0xd + · · ·+ cdyd]

• So a moduli space for degree-d maps P1 → P2 is given by
Wd := P3d−1

• Two problems:
• (1) different parameterizations of same curve
• (2) some maps are not generically injective
• Solution: consider the quotient Mrat

d := Wd/Aut(P1)
geometrically (naturally a stack) – the moduli space of rational
degree d plane curves
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Compactifying Md

• Sweet spot? What k makes (# rational deg d curves through k
points) finite?

• dimMrat
d = 3d− 1, so expect k = 3d− 1 (each point should cut

down moduli space by 1 dimension)
• New problem: Mrat

d is not compact – makes intersection theory
inside it less uniform

• Compare to C2 vs P2: parallel lines in C2, none exist in P2

• Solution: parameterize a broader class of objects so that the
moduli space becomes compact, then study its geometry

• Specifically: Mrat
n,d is the moduli space of stable maps of degree d

– a more general class of maps from marked trees of P1’s
• Rich combinatorial structure of these objects!
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What’s the point?

• These moduli spaces have a certain recursive structure: one can
glue two stable maps that send a marked point to the same
place

• Analyzing the intersection structure of the “boundary” of our
moduli space, this structure implies a recursion for the number
of rational curves of degree d

Theorem (Kontsevich 1994)
Let Nd the number of rational curves of degree d passing through
3d− 1 points in general position. Then

Nd +
∑

dA+dB=d
dA≥1,dB≥1

(
3d− 4
3dA − 1

)
NdANdBd3AdB =

∑
dA+dB=d
da≥1,dB≥1

(
3d− 4
3dA − 2

)
NdANdBd2Ad2B.

• This is a recursion for all Nd in terms of base case N1
• Kontsevich was a physicist – these moduli spaces appear in
some approaches to string theory/QFT!
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Morals

1. One can often turn enumerative problems (ranging over many
different geometric objects) into problems about the geometry
of a single universal object called a moduli space

2. These moduli spaces can often have extremely rich structure
(geometry, topology, combinatorics)

3. If a geometric phenomenon seems irregular, it is often fruitful to
try to expand to some larger geometric context where objects
behave better (e.g. Projective space and compactifying moduli
spaces) and then study your problem inside that larger space

4. Algebraic geometry is cool
5. Even very abstract algebraic geometry can have shockingly
concrete applications
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Thank you!
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