
KONTSEVICH’S FORMULA FOR RATIONAL PLANE CURVES

CONNOR HALLECK-DUBÉ

This exposition provides an elementary proof of Kontsevich’s formula for enumerating rational plane
curves in concrete geometric terms, before placing it in the context of genus-0 Gromov Witten invariants.
The work assumes some basic algebraic geometry, as well as familarity with the geometry of the moduli
space of marked curves Mg,n. An elementary exposition of their geometry in the case g = 0 is given
by [Cav16]. We generally follow the book of Kock and Vainsecher [KV07], occasionally pulling from the
canonical source [FP96] and MIT OpenCourseWare lecture notes [Cos06].

I. The Moduli Space of Stable Maps

I.1. Motivation and Definition. Rational curves in projective space are naturally captured by the infor-
mation of a map µ : P1 → Pr.

Definition 1. The degree of a map µ : P1 → Pr is defined as the degree of the pushforward cycle µ?[P1].
So a constant map has degree zero, a linear embedding has degree 1, etc.

A natural way to parameterize µ : P1 → Pr of degree d is to specify r+ 1 binary forms of degree d (up to
scalars) which do not simultaneously vanish:

µ(x, y) = (a0,0x
d + a0,1x

d−1y + · · ·+ a0,dy
d, . . . , ar,0x

d + ar,1x
d−1y + · · ·+ ar,dy

d).

The collection of such forms, denoted W (r, d), has dimension (r + 1)(d+ 1)− 1 = rd+ r + d.

Remark 2. The space W (r, d) is a fine moduli space for maps µ : P1 → Pr of degree d, with universal family
W (r, d)× P1.

Proposition 3. The locus of maps birational to their image, W ?(r, d) ⊂W (r, d), is open and (r ≥ 2) dense.

The proof of this proposition is omitted, but it should seem plausible: the maps not birational onto their
images are exactly the multiple covers, which have many fewer degrees of freedom.

Our interest is in rational curves, so the space W (r, d) is not quite what we are looking for. Distinct
parameterizations of the same geometric object are distinct maps in W (r, d), when we would like them to
be the same. Additionally, we would like to be able to consider continuous families of rational curves that
may not have continuous parameterizations.

To solve these issues, we will want to quotient by conversions between distinct parameterizations, that is,
we are structurally interested in

W (r, d)/Aut(P1).

Lemma 4. The group of automorphisms fixing a given map µ : P1 → Pr is finite, and trivial if µ is birational
onto its image.

Proof. This is trivial at the level of function fields. The pullback forms a finite field extension K(µ(P1))→
K(P1), and automorphisms of P1 commuting with µ are certainly elements of the corresponding Galois
group. Thus there can be only finitely many. If µ is birational onto its image, then K(µ(P1)) ∼= K(P1) and
there can be no nontrivial isomorphisms. �

Indeed it turns out that endowing this quotient with geometric structure, we can obtain a coarse moduli
space

M0,0(Pr, d) ∼= W (r, d)/Aut(P1).

We observe the following facts.
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(1) We should expect the dimension of this space to be

dimM0,0(Pr, d) = dimW (r, d)− dim Aut(P1) = rd+ r + d− 3

since the generic fiber is Aut(P1), which has dimension 3.
(2) Open inside this set is M?

0,0(Pr, d), the image of W ?(r, d) under the quotient by automorphisms.

Our goal now is to compactify this space, which will also require us to consider marked points analogously
to Mg,n.

I.2. Pointed maps and Stability.

Example 5. Consider the pencil of conics satisfying the equation XY − bZ2, where b ∈ A1. As b→ 0, the
family of otherwise smooth conics degenerate to a pair of lines at b = 0. We can consider this pencil as a
family of parameterizations µ : P1 → P2, indexed by b.

A1 × P1 99K P2

(b, [s : t]) 7→ [bs2 : t2 : st]

When b = 0, this degenerates. If we want our moduli space to be compact, there must be a unique limit of
this family; the natural choice is for the map to have domain consisting of a pair of intersecting lines.

As in the case of Mg,n, the natural way to isolate the action of automorphisms is to introduce markings,
and demand that the automorphisms preserve marked structure.

Definition 6. An n-pointed map is a morphism µ : C → Pr, where C denotes a tree of projective lines with
n distinct marked points which are smooth points of C. Then an n-pointed map contains in total the data
(C; p1, . . . , pn;µ).

We have a natural notion of isomorphism of such maps: isomorphisms C ∼= C ′ which commute with the
maps and preserve marked points. A family of such maps can be compactly denoted

X Pr

B

µ

π
σi

where π is a flat family of trees of smooth rational curves and σi are n disjoint sections avoiding the
singularities of the fibers of π. This ensures µb : π−1(b)→ Pr is an n-pointed map.

Definition 7. An n-pointed map µ : C → Pr is Kontsevich stable (or just stable) if any twig mapped to a
point is stable as a pointed curve (i.e. has finite automorphisms, or equivalently, has at least three marked
points).

We remark stability is exactly the condition necessary for µ to have finitely many automorphisms in the
sense described above, and so we might hope for a coarse moduli space for these objects.

Theorem 8 ( [FP96]). There exists a coarse moduli space M0,n(Pr, d) parameterizing isomorphism classes
of stable n-pointed maps of degree d. Furthermore, the following properties hold.

(1) The space M0,n(Pr, d) is a projective normal irreducible variety.
(2) It is locally isomorphic to the quotient of a smooth variety by a finite group.

(3) It contains M
?

0,n(Pr, d) as a smooth open dense subvariety, which parameterizes maps without auto-
morphisms.

Remark 9. So that we can later speak in higher generality, we note that the moduli spaces of maps exist
to an arbitrary smooth projective variety X. The datum of degree is naturally generalized by an element
β ∈ H2(X). Given such data there exist coarse moduli spaces M0,n(X,β), though the spaces need not be
well-behaved without further assumptions.

Remark 10. While the fact that we only get a coarse moduli space may appear a defect, this is resolved
in the language of stacks, where the stack version of M0,n(Pr, d) is a smooth and proper Deligne-Mumford

stack with universal family the stack version of M0,n+1(Pr, d).
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Proposition 11. The dimension of M0,n(Pr, d) is rd+ r + d+ n− 3.

Proof. Since our compactification contains M0,n(Pr, d) as an open dense subset, this follows from the previous
count, along with each marked point incrementing the dimension by 1. �

I.3. Examples and Basic Properties. Some examples.

Example 12. The moduli space of stable maps to a point, M0,n(P0, 0), is exactly the space of stable rational

curves M0,n.

Example 13. The moduli space of stable maps of degree 0 is given by

M0,n(X, 0) ∼= M0,n ×X.

Example 14. The moduli space of degree one maps to Pr is the Grassmannian

M0,0(Pr, 1) = G(2, r + 1).

Example 15. As an exercise to the reader, we observe the following:

Proposition 16. The space M0,0(P2, 2) is isomorphic to the variety of complete conics.

Clearly, the moduli spaces are equipped with evaluation maps

νi : M0,n(Pr, d)→ Pr

(C; p1, . . . , pn;µ) 7→ µ(pi)

Lemma 17. The evaluation maps are flat morphisms.

Proof sketch. This follows from generic flatness and the fact that the evaluation maps are invariant under
Aut(Pr). �

The moduli spaces are also equipped with two kinds of natural forgetful maps,

ε : M0,n+1(Pr, d)→M0,n(Pr, d) and δ : M0,n(Pr, d)→M0,n.

The first kind, forgetting points, has stabilization properties as in the case of stable rational curves: if a
source twig on which µ is constant becomes unstable, it contracts.

Remark 18. The ε-forgetful and evaluation maps commute in the sensible way.

Remark 19. When we restrict to M
?

0,n(Pr, d), the map ε : M
?

0,n+1(Pr, d) → M
?

0,n(Pr, d) is a tautological
family, proving that indeed we have a fine moduli space for automorphism-free maps.

I.4. The boundary. Since M0,n(Pr, d) ⊂M0,n(Pr, d) consists of those stable maps whose source curve has
only a single twig, the boundary is exactly the set of stable maps whose domains are reducible curves. For
a given partition both of points A ∪B = {p1, . . . , pn} and of degrees dA + dB = d, we obtain an irreducible
divisor D(A,B; dA, dB). A general point on the divisor has two twigs in its source curve, twig A which
contains the points in A and maps to an image curve of degree dA, and twig B which contains the points
in B and maps to an image curve of degree dB . The boundary of this divisor, in turn, are given by further
refinements: maps with more than two twigs which can be obtained by branching the tree further and
distributing the points from A and B onto two halves.

We remark that there is a crucial recursive structure on the boundary: a gluing morphism gives a map

M0,A∪{x}(Pr, dA)×P1 M0,B∪{x}(Pr, dB) → D(A,B; dA, dB)

which is an isomorphism as long as A 6= ∅ and B 6= ∅. The recursive structure allows us to compute
intersections with D(A,B; dA, dB) in terms of smaller-dimensional moduli spaces.

Let n ≥ 4, and consider the composition f : M0,n(Pr, d) → M0,n → M0,4. Writing S = {p1, . . . , pn}, we
observe that

f?(D(i, j|k, l)) =
∑

A∪B=S
i,j∈A
k,l∈B

dA+dB=d

D(A,B; dA, dB),

and a similar formula holds for the other natural boundary divisors D(i, k|j, l) and D(i, l|j, k).
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Lemma 20 (The Fundamental Equivalence Relation). We have

f?(D(i, j|k, l)) ≡ f?(D(i, k|j, l)) ≡ f?(D(i, l|j, k)).

Proof. The key observation is that the forgetful map to M0,4 is flat. Since it is a reduced, irreducible,

variety over a nonsingular curve M0,4
∼= P1, it suffices for the map to be dominating. This implies that

linear equivalence is preserved under pullback, so the result follows. �

II. The Proof of Kontsevich’s Formula

II.1. The Main Proof. Now we have proven enough properties of M0,n(P2, d) to derive Kontsevich’s for-
mula by considering carefully chosen boundary divisors. Let Nd denote the number of degree d curves passing
through 3d− 1 generic points.

Theorem 1. Let Nd be the number of rational curves of degree d passing through 3d − 1 general points in
the plane. Then the following recursive relation holds.

Nd +
∑

dA+dB=d
da≥1,dB≥1

(
3d− 4

3dA − 1

)
NdANdBd

3
AdB =

∑
dA+dB=d
da≥1,dB≥1

(
3d− 4

3dA − 2

)
NdANdBd

2
Ad

2
B .

Proof. Let n = 3d. Fix l1, l2 lines in the plane, and q1, . . . , qn−2 points in the plane, chosen generically. We
will use this geometric data to induce a curve through M0,n(P2, d) with points labeled m1,m2, p1, . . . , pn−2.
Consider the inverse images under the evaluation maps of each of our n points, and define

v−1m1
(l1) ∩ v−1m2

(l2) ∩
n−2⋂
i=1

v−1pi (qi).

That is, Y = {µ ∈M0,n(P2, d) : µ(mj) ∈ lj , µ(pi) = qi}. Since the evaluation maps are flat, taking preimages
preserves codimension, so each v−1mi

(li) has codimension 1 and each v−1pi (qi) has codimension 2. Choosing our
points and lines generically ensures that Y has total codimension 2(n− 2) + 2 = 2n− 2 = 6d− 2, that is, it
is a curve in M0,n(P2, d). We have also the following lemma.

Lemma 2 (The Technical Lemma). The genericity assumption allows us to assume that Y intersects the
boundary transversally, and that the intersection occurs within the locus of maps without automorphisms
M? ⊂M .

Now we consider the intersection of this curve with the boundary. The linear equivalence previously found
implies

Y ∩D(m1,m2|p1, p2) ≡ Y ∩D(m1, p1|m2, p2).

Since Y intersects the boundary transversally and they are of complementary dimension, both intersections
consist of a finite number of points, and so the linear equivalence is simply the condition that the number of
points on each side agree.

We have

D(m1,m2|p1, p2) ≡
∑

m1,m2∈A
p1,p2∈B
dA+dB=d

D(A|B).

That is, it suffices to count stable maps with source curve consisting of two twigs A and B, such that m1,m2

are on A and p1, p2 are on B. Let dA, dB be the degrees of the two twigs.

(1) If dB = 0, then the image of B must be a point, but q1 = µ(p1) 6= µ(p2) = q2, which is impossible,
so this case contributes no points to the intersection.

(2) If dA = 0, then this implies µ(m1) = µ(m2) both land on the intersection point l1 ∩ l2, and so we
must count the number of degree d curves through 3d−1 points. Thus this case introduces Nd points
to the intersection.
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(3) If dA, dB > 0, we must partition the 3d − 4 remaining points onto twigs A and B. If we put more
than 3dA − 1 points from the pi in total on twig A, then the image would be a degree dA curve
through more than 3dA− 1 generic points, which does not exist. If we put fewer than 3dA− 1 points
from the pi on twig A, then there would be more than 3dB − 1 points on twig B, and the same
argument would apply. Thus we must choose 3dA − 1 points to place on twig A.

For each partition of points onto the two twigs, there is a unique stable map given by sending
twig A to a fixed image curve of degree dA through the image points and twig B to a fixed image
curve of degree dB . The number of such pairs of curves is NdANdB . We must also specify which of
the dA intersections between µ(A) and l1 is µ(m1), and which of the dA intersections between µ(A)
and l1 is µ(m2), so we obtain another factor of d2A. Finally, we must also specify which of the dAdB
intersections between µ(A) and µ(B) corresponds to the nodal point. Thus, given dA, dB , we have
a total number of maps given by(

3d− 4

3dA − 1

)
NdANdBd

3
AdB .

Iterating over all possible values of dA, we obtain that the intersection Y ∩D(m1,m2|p1, p2) consists of

Nd +
∑

dA+dB=d
dA,dB>0

(
3d− 4

3dA − 1

)
NdANdBd

3
AdB

points.
We perform a similar computation on the other side. Neither dA = 0, dB = 0 is possible, as then we would

have q1 on l1 or q2 on l2. For fixed dA, dB > 0, a stable map is identified by a choice of 3dA − 2 additional
points for twig A, (the complementary 3dB − 2 on B), a choice among NdA image curves for µ(A) and NdB
image curves for µ(B), a choice among dA intersections for µ(m1) and dB intersections for µ(m2), and a
choice among dAdB intersections for the nodal point. Thus the total number of points in the intersection is∑

dA+dB=d
dA,dB>0

(
3d− 4

3dA − 2

)
NdANdBd

2
Ad

2
B .

The equality on numbers of points holds, which implies the formula. �

Since this expresses Nd as a function of purely smaller values in the sequence, it gives an elementary
recursion for Nd, the number of rational curves of degree d through 3d− 1 rational points.

II.2. The Technical Lemma. We have deferred the proof of our key technical lemma, which we address
now.

Lemma 3 (The Technical Lemma). For generic choices of irreducible subvarieties Γ1, . . . ,Γn ⊂ Pr with
codimension adding to dimM , the scheme-theoretic intersection

n⋂
i=1

ν−1i (Γi).

consists of a finite number of reduced points, supported in any preassigned nonempty open set and in partic-
ular, in M? ⊂M the locus of maps with smooth source and without automorphisms.

Proof. Let X = Pr. It will be convenient to consider the total evaluation map

ν =
∏
i

νi : M → Xn.

Then as schemes, we have
n⋂
i=1

ν−1i (Γi) = ν−1(Γ)

where Γ :=
∏
i Γi.

Our sledgehammer will be the following theorem of Kleiman.
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Theorem 4 (Kleiman, Transversality of the general translate). Let G be a connected algebraic group and
X an irreducible variety with transitive G-action. Let f : Y → X and g : Z → X be morphisms between

irreducible varieties. For each σ ∈ G, denote by Y σ the variety Y
σ◦f−−→ X.

Then there exists a dense open subset U ⊂ G such that for every σ ∈ U , either the fiber product Y σ ×X Z
is empty, or

dim(Y σ ×X Z) = dimY + dimZ − dimX.

We exhibit Pr as the quotient of SLr by upper triangular matrices, so X = Pr has a transitive action of
G = SLr, and G = Gn acts transitively on Xn.

We apply the theorem with Z = (M?)C , which is a closed subvariety of strictly smaller dimension inside
M , and Y = Γ. Then from the following diagram

(M?)C

Γ Xn

ν

⊂

there is a dense open set V1 ⊂ G, such that for any σ ∈ V1 the fiber product Γσ ×Xn (M?)C is either empty
or has dimension

dim(Γσ ×Xn (M?)C) = dim(Γ) + dim((M?)C)− dim(Xn) ≤ −1,

since dim(Γ) =
∑
i dim(Γi) = dim(Xn) − dim(M). The second case is a contradiction, so we conclude the

fiber product is always empty. However, since Γ is a subvariety of Xn, it follows that the fiber product is
naturally identified with the inverse image of Γσ under the total evaluation map from (M?)C – that is, for
any σ ∈ V1, the preimage ν−1(Γσ) is disjoint from the maps with automorphisms – so is contained in the
smooth locus M?. Since the action of G is transitive, it follows that a generic collection of Γi have

n⋂
i=1

ν−1i (Γi) = ν−1(Γ) ⊂M?.

To prove that indeed the intersection is a finite number of reduced points, we apply Kleiman again, to

M?

Sing Γ Xn

ν

⊂

Then again we compute that the fiber product would have negative dimension, so must be empty. We obtain
a dense open set V2 ⊂ G such that ν−1((Sing Γ)σ) = ∅.

A final application of Kleiman with Y = Γ \ Sing Γ and Z = M? obtains a dense open set V3 ⊂ G such
that the inverse image of each translate Y σ is smooth and either of correct dimension or empty. Since the
expected dimension is zero, this is exactly the condition that the intersection be a finite set of reduced points.

On the dense open set V1 ∩ V2 ∩ V3, we conclude that a translate Γσ has inverse image which is contained
in M? and is a finite set of reduced points. �

II.3. Did we count the right thing? In the above proof, we were asked on multiple occasions to count the
number of smooth stable maps whose image curve passes through a collection of 3d− 1 points. We assumed
without comment that this value is exactly Nd. This is indeed the case, but not obviously.

Given general subvarieties, say Γ1, . . . ,Γn, the number of stable maps with image curve intersecting all
Γi could fail to be the number of rational curves through the Γi for two reasons. First, a solution curve
might have passed multiple times through the same point Γi. Then there would be multiple stable maps,
as the mark could be placed on either preimage of the intersection point. Second, the curve could have met
Γi at multiple distinct points, which would similarly ruin the bijection (Bezout’s theorem demonstrates the
nature of this second failure for hypersurfaces).

In the case of points, the second concern is not possible, but the first could be. Intuitively, a generic
point should also be generic on the solution curve: this can be formalized as an additional lemma proved via
Kleiman’s theorem. More generally, all Γi of codimension at least 2 suffices to ensure both degeneracies are
avoided.
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Lemma 5. Let Γ1, . . . ,Γn ⊂ Pr be general subvarieties of codimension at least 2 with total codimension
dimM0,n(Pr, d). Then for any µ ∈ ν−1(Γ), we have

(1) the image curve µ(C) intersects each Γi at a single point, and
(2) for each pi marked point, µ−1µ(pi) = {pi} (the solution curve passes through the intersection point

only a single time).

These ideas will be explored in more generality in terms of Gromov-Witten invariants in the sequel.

III. Generalization: The Language of Gromov-Witten Invariants

Throughout this chapter, r ≥ 2. To introduce the formalism, we work briefly in more generality.
Let Ai(Pr) := H2i(Pr,Q), Ai(X) := H2i(Pr,Q), and A?(Pr) = ⊕iAi(Pr) with the usual cup product as

multiplication. For M0,n(Pr, d), our job is not so simple – since the moduli space is singular as a variety,
there is no intersection product on cycles.

Fact.

(1) Given a map f : Y → X from an arbitrary scheme to a smooth variety, there exists a pullback
product

Ak(X)⊗Ai(Y )→ Ai−k(Y ).

Thus, the evaluation maps to Pr allow us to pullback Ak(X) to endomorphisms of A?(Y ).
(2) There exists a subring of End(Y ), including the Chern classes and all endomorphisms of the above

kind, which has the properties we would expect of a cohomology ring.

We denote this subring by A?(M0,n(Pr, d)) in the case of moduli of stable maps, and use intersection

product notation for its action on A?(M). A grading on A?(M) is induced by its action: we say a class
α ∈ Ak(M) if its action takes i-cycles to (i − k)-cycles. All this is to say that cohomology works the way
that it should, without necessarily knowing what the cohomology of M actually is.

Definition 1 (Gromov-Witten Invariant). Let X be a convex variety. We have a coarse moduli space
M0,n(X,β), which is equipped with n evaluation maps

νi : M0,n(X,β)→ X

defined just as in the case of Pr. Given classes γ1, . . . , γn in A?(X), we have a well-defined product in
A?(M0,n(X,β)) given by

ν?1 (γ1) ∪ · · · ∪ ν?n(γn).

If the total codimension of the γi is the dimension of M0,n(X,β), then this product is an element of the

top cohomology, and thus can be evaluated on the fundamental class [M0,n(X,β)]. The Gromov-Witten
invariant

Iβ(γ1 · · · γn) :=

∫
M0,n(X,β)

ν?1 (γ1) ∪ · · · ∪ ν?n(γn)

is defined to be this evaluation. The invariant is written with multiplicative notation to capture that the
invariant is invariant under permutation of the γi.

If X is homogeneous, then the Gromov-Witten invariants capture generic enumerative information about
the number of rational curves in X “through” the γi in a suitable sense. The spirit of this theorem is captured
by the case of Pr.

Proposition 2 (Enumerative significance of Gromov-Witten invariants). Let γ1, . . . , γn ∈ A?(Pr) homoge-
neous classes of codimension at least 2 and total codimension equal to dim(M0,n(Pr, d)). Then for general
subvarieties Γ1, . . . ,Γn ⊂ Pr with [Γi] = γi ∩ [Pr], the Gromov-Witten invariant Id(γ1 · · · γn) is the number
of rational curves of degree d incident to all the subvarieties Γ1, . . . ,Γn.

Corollary 3. For P2, we have Id(h
2 · · ·h2) = Nd, where the product is over 3d− 1 factors of h2.1

1We write h for the hyperplane class, so that h2 in P2 is naturally the class of a point. More generally, the standard basis
for H?(Pr) is {h0, h1, . . . , hr}.
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We will need three computational facts about these invariants. The first says that we can pull a hyperplane
out from the computation.

Proposition 4 (Divisor equation). If d > 0, then

Id(γ1 · · · γn · h) = Id(γ1 · · · γn) · d,

where the left-hand invariant is computed in Mn+1 and the right in Mn.

The second collects base cases.

Proposition 5 (Degree 0). (1) The only nonzero Gromov-Witten invariants with d = 0 are those with
three marks and

∑
codim γi = r. Then

I0(γ1 · γ2 · γ3) =

∫
(γ1 ∪ γ2 ∪ γ3) ∩ [Pr].

(2) The only nonzero Gromov-Witten invariants with less than three marks are

I1(hr · hr) = 1

that there exists a unique line through 2 points.
(3) The only nonzero Gromov-Witten invariants containing 1 = h0 ∈ A0(Pr) occur in degree zero, with

three marks as above.

That is, we can evaluate the degree zero Gromov-Witten invariants on the level of Pr rather than the
moduli space.

The recursion on the boundary, in particular the gluing isomorphism

D(A,B; dA, dB) ∼= M0,A∪{x}(Pr, dA)×Pr M0,B∪{x}(Pr, dB),

induces a fundamental recursion on Gromov-Witten invariants.

Theorem 6 (Splitting Lemma). For γ1, . . . , γn as above and D = D(A,B; dA, dB), we have∫
D

ν?1 (γ1) ∪ · · · ∪ ν?n(γn) =
∑
e+f=r

IdA

(∏
a∈A

γa · he
)
IdB

(∏
b∈B

γb · hf
)
,

where the recursive Gromov-Witten invariants are evaluated in the moduli spaces M0,A∪{x}(Pr, dA) and

M0,B∪{x}(Pr, dB)

This gives us a recursive procedure for computing Gromov-Witten invariants.

Example 7. Lets say we want to compute the number of rational curves passing through 5 general points,
i.e. N(h2, h2, h2, h2, h2). We begin with six classes h = λ1 = λ2 and γ1 = γ2 = γ3 = γ4 = h2. The pullback
class

ν?(γ) := ν?m1
(λ1) ∪ ν?m2

(λ2) ∪ ν?p1(γ1) ∪ ν?p2(γ2) ∪ ν?p3(γ3) ∪ ν?p4(γ4)

is the “dual” of a curve in the moduli space. Rather than intersecting the curve with the boundary divisors,
we will evaluate this cohomology class on the equivalent boundary divisors:∫

ν?(γ) ∩D(m1,m2|p1, p2) =

∫
ν?(γ) ∩D(m1, p1|m2, p2)

We split across the sums D(m1,m2|p1, p2) =
∑
D(A,B|dA, dB). The splitting lemma gives∑

A,B
dA,dB

∑
e+f=2

IdA(λ1λ2
∏

γa · he)IdB (γ1γ2
∏

γb · hf ).

If dA = 0, then the only nonzero contribution is with exactly three marks, namely m1,m2, x. To satisfy the
codimension condition of this result, we must have e = 0. The corresponding right term is I2(γ1 · γ2 · γ3 · γ4 ·
h2) = N2. If dB = 0 then there is no contribution, as we already have codimension 4 on the right side.

When dA = dB = 1, we iterate over the possible distributions of the marks onto each side. If there are
no other marks on A, then the moduli space is dimension 5 and the classes have maximal codimension 4. If
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there is one spare mark on each piece, then no value of e and f makes the codimension counts correct. If
both spare marks go on A, then e = f = 1 gives

I1(λ1 · λ2 · γ3 · γ4 · h1)I1(γ1 · γ2 · h1).

We can throw out the hyperplane classes λ1, λ2, h to obtain I1(γ3 · γ4)I1(γ1 · γ2) = 1. So the left-hand side
is N2 + 1. On the right side, a similar computation gives 1 + 1, so we obtain N2 = 1 as expected.

These recursions grow complicated with the geometry of X, but for Pr, all the Gromov-Witten invariants
can be computed from a single value.

Theorem 8 (Kontsevich-Manin ’94, Ruan-Tian ’95). All (genus-0) Gromov-Witten invariants for Pr can
be computed recursively from the initial value I1(hr · hr) = 1, the number of lines through 2 points.

Algorithmic outline. Any time a class of codimension 0 or 1 appears, it can be eliminated while decreasing
the number of marks. Thus we can assume all classes are of codimension 2. Break the lowest-codimensional
class into two of strictly smaller codimension γn = λ1 ∪ λ2 (because h generates the cohomology of Pr, so
γn = hcodim γn). Then we have a class of a curve in M0,n+1(Pr, d):

ν?m1
(λ1) ∪ ν?m2

(λ2) ∪ ν?p1(γ1) ∪ · · · ∪ ν?pn−1
(γn−1),

just as we did in the proof of Kontsevich’s formula.
Integrating the class over the two equivalent boundary divisors and applying the splitting lemma gives a

sum over IdA(·)IdB (·) terms. These are known by the induction hypothesis unless dA = 0 or dB = 0, and
the only nonzero terms with zero degree have three marks. Thus we reduce to four possible nonzero terms,
given ci = codimλi and bi = codim γi,

I0(λ1 · λ2hr−c1−c2)Id(γ1 · · · γn−1 · hc1+c2)

I0(λ1 · γ1 · hr−c1−b1)Id(h
b1+c1 · γ2 · · · γn−1 · λ2)

Id(γ1 · · ·hc2+b2 · γ3 · · · γn−1 · λ1)I0(λ2 · γ2 · hr−c2−b2)

Id(h
b1+b2 · λ2 · γ3 · · · γn−1 · λ1)I0(γ1 · γ2 · hr−b1−b2).

The I0 factors are all equal to 1, so the first term is the desired value, and the other terms have a smaller-
codimensional class at the end. Thus we are done by recursion, with initial value I1(hr · hr) = 1. �
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