
SOME REMARKS ON GALOIS COHOMOLOGY AND LINEAR ALGEBRAIC

GROUPS

BY CONNOR HALLECK-DUBÉ

This expository note came from my attempts to reconcile some standard classical results in Galois co-
homology, as in [Ser94], with modern geometric language and descent theory, as in [Ols16]. Isomorphism
classes of fppf principal G-bundles, for example, can still be classified by the naive Galois cohomology set
under mild assumptions. We will for the most part restrict to affine algebraic groups, with visions towards
reductive groups over fields. By “fppf site” we always mean the large site, by “étale site” we always mean
the small site. Most results we prove on the fppf site also hold on the fpqc site.

I. H1 and Principal G-bundles

To summarize the results of this section, there are three closely related types of objects for G/k an
algebraic group:

(1) Galois cohomology classes in H1(Gal(ks/k), G(ks)),
(2) principal G-bundles, and
(3) G-torsors.

There is a natural map from each to the next. The first two are in bijection if G is smooth (so that principal
G-bundles split over ks), and the latter two are in bijection if e.g. G is affine (so that we can descend each
torsor to a principal G-bundle).

I.1. Torsors and bundles. We recall the definitions of torsors and principal bundles on the fppf site.

Definition 1. Let G an fppf group scheme over X, and write G for its functor of points, an fppf-group sheaf.
A torsor for G on X is an sheaf of sets P on X with a right action by G satisfying

(1) (local triviality) there exists an fppf cover {Xi → X} such that P(Xi) ̸= ∅ for all i, and
(2) (simple transitivity) the map of sheaves

P × G −→ P × P
(p, g) 7−→ (p, pg)

is an isomorphism. Note the second condition ensures that whenever P(S) ̸= 0, G(S)-acts simply
transitively on P(S).

More classically, a principal G-bundle on X is an fppf X-scheme P → X with a right G-action by morphisms
of X-schemes such that the morphism P ×X G → P ×X P functorially given by (p, g) 7→ (p, pg) is an
isomorphism. Morphisms of torsors and principal G-bundles are defined in the obvious ways.

Given a principal G-bundle P → X, its functor of points P in the category of X-schemes is clearly a
torsor: the action map passes to the functors of points, and since P → X is fppf, the sheaf is fppf-locally
trivial (for example, P(P ) ̸= ∅). The two simple transitivity conditions correspond. Indeed, since all we
have done is apply the Yoneda embedding, we have a fully faithful functor

(G-bundles on X) −→ (G-torsors on X).

In order for this to be an equivalence, we need something to let us descend local representability along
a trivializing open cover, i.e. some hypothesis guaranteeing effective descent. For example, we have the
following.

Proposition 2. If G→ X is (quasi-)affine, then the Yoneda map above is an equivalence of categories.
1



Proof. It remains only to prove essential surjectivity, i.e. that every G-torsor P on X is representable.
Choosing a trivializing open cover {Xi → X}, the restrictions P|Xi are representable by affine schemes
Pi = G|Xi

→ Xi (noncanonically – one has to choose a section over Xi). Since the P|Xi
glue to give a global

sheaf, they give descent data for the Pi, which is effective by fppf descent for (quasi-)affine morphisms (see
[Ols16, Thm. 4.4.9, 4.4.17]). □

If the group G is smooth, then studying principal bundles reduces to the étale site. We can define an étale
principal G-bundle similarly to the above, replacing condition (1) with the existence of an étale trivializing
cover. Note these are still sheaves for the full fppf (or even fpqc) site, only the local triviality condition has
changed.

Lemma 3. Every smooth morphism f : Y → X étale-locally has a section.

Proof. Recall that every smooth morphism is locally “étale over affine,” that is, for any y ∈ Y there exists

f(y) ∈ U ⊂ X and y ∈ V ⊂ f−1(U) such that f |U factors as V
π−→ An

U → U , with π étale [Sta22, Tag 039P].
Take an arbitrary section U → An

U , for example the zero section, and pull back π along it to obtain an étale
map Vf(y) := U ×An

U
V → U which also has a map to X. Doing this for each point in the image and taking

the disjoint union gives an étale cover of X and a section of the pullback of f . □

Proposition 4. Let G → X smooth. The natural inclusion defines an equivalence of categories between
étale principal G-bundles and fppf principal G-bundles.

Proof. Let P → X be an fppf G-bundle. Then the structure morphism is smooth: smoothness is an fppf-
local property, so can be checked after the trivializing base change along P → X itself. By the lemma below,
every smoothX-scheme has a section étale-locally on the base, so every fppf G-bundle is actually étale-locally
trivial. This shows the natural inclusion (which is certainly fully faithful) is essentially surjective. □

Remark 5. The same reduction works for torsors when G is smooth but not affine (so torsors and bundles
don’t coincide). The argument uses a theorem of Artin that every fppf G-torsor for G smooth is representable
by an algebraic space, then uses that smooth morphisms of algebraic spaces étale-locally have sections.

II. Galois Classification of Torsors

Now assume X = Spec k and G an algebraic group on X (that is, a finite type group scheme over k).
We expect to be able to classify principal G-bundles in terms of some kind of cohomology, but since G is
not abelian, the framework of cohomology on the fppf or étale site does not directly apply. Given that
the topos-theoretic “points” of the flat site are difficult to work with (see [Sta22, 06VW] [Sch14] for some
discussion), it is unclear what a generalization of Galois cohomology would look like and would likely be
very difficult to compute with. For these reasons it is valuable to work with the näıve nonabelian Galois
cohomology.

Recall the cochain definition of the noncommutative cohomology (pointed) set H1(Gal(ks/k), G(ks)): the
cocycles are locally constant maps Gal(ks/k)→ G(ks) denoted s 7→ as with the property that ast = ass(at),
and another such cocycle s 7→ a′s is cohomologous if a′s = b−1ass(b) for all s. We define H1 as the quotient
by this equivalence relation.

Proposition 6. If G is a smooth affine algebraic group, there is a natural isomorphism between H1(Gal(ks/k), G(ks))
and the set BunG(k) of isomorphism classes of fppf principal G-bundles (= G-torsors) on Spec k.

Proof. The map BunG(k) −→ H1(Gal(ks/k), G(ks)) sends a principal G-bundle P → Spec k to a cocycle as
follows: the base change Pks

is isomorphic to Gks
, hence has a ks-point. Choosing x0 ∈ P (ks) arbitrarily,

G(ks) acts simply transitively on P (ks), so we obtain a cocycle by

s 7−→ the unique as ∈ G(ks) such that s(x0) = x0as.

This is indeed a cocycle since

x0ast = s(t(x0)) = s(x0at) = x0ass(at).

Changing our choice of base-point x0 would give a cohomologous cocycle, so we obtain a well-defined class
in H1(Gal(ks/k), G(ks)).
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Conversely, given a cocycle s 7→ as, we will build a k-scheme by descending Gks along twisted descent
data. First we reduce to finite level by noting that

(1) H1(Gal(ks/k), G(ks)) = lim−→
L/k finite Galois

H1(Gal(L/k), G(L))

where the maps in the directed system are, for E/L/k all Galois, given by pre- and post-composition:

(a : Gal(L/k)→ G(L)) 7−→
(
Gal(E/k)→ Gal(L/k)

a−→ G(L)→ G(E)
)
.

The equality (1) holds because a cocycle is by definition a continuous map from a compact group to a
discrete group, hence has finite image and factors through a finite quotient, and G(ks) is a continuous
(noncommutative) Gal(ks/k)-module, i.e. every point is contained in some G(L) for L/k finite Galois. The
principal G-bundle we build below will not depend upon our choice of L.1

Base change from k to L equips GL with descent data, which we work to simplify from the general fibered
descent formalism down to semilinear Galois automorphisms. This paragraph may be safely omitted if the
reader is willing to take on faith that descent data for L/k is a collection of semi-L-linear automorphisms on
GL. Abstract descent data as defined in [Ols16, Ch. 4] is an isomorphism (which here exists by associativity
of base change)

σ : GL ×L,π1 (L⊗k L) = G×k (L⊗k L) = GL ×L,π2 (L⊗k L),

This clearly satisfies the descent condition (“agreeing on triple overlaps”) since all possible base changes to
L⊗k L⊗k L are the same:

π⋆
12π

⋆
1GL π⋆

12π
⋆
2GL π⋆

23π
⋆
1GL

π⋆
13π

⋆
1GL π⋆

13π
⋆
2GL π⋆

23π
⋆
2GL

π⋆
12σ

π⋆
23σ

π⋆
13σ

In this diagram, pullback means base change, and the various π’s represent the projections

Spec(L⊗k L⊗k L)→ Spec(L⊗k L) and Spec(L⊗k L)→ SpecL

onto the appropriate factors. Since L/k is finite Galois, fix a presentation L = k[x]/(f(x)) (that is, a
primitive element l0). Then the roots of f in L are exactly the s(l0) for s ∈ Gal(L/k). Expanding the right
factor with respect to this power basis and applying the Chinese Remainder Theorem gives an isomorphism
L⊗k L ∼=

∏
s∈Gal(L/k) L as L-algebras (with the L-action on the left factor of the tensor and diagonal in the

product), so GL×L,π1 (L⊗kL) ∼=
⊔

s∈Gal(L/k)GL. The other pullback is less obvious: an element 1⊗l ∈ L⊗L
acts on the product along the CRT map

L[x]/(f(x)) =
∏

s∈Gal(L/k)

L[x]/(x− s(l0)),

that is, it acts on the s-th factor by multiplication by its i-th conjugate. So we again have

GL ×L,π2 (L⊗k L) =
⊔

s∈Gal(L/k)

GL,

but the map between these two pullbacks is
⊔

s s, that is, it acts on the s-factor by the morphism s : GL → GL

given by naturality of base change. So the descent data for L/k indeed consists of the family of semilinear
group automorphisms on GL induced by the Galois group. The compatibility condition, translated into this
language, just says that the map Gal(L/k)→ Aut(GL) is a group homomorphism.

Now we show that we can twist our descent data by the cocycle s 7→ as ∈ G(L) to obtain another descent
data: define a new action ρ of Gal(L/k) on GL by composing the old action with left-multiplication by as:
that is, on R-points define ρ(s)(g) = ass(g). Since the as are a cocycle, we have on R-points

ρ(st)(x) = astst(x) = ass(att(x)) = ρ(s)ρ(t)(x)

so the ρ(s) form a collection of semilinear automorphisms of GL compatible with composition. Reversing the
argument of the previous paragraph, this family translates into descent data for GL. Since SpecL→ Spec k

1It is possible that one could directly apply fpqc descent to avoid some of these finiteness arguments, but interpreting the
descent data for k → ks is more difficult because ks ⊗k ks ̸=

∏
Gal(ks/k)

ks.
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is fppf and GL is affine, the descent data is automatically effective. So there is an affine scheme P → Spec k
whose base change to L gives GL with this descent data.

To show that P → Spec k is a principal G-bundle, we need to know that the right multiplication action
(P ×G)L = PL ×L GL → PL descends to P ×k G. The necessary and sufficient condition for Galois descent
of morphisms is that the morphism should be equivariant for the Galois actions on PL and GL.

2 We check
the equivariance on R-points:

ρ(s)(xy) = ass(xy) = ass(x) · s(y) = ρ(s)(x) · s(y).

The base change morphism is also faithful, so we can check the axioms of a right action locally, and P →
Spec k is trivialized by SpecL → Spec k, so indeed P → Spec k is a principal G-bundle. The result is
independent of our choice of L/k: had we chosen some other L′/k, full-faithfulness of the base change to
LL′ ⊆ ks ensures the two principal G-bundles are already isomorphic over k.

Finally, to check the two morphisms are inverses is straightforward using full-faithfulness of base change
along L/k. Beginning with a cocycle, the original cocycle is recovered by the Galois action on ks-points of
P → Spec k, which are the same as the ks-points of GL. In the other direction, beginning with a principal G-
bundle P and writing P ′ for the G-bundle obtained by descent from PL, the isomorphism PL

∼= P ′
L is Galois-

equivariant precisely because PL and P ′
L define the same cocycle, so by full faithfulness the isomorphism

descends to P ∼= P ′. □

Remark 7. The hypothesis “affine” in the above result can be removed. First, any algebraic group scheme
over a field is quasi-projective ([Sta22, Tag 0BF7]).

Then one can prove that Galois descent is effective for quasi-projective schemes X over a field ([Mil98a,
Thm 16.25]): the essential idea of the proof is to note that the Galois orbit of each ks-point is finite, hence
contained in an affine subset. This implies X can be covered by Galois-stable affines; after descending each
affine, they glue by uniqueness to give a scheme descending X. Note that this is essentially the proof of
existence of fppf quotients of quasi-projective schemes.

Tracking the role of L in the above result, we deduce the following.

Corollary 8. The cohomology group H1(Gal(L/k), G(L)) classifies isomorphism classes of principal G-
bundles on Spec k which are trivialized by SpecL → Spec k. Equivalently, the natural maps give an exact
sequence of pointed sets

0→ H1(Gal(L/k), G(L))→ H1(Gal(ks/k), G(ks))→ H1(Gal(ks/L), G(ks)).

Remark 9. Were G abelian, this would be the start of the inflation-restriction exact sequence, the exact
sequence of low-degree terms associated to the Hochschild-Serre spectral sequence. Asking for a nonabelian
spectral sequence theory is pretty hopeless, but this small part still works.

Example 10. If G is not assumed smooth, the Galois cohomology cannot hope to capture all fppf-torsors.
For example, let k an imperfect field of characteristic 2, and L = k(

√
a) = k[x]/(x2−a) a purely inseparable

quadratic extension of k. Then we claim that SpecL → Spec k is an fppf principal µ2-bundle which is not
trivialized by any separable extension.

Given R a k-algebra, we have (SpecL)(R) = {r ∈ R : r2 = a}, and µ2(R) = {s ∈ R : s2 = 1} acts on
this set functorially by multiplication, so indeed SpecL has a right µ2-action over k. For the local triviality
condition, note (SpecL)(L) = {

√
a} and µ2(L) = {1} acts simply transitively on it, so the cover splits itself,

as expected. The action map (SpecL)× µ2 → (SpecL) is on rings

k[x]/(x2 − a) −→ k[x]/(x2 − a)⊗k k[y]/(y
2 − 1)

x 7−→ x⊗ y

so the map SpecL× µ2 → SpecL× SpecL which must be an isomorphism is the L-linear map

L⊗k k[x]/(x
2 − a) −→ L⊗k k[y]/(y

2 − 1)

x 7−→
√
a⊗ y.

2This could be deduced from a similar unpacking of descent data as above.
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This is an isomorphism (note both schemes are isomorphic to L[ε]/(ε2), and the map is ε 7→
√
aε). In any

separable extension, x2 − a remains irreducible, so the torsor cannot split (it becomes nonreduced upon
splitting).

III. Forms of algebraic groups

Now let G a smooth algebraic group over k and L/k a Galois extension.

Definition 11. An L/k-form of G, or twist, is an algebraic group G′ over k such that GL
∼= G′

L as algebraic
groups.

We would like to classify forms of G in terms of Galois cohomology. Classically, this argument goes
by identifying L/k-forms of G with principal AutG-bundles, then identifying these with H1(AutG). How-
ever, AutG as an algebraic group (representing S 7→ AutGp /S(GS)) may not be smooth or affine, so the
results of the previous section do not directly imply the classification. We will instead directly verify the
correspondence.

Proposition 12. Let G an algebraic group over k, L/k a Galois extension. The L/k-forms of G are in
bijection with Galois cohomology classes H1(Gal(L/k),AutG(L)), where AutG(L) is equipped with the left
Galois action φ 7→ sφs−1.

Proof. First, observe we have indeed equipped AutG(L) = AutL(GL) with the structure of a left Gal(L/k)-
group: the action above is indeed a left action, and acts by group homomorphisms. We reduce to L/k finite
similarly to before: if G′

ks

∼= Gks , then this isomorphism descends to some L/k finite since both G′ and G
are finite type over k.

As in the previous section, descent data for an L-scheme X along L/k reduces to a collection s 7→ φs

of semilinear automorphisms for each s ∈ Gal(L/k), such that φst = φsφt. One can deduce similarly that
“descent data” for a morphism of L-schemes simply demands that the morphism be Galois-equivariant. As
in Remark 7, any such data is effective for quasiprojective schemes. From these remarks we immediately
deduce the form and effectivity of descent data for group schemes: the descent data on an L-group scheme X
should consist of a family of semilinear group automorphisms so that the multiplication map on X descends
as well, and the group axioms are identities of morphisms which can be checked after base change back to
L.

Now let s 7→ φs denote the standard descent data obtained by base change to GL. Given a cocycle s 7→ as
valued in AutG(L), we can twist the descent data by composition:

s 7→ ψs := as ◦ φs.

Since ψs is the composition of an s-semilinear group automorphism and an L-linear group automorphism, it
is also an s-semilinear group automorphism. The collection is moreover still descent data:

ψst = astφst = ass(at)φst = asφsatφ
−1
s φsφt = ψsψt.

So by effectivity of descent, (GL, {ψs}s) descends to a k-group scheme which is an L/k form of G.
Conversely, given an L/k form G′ of G, choose an isomorphism χ0 : G′

L → GL. It is clear that the abstract
group Aut(GL) acts simply transitively on the set Isom(G′

L, GL), so we obtain a Galois cocycle by sending
s ∈ Gal(L/k) to the unique element of AutL(GL) sending χ0 to s(χ0) = φsχ0φ

−1
s . This is a cocycle, and

changing our basepoint χ0 would give a cohomologous cocycle, so we obtain a well-defined class in H1. The
two constructions are inverses, so we are done. □

Remark 13. The above proposition does not need to assume smoothness of G because our twists are assumed
to be split by a separable extension. We are “missing” those twists of G which are not split by a separable
extension, as well as possibly those that are split by some fppf cover which is not a field extension.

IV. Principal G-bundles, associated bundles, and Tannakian stuff

Proposition 14. On the Zariski, étale, or fppf site over a scheme X, the groupoid of principal GLn,X-
bundles (= GLn,X-torsors) is equivalent to the groupoid of rank-n vector bundles (= quasi-coherent sheaves),
which by descent for quasi-coherent sheaves is the same across these three sites.
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Proof. We mimic the usual topological construction of frame bundles. Given a rank-n vector bundle E → X,
its frame bundle F (E) is the open subscheme of the total space of Hom(On

X , E) (which is a rank-n2 vector
bundle) given by the nonvanishing of the determinant on each fiber. This is a principal GLn-bundle (right

action given by precomposition). The construction is functorial: given an isomorphism φ : E ∼−→ F of
vector bundles on X, we get a morphism Hom(On

X , E) → Hom(On
X ,F) which preserves the frame bundles

as subschemes, and is clearly equivariant for the action. Note this functor cannot extend to all morphisms
of vector bundles. We are forced to work with just the groupoids.

A pseudo-inverse is given by the associated bundle construction. Given an fppf principal GLn-bundle
Y → X, consider the fiber product P ×X An

X . This has a functorial right GLn-action given by (p, v) · g =
(pg, g−1v), where the left action on An is the standard one. Now we consider the balanced product, the
quotient

P ×GLn

X An
X := (P ×X An

X)/GLn .

Here, the quotient should be taken as the categorical quotient for fppf-sheaves on X. This is obviously
functorial in the bundle P → X, and we wish to show the quotient is constructible.

Let {Xi → X}i be a trivializing cover for P → X. Since sheafification commutes with restriction to an
open in any topos, the quotient sheaf is covered by trivial quotients, in which case the quotient presheaf is
already a sheaf given by

(GLn,Xi ×XiAn
Xi

)/GLn,Xi
∼= An

Xi
,

hence obviously representable by an affine scheme overXi, indeed, a vector bundle. This descends by effective
descent to the same type of object on X.

We construct the natural isomorphisms between the compositions and the identity, given a vector bundle
E , we have a functorial evaluation isomorphism

(F (E)×X An
X)/GLn → E

constructed as follows: there is a natural map F (E) ×X An
X → E given by taking (for f : S → X a map)

(φ, v) ∈ Hom(On
S , f

⋆E)×On
S → φ(v) ∈ Γ(S, f⋆E). Using a trivializing cover, it can be checked to be locally

functorially GLn-equivariant and descend to an isomorphism. Hence we have a natural isomorphism of one
composition with the identity.

In the other direction, given a principal G-bundle P → X we describe a natural isomorphism to the frame
bundle of E := (P ×X An

X)/GLn,X . Given a section S → P (i.e. an X-morphism), we get an isomorphism
P |S ∼= GLn,S , hence a corresponding distinguished element of

Hom(On
X , E)(S) = HomS(On

S , E|S) = HomS(On
S ,An

S) = HomS(On
S ,On

S),

(the one corresponding to the identity), which clearly vanishes nowhere on the base. This map is natural
in S, so we get a sheaf morphism P → Hom(On

X , E). It is natural in P , and can be checked to be an
isomorphism over a trivializing cover onto the frame bundle, so this gives the desired natural isomorphism
for the other composition, completing the (strict) equivalence of categories). □

The representability of associated bundles used above is quite general.

Proposition 15. Let G be a group scheme over X (more generally, an fppf group sheaf) and P → X be
a principal G-bundle. For each quasiprojective Y → X (or any other class of schemes for which descent is
effective) equipped with a G-action, the associated bundle

P ×G
X Y := (P ×X Y )/G

is representable by an X-scheme of the same type.

Applying this result with Y → X a G-representation is the starting point of the Tannakian formalism,
reducing arbitrary G-bundles to vector bundles.

[TODO the associated vector bundle formalism for other G and connections to Tannakian stuff]

Proposition 16. Let G a group scheme over k and X a k-scheme. Each principal G-bundle P → X
determines an exact tensor functor G−Rep→ VectX , and conversely. This is an equivalence of groupoids,
defined appropriately.
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V. Commutative Groups: Higher Étale and Galois Cohomology

Let k a field, ks a separable closure (that is, a geometric point x : Spec ks → Spec k), and F a sheaf of
abelian groups on the small étale site of Spec k. Commutativity ensures we can reduce all étale cohomology
to Galois cohomology, not just H1.

Proposition 17. The étale sheaf cohomology and Galois cohomology coincide: we have a natural isomor-
phism for all r

Hr
ét(Spec k,F) ∼= Hr(Gal(ks/k),Fx).

Sketch. See [Mil98b] and [Sta22, Tag 04JI] for more details. We have an equivalence of sites between the
small étale site on Spec k and discrete G-sets, the maps given by

X =
⊔
i

Spec(Li) 7−→ MorSpec k(Spec ks, X) =
⊔
i

Homk(Li, ks),

conversely, given a discrete G-set with orbit decomposition S =
⊔

i Si, pick si ∈ Si with open stabilizer Gi

and define
X =

⊔
i

Spec(kGi
s ).

These are quasi-inverses. So we have an induced morphism of topoi

(abelian sheaves on ét/k)←→ (discrete Gal(ks/k)-modules) .

The map from left to right is given by taking the stalk at the geometric point x, i.e.,

Fx = lim−→
L/k finite

F(L) =: F(ks),

which is a discrete Gal(ks/k)-module by definition of the stalk. The map from left to right is given by
M 7→

(
L/k 7→ F(L) :=MGal(ks/L)

)
(for an arbitrary étale cover, which is the disjoint union of these, take

the corresponding direct sum of modules). This gives an étale sheaf: given E/L subextension of ks and finite
separable over k, we have

L→ E ⇒ E ⊗L E

MGal(ks/L) →MGal(ks/E) ⇒MGal(ks/E)

Both are exact and they are certainly quasi-inverses, so indeed this is an equivalence of topoi.
Under this equivalence, the global sections functor corresponds to taking the Gal(ks/k)-invariants. So

the equivalence induces natural isomorphisms of their derived functors, étale cohomology and (continuous)
Galois cohomology. □

Corollary 18. For G a commutative group scheme on Spec k (hence a commutative étale sheaf), the above
becomes

Hr
ét(Spec k,G)

∼= Hr(Gal(ks/k), G(ks)).

VI. Hilbert 90 and generalizations

The term “Hilbert’s Theorem 90” refers to a number of generalizations of the original result, due to
Kummer. We begin with the classical version.

Theorem 19 (Dedekind). Let L/k a cyclic (finite Galois, degree d) field extension with Galois group gen-
erator s. If x ∈ L has relative norm 1, then x = y/s(y) for some y ∈ L.

Proof. We give two proofs with slightly different insights. First, we use linear independence of characters,
which states that for any abstract group G and any field k, distinct characters G → k⋆ are k-linearly
independent. This can be proved by a straightforward induction. In particular, we can apply it to the Galois
automorphisms si : L× → L× by ignoring additivity. Consider the L-linear combination of automorphisms

φ := 1 + (x)s+ (xs(x))s2 + (xs(x)s2(x))s3 + · · ·+ (x · · · sd−2(x))sd−1 ̸≡ 0.

So we can find some z ∈ L⋆ such that y := φ(z) ̸= 0. Computing s(y) we have

s(y) = 1 + s(x)s2(z) + (s(x)s2(x))s3(z) + · · ·+ (s(x) · · · sd−1(x))z =
1

x
y,
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where we used N(x) = 1 to simplify the last term of s(y) to z/x. Rearranging, x = y/s(y). □

Corollary 20. We have H1
ét(Spec k,Gm) = H1(Gal(ks/k), k

⋆
s) = 0.

On the opposite extreme of generality, the term is often applied to the following comparison result be-
tween cohomology on different sites, which immediately implies the previous corollary because Spec k has
no interesting Zariski-bundles.

Theorem 21. Let X a scheme, n ≥ 1. We have canonical isomorphisms H1
fppf (X,GLn) = H1

ét(X,GLn) =

H1
Zar(X,GLn).

Proof. As in the section on associated bundles, there is an equivalence of categories between GLn-torsors for
any of these sites and locally free rank n quasicoherent sheaves on X; in particular the isomorphism classes
coincide. □

VII. Fields of dimension ≤ 1.

Theorem 22. If k is a field of dimension ≤ 1 and G is a connected reductive linear algebraic group, then
H1(Gal(ks/k), G) = 0.

[TODO]

VIII. Rational and geometric orbits and conjugacy

VIII.1. Orbits and Geometric Orbits. Let G a smooth linear algebraic group over k acting on a finite
type k-scheme X, and x ∈ X(k) with orbit morphism α : G→ Ox.

Remark 23. Since the orbit morphism is surjective, it is surjective on k-points. That is, Ox(k) = G(k) · x.
This implies immediately from the universal property of a locally closed subscheme that

Ox(k) = (G(k) · x) ∩X(k).

We call this the geometric orbit of x. We wish to investigate its relationship to the rational orbit G(k) · x.

When the orbit morphism is smooth (tantamount to the stabilizer being smooth), the geometric orbit
reduces to ks-points.

Lemma 24. If X → Y is a smooth surjective morphism of schemes over k, then it is surjective on ks-points.

Proof. Given a point y ∈ Y (ks) (i.e. κ(y) ⊆ ks), the fiber over it is a smooth κ(y)-scheme. Replacing X
with the fiber, we reduce to the case of Y = Specκ(y) = Spec k and X a smooth k-scheme. By the universal
property of the separable closure, it now suffices to show that X contains a closed point with finite separable
residue field over k.

Indeed we show such points are dense. For any U ⊆ X, since “smooth = locally étale over affine”, we

can shrink U so X → Spec k factors as U
π−→ An

k → Spec k with π étale. If we find a point in the (open)
image of U in An

k with finite separable residue field over k, then its fiber under π is nonempty and consists
of separable field extensions. So we reduce to showing such points are dense in An

k , which is true: for any
basic open D(f) ⊆ An

k , we have

D(f)(ks) = {(a1, . . . , an) ∈ kns : f(a1, . . . , an) ̸= 0} ≠ ∅

because ks is infinite. □

Proposition 25. If the stabilizer Gx ≤ G is smooth, then Ox(k) = (G(ks) · x) ∩X(k). In particular, two
k-points of X are conjugate by an element of ks if and only if they are conjugate by an element of k.

Proof. Since the orbit map is finitely presented and faithfully flat with fibers over closed points isomorphic
to the stabilizer (after passing to k), the orbit morphism is smooth by [Sta22, Tag 01V8], so the above lemma
implies it is surjective on ks-points, i.e. G(ks) · x = Ox(ks), which gives the result. □
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VIII.2. ks-Orbits and Galois Cohomology. We can classify the rational orbits inside a ks-orbit using
Galois cohomology.

Proposition 26. Let G an algebraic group over k, and x ∈ G(k) with ks-orbit Ox := (G(ks) · x) ∩ X(k).
Then we have a natural bijection

{O ⊆ Ox rational orbit} = ker(H1(k,Gx)→ H1(k,G)),

where Gx is the centralizer.

Proof. We construct the bijection explicitly. Given y ∈ Ox, pick g ∈ G(ks) such that g · x = y. Then
consider the Galois cocycle s 7→ as := g−1s(g). This is certainly a continuous cocycle (indeed by definition
coboundary) valued in G(ks), and since x and y are Galois-stable

g−1s(g) · x = g−1s(g · x) = g−1s(y) = x,

so as ∈ Gx(ks) for all s and we have found a Gx-cocycle in the claimed kernel. If we chose some other y′ in
the same rational orbit as y, the corresponding cocycle would be the same (the difference would be absorbed
in the middle of g−1s(g)).

Conversely, given such a class in H1(k,Gx), since it becomes a coboundary for G each as = h−1s(h)
for some h ∈ G(ks), so we obtain a rational orbit [h · x] in the same ks-orbit. A cohomologous cocycle
a′s = b−1ass(b) (for b ∈ Gx(ks)) will give the same element hb · x = h · x, hence the same rational orbit.
Note that beginning from an orbit [g · x], the element h above need not recover g, but we must have
h−1s(h) = g−1s(g), so gh−1 ∈ G(k) and so g · x and h · x are in the same rational orbit. □

VIII.3. Conjugacy. We can apply the above framework both to G ↷ G and the adjoint action G ↷ g to
understand the relationship between rational and geometric conjugacy in both settings. For example, when
G = GLn, the theory of Frobenius normal form implies directly that rational, ks, and k-conjugacy in the
adjoint action coincide. Along with Hilbert’s theorem 90 above, we deduce the following.

Corollary 27. For x ∈ GLn(k), we have H1(k,Gx) = 0.

TODO weird!
For other groups, the various notions of conjugacy do not coincide.

Example 28. Let k = R, G = SL2, and x =

(
0 1
−1 0

)
. Then the k = C-conjugacy class consists of all

matrices with determinant 1 and trace zero, but the matrix y =

(
0 −1
1 0

)
is not conjugate over R to x: we

compute(
0 −1
1 0

)
=

(
a b
c d

)(
0 1
−1 0

)(
d −b
−c a

)
=

(
−b a
−d c

)(
d −b
−c a

)
=

(
−bd− ac a2 + b2

)
has no solutions over R because squares are positive.

Our vanishing results in cohomological dimension 1 also apply.

Corollary 29. If k is a field of dimension ≤ 1 and Gx is a connected reductive group for x ∈ G(k), then
the conjugacy and stable conjugacy classes for G coincide. For example,

Another important question people have extensively considered is whether a stable conjugacy class (i.e.
the fiber over a point in the GIT quotient) contains any rational points at all. TODO maybe split some of
this off into the other document on GIT stuff.

IX. Hasse Invariants and Gerbes

[TODO]

9



References

[Mil98a] James S Milne. “Algebraic geometry”. In: Lecture Notes 6 (1998), p. 02.
[Mil98b] James S Milne. “Lectures on étale cohomology”. In: Available on-line at http://www. jmilne.

org/math/CourseNotes/LEC. pdf (1998).
[Ols16] Martin Olsson. Algebraic spaces and stacks. Vol. 62. American Mathematical Soc., 2016.
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