
ELLENBERG/ZURICK-BROWN RTG WORKSHOP

These are notes taken live during the Ellenberg/Zurick-Brown Berkeley RTG Workshop in June 2021.1

I. Monday: Counting Number Fields

In arithmetic statistics one wants to count L/Q number field (or global function field L/Fq(t)) of degree
d and discriminant DL/Q as an ideal of Z.

Theorem 1 (Hermite). There are only finitely many number fields of degree d and |DL/Q| < X.

Sketch. Primitive element theorem: L = Q(α) for α ∈ OL whose minimal polynomial is monic with Z-
coefficients. Hermite shows one can choose such an α with all |α| bounded, and thus with all the |ai|
(elementary symmetric polynomials) in terms of |DL/Q|. One can do this because the discriminant controls
the covolume of the integer lattice OL, and then use Minkowski’s theorem to find an α in a small box. �

This gives an explicit bound on number fields with discriminant < |X|

Nd(X,Q) < c+ dX(d+2)/4.

It is conjectured that in fact
Nd(X,Q) ∼ cdX.

If we restrict to Sn-extensions, Bhargava predicts the value of cd.
What is known:

• d = 2. Then L = Q(
√
m)/Q the discriminant is roughly m. This is exactly true when m is square-

free, so one proves the analytic fact that the number of square-free integers in [−X,X] is asymptotic
to X.

• d = 3. Davenport-Heihroun (1970).
• d = 4, 5. Bhargava.

In this field, the fundamental wall seems to be 5 vs 6: to prove d = 6 would require a big new set of ideas.
There is substantial progress on upper bounds.

• Ellenberg and Vakatesh (2006) obtained an upper bound of Xc
√
log d.

• Couvaignes (2019) and then Lemke, Oliver, and Thorne (2020) improved this to Xc log2 d.

All three papers improve on Hermite’s approach in the following way.
Take an affine space V with faithful (but not fixed-point-free) action of finite group G (here Sd). Then

we have a map
(V/G)(Q)→ {G-extensions of Q}.

given by P 7→ field corresponding to π−1(P ), where π is the structure projection V → V/G. One shows
that every G-extension of |disc | < X arises from a point of (V/G)(Z) with height at most c(X), then counts
points on V/G(Z) of height at most c(X).

Hermite’s proof applies this technique to V = Ad, with the action of permuting coordinates. So the essence
of the argument is that Ad/Sd is also an affine space, generated by the elementary symmetric polynomials.
So Hermite shows we can find a bounded point in this quotient affine space.

The idea of EV (06) is to let V = (Ad)r with Sd acting diagonally by permutation of coordinates. Func-
tions on the quotient V/Sd are called multisymmetric functions. One counts points on it by choosing N
multisymmetric functions, i.e. a map V/Sd → AN and counting points on AN . You need to make N big
enough to make this injective, or at least have finite fibers.

• In EV, one needs to take N ∼ 22r · d in order to show injectivity.
• Caveignes improves this to N ∼ r2d.
• LO/Thorne show injectivity with N ∼ rd.

1Notes by Connor Halleck-Dubé, UC Berkeley.
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It is important that you not only minimize N but also the degree of the functions which generate the map.

Question. Is there a way to count Z-points on (V/G) more effectively than embedding in affine space?

This technique counts not only Sd-Galois extensions, but also all other degree d extensions. Three points
of philosophy:

(1) The conjecture Nd(X,Q) ∼ cX1 (Malle’s) is motivated by the function field case. Degree d extensions
of Fq(t) are covers of P1

Fq
of degree d, which are the Fq-rational points of a moduli space called a

Hermite space.
In order to make this finite we need to bound the genus, which corresponds to bounding the

discriminant. The discriminant of such a cover has norm qn, where n is the number of branch
points of the cover. It turns out the Hurwitz space of covers with n branch points and degree d has
dimension n, so one heuristically guesses that it has qn points over Fq. This is unjustified but often
close to correct. (EV 16). It fails horribly when counting abelian varieties in (Lipnowski-Tsiquessen
18), however.

(2) One can refine the discriminant with the notion of shapes of a number field. If L/Q is a number
field, then OL is a lattice with covolume ∼ |DL/Q| and bilinear form (α, β) = Tr(αβ).

What can we say about the shape of this lattice in the space of lattices? It is known to be
equidistributed in d = 3 (Terr) and d = 4, 5 (Bhargava-H 16), and for specific Galois groups by some
works of Harron et al.

Is the shape of the lattice (i.e. the lattice up to isometry) a complete invariant? Not in general
because of some simple counterexamples, but (Mantilla-Soler, Rivera Guerra 2019) show for totally
real number fields it is complete.

The shape actually does seem to be important in this picture. Roberts in 2000 on the basis of
numerical evidence conjectured that

N3(X,Q) = c3X − c′X5/6 + o(X5/6).

This has been proven by Bhargava-Shankar-Tsimerman and Tanisuchi-Thorne and Zhao in the func-
tion field case. The key idea is to separate cubic fields by shape. The “missing” X5/6 are lattices
whose shape is so skew that they cannot occur.

(3) What does counting number fields have to do with rational points? Clearly counting points on (V/G)
was necessary for the story, but the connection is more fundamental. A G-extension of a field K is
a K-rational point on the classifying stack BG. So this is a rational-point-counting question.

A vector bundle on BG is exactly a representation V of G, exactly as above. Its total space
is V/G. So we can rephrase Hermite’s strategy in abstract language: to count points on a stack
X, choose a suitable vector bundle V on X, with total space Y → X. Step 1: show that every
low-height point on X comes from a low-height point on Y. Step 2: Count low-height points on Y.

The strategy above then embeds Y into something else (namely affine space) in order to accomplish
Step 2.

In the case X is a scheme, this is exactly the dominant technique (the “method of the dominant
torsor”) used to approach the Batyrev-Manin conjecture on the number of Q-points on a variety X
with bounded height.

For this perspective, one needs to develop a theory of heights on stacks. We think there is a good no-
tion extending the classical definition, which allows a unification of Malle’s conjecture and Batyrev-Manin
conjecture as both being stacky-point-counting.

II. Tuesday: Batyrev-Manin Conjectures

The Lang-Vojta conjecture says: if X is a variety of general type (meaning that KX is big, or if you don’t
know what that is, ample), then X(Q) is not Zariski-dense.

We can think of Batyrev-Manin as a kind of opposite of Lang-Vojta. If X is rational (more generally
Fano, meaning that −KX is ample), then the rational points are Zariski-dense. But we can ask for more,
namely how quickly the number grows with the height.

If X/Q does have a dense set of rational points, then take an embedding ϕ : X ↪→ PN defined by L, and
let U ⊆ X a Zariski-open.
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One can consider the counting function

NU,L(B) := #{P ∈ U(Q) h(P ) ≤ B}.
The Batyrev-Manin conjecture says that

NU,L(B) ∼ cBa logbB

for some explicit a, b, c. The formula for c is due to Peure (?).
For our purposes, it suffices to define naive height.

Definition 1. For P = [x0 : · · · : xN ] ∈ PN (Q), the height of P is defined

ht(P ) := max{|x0|, . . . , |xN |}.
More generally, for P ∈ PN (K) of the same form,

ht(P ) :=
∏
v

max{||x0||v, . . . , ||xN ||v}

We illustrate these a, b, c with a series of low-genus examples.

Example 2. If X = P1 (with the embedding the identity), then an elementary computation gives NX(B) ∼
2 6
π2B

2. Note the formula for the probability of two integers to be coprime.

Theorem 3 (Schanuel). As B 7→ ∞,
NPN (B) ∼ cK,NBN+1

where cK,N has an explicit expression.

Example 4. Again consider ϕ : X = P1 ↪→ P2, this time with the anti-canonical conic embedding [a : b] 7→
[a2 : ab : b2]. So NP1,−KP1

(B) ∼ cB.

In general, we will see that Fano varieties with the anticanonical embedding have a = 1.

Example 5. Let X ⊆ P3 be a (smooth?) cubic surface over Q, like for example w3 + x3 + y3 + z3 = 0. One
has

NX(B) ∼ c1B2,

despite the fact that X is Fano, so we should be expecting the exponent of B to be 1. Why is this happening?
Let Z be the locus of 27 lines on it, and U the complement, which is rational. The conjecture implies that

NU (B) ∼ cB logs−1B,

where s = rk PicX.
What this example shows is that the 27 lines are an exceptional locus, contributing more than they should

to the point count. So the conjecture needs a caviat involving throwing away a certain exceptional “thin”
subset.

The constants are themselves interesting geometric invariants defined in terms of the (pseudo-)effective
cone. With ϕ : X ↪→ PN defined by L the constant a occurring in the conjecture is defined

a(X,L) := min{t ∈ R : KX + tL ∈ Eff
1
(X)}

and the constant b (which depends on K, unlike a) is

b(K,X,L) := codim of minimal face of Eff
1
(X) containing KX + aL.

There is also an explicit expression for c, see Peyre. Note that if KX ≥ 0, then a = 0 by definition.
In the case of K3 surfaces or abelian varieties, one has a = 0.

Example 6. The Swinnerton-Dyer K3 surface is

x4 + 2y4 + 14z4.

It was conjectured for a long time that the only solutions were [±1 : 0 : 0]. However a single huge solution was
later found. This makes sense in the context of the conjecture: the conjecture suggests the number of points
to grow logarithmically (to some power), so the heights of individual solutions should grow exponentially.
We will probably never find the next solution, though we expect more.
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Example 7. If we take X = PN with L = H (i.e. the identity embedding) then KX = −(N + 1)H, so
KX + tL ≥ 0 iff t ≥ N + 1 and we conclude a = N + 1.

Example 8. Now take P1 ↪→ P2 the anticanonical embedding. Then by definition KX + tL = (1− t)KX ≥ 0
iff t ≥ 1 so a = 1.

Example 9. Let X ⊆ P3 a cubic surface. What is the canonical bundle? We use the adjunction formula,
which reads in this case

KX = (KP3 +X)|X = (−4H + 3H)|X = (−H)|X .
So cubic surfaces are Fano and the embedding is exactly the anticanonical one. By the same argument as
the previous example, the invariant reads a = 1.

II.1. The Global Function Field case. Let K = Fq(t) or Fp(C) for some curve that isn’t P1 (i.e. a finite
extension of Fq(t)). The naive height on PN is

PN (Fq(t)) 3 [f0/g0 : · · · : fN/gN ] = P.

Clearing denominators and common factors we define ht(P ) = max{deg f0, . . . ,deg fN}.
We can do better, however. What is going on is that we are realizing PN → SpecK as the generic fiber

of some model, specifically PN × P1 → P1. A rational point defines a rational section of the structure map
of the model, which extends to a regular section by properness.

In general, if X is a proper variety over K = Fq(C) and we take a model X → C, then a rational point
on C defines such a section by taking the closure of the image (which lies on the generic fiber). In terms of
line bundles, we take L ∈ PicX and extend it to L on X. Then one can define the height as

htL(x) = deg x?L.

The definition of a came from a moduli-theoretic interpretation. We have a bijective correspondence
between x ∈ X(K) = X(K) and sections C → X of the structure map. Then if we fix the degree of the
sections, Cd(X, C) has a nice moduli space. The definition of the invariant a comes from doing analysis of
this moduli space.

II.2. Working Group. Jordan said on Monday that the typical way of approaching Bat-Man problems is
by replacing X with the total space of some vector bundle on X (actually, a Gm-torsor – we don’t want the
zero section). This is not so mysterious, as the following example shows.

Example 10. If X = P1, then take V = O(−1). The total space of V is approximately A2 \ 0 (kinda–this
is the total space as a Gm-bundle. To count points on P1(Q) = P1(Z) of bounded height, we usually count
(A2 \0)(Z) = {(a, b) ∈ Z2 : gcd(a, b) = 1}. On the other hand P1(Z) = {[a : b] ∈ P1(Q) : a, b ∈ Z, gcd(a, b) =
1}, so point-counting of bounded height is basically doing the same thing in A2.

It often happens that for good enough X, there exists Y → X a (Gm)r-torsor (a torus torsor) with
r = rk PicX such that the total space of Y is open in some AN or maybe some blowup of AN . This is the
kind of strategy used for Batyrev-Manin.

Over a field with nontrivial class group, the picture of the example above is somewhat more complicated,
because one may not take a global set of homogeneous coordinates which are all algebraic integers and
relatively prime. This additional complexity translates to some fibers of Y → X being empty.

This doesn’t happen for the cases we talked about on Monday: for example, given a finite extension of
K, there actually is a polynomial with coefficients in OK giving rise to it. This is perhaps an incarnation of
Hilbert 90.

The difference is fundamentally the difference between vector bundles and Grm-torsors. The former only
has one rational form, the latter are classified by H1(SpecK,Gm) = Pic(SpecOK).

Note that A2 \0 classifies surjections O⊕2 → O and P1 classifies line bundles L with surjections O⊕2 → L.
The map we have described above is on the functor of points exactly the natural embedding of the former
into the latter.

[Discussion I didn’t understand about the classifying stackBGm – decided the stack classifying (L,Hom(O⊕2, L))
is A2/Gm.]
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III. Wednesday: Stacky Bat-Man

Conjecture 1 (Batyrev-Manin). Let X ⊆ PN/K. There exists U ⊆ X open and nonempty and constants
a, b, c such that

NU (B) ∼ cBa logbB.

Conjecture 2 (Malle). Let G ⊆ Sn and K a number or global function field. Then there exists a, b, c such
that

NG,K(B) ∼ cBa logbB.

We interpret both of these as examples of the same conjecture about point-counting on stacks. Question:
one doesn’t really need projective in the first conjecture? Answer: No you don’t, and you also don’t need
nonsingular.

Let BG = [SpecZ/G]. Its universal property is that if {?} is the terminal object (with trivial G-action)
and T → BG is a map, then the G action lifts to the fiber product

P {?}

T BG

such that the top map is equivariant.
The Q-points of BG are étale algebras over Q with Galois group G (generically, field extensions). It is

the stackiest stack – basically a point, and everything interesting about it is stacky.

Conjecture 3 (E,S,Z-B). Let X be a proper Artin stack over K with finite diagonal. Let V ∈ VectX.
Then there exists a, b, c such that

NX,V (B) = cBa logbB.

Suggested reference: Geometric Consistency of Manin’s Conjecture.
Some examples other than BG.

Example 4. Over Fp, p 6= 2 one has that Bµ2(k(t)) classifies hyperelliptic cones.
If one takes X : xp + yq + zr = 0 (a curve in weighted projective space) then there is a corresponding

weighted-diagonal action of Gm on X, and one can descend to the quotient [X − 0/Gm], which is a P1 with
3 stacky points when x, y, or z = 0 (nontrivial stabilizers).

Other examples this conjecture is interesting for: Ag,M1,1,Symn Pm = [(Pm)n/Sn],P(a, b).
Problems:

(1) What does height mean on stacks?
(2) There does not exist an embedding X ↪→ PN .
(3) The coarse space loses information, e.g. BG→ {?}.
(4) The vector bundles on BG are representations of G. This implies that PicBG is torsion, and so htL

isn’t additive in L.
(5) Properness is wonky: if R ⊆ K is a DVR then the map X(R)→X(K) need not be surjective.

For example,

SpecL {?}

SpecK BG

If we have an OK-point, it does not necessarily extend to an OL-point because SpecOL → SpecOK
is ramified. So instead we find that the point extends to a stacky curve C living between SpecOL →
SpecOK which has stacky points at all ramification.
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III.1. Global Function Field. Everything is nicer for function fields. If K = Fq(C) for curve C and
X → C a (proper?) model. Then if

X0 X

SpecK C

one defines height for a point x by pulling back our line bundle L along the corresponding section C → X

(the section extends by properness) and taking degree. One extends this to the number field case using the
theory of metrized line bundles.

On the other hand, if X is a stack and K is the function field of a curve C over Fq or SpecOK , then
given a diagram

X0 X

SpecK C

and V a vector bundle on X, the section corresponding to the point need NOT extend from the generic
point to all

Theorem 5. There exists a birational map π : C → C to the coarse space from the relative normalization
of the point x : SpecK →X. So we have a commutative diagram

SpecK C X

C C

x

x

id

This gives the natural notion of height with respect to the vector bundle.

Definition 6. We define

htV (x) := −deg π?x
?V ∨.

This is in particular independent of C chosen. In order to explain why pushforward along π, consider the
following example.

Example 7. Consider K = Fq(t), q 6= 2 and Bµ2. A hyperelliptic curve gives rise to a Cartesian diagram

H {?}

C Bµ2

P1

x

with the top map equivariant for the µ2 action, and C = [H/µ2] a stacky-P1 with stabilizers of µ2 at the
branch points of the hyperelliptic map. A line bundle on Bµ2 is a 1-dimensional representation of µ2, i.e.
a character mod 2, so we have PicBµ2

∼= Z/2. Take L the line bundle corresponding to the nontrivial
character, so L2 ∼= O. But since L and its pull-back to C are both torsion, we have

deg x?L = 0.

So just pulling back along x is not enough to make this a reasonable notion of height – the stacky points are
affecting our count. But can represent the line bundle by L = O(

∑
stack-y points− (g+ 1)∞), and so when

we pushforward under π, the contribution from the stacky points all vanishes and π?L = O(−(g + 1)∞).
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III.2. Fujita Invariant. Given a stacky curve over a curve X → C and a point on C defining a section
C →X, we get an extended map x as below.

C X

C

x

π

One can do a stacky-Riemann-Roch stype computation to determine that the “expected deformation dimen-
sion” edd(x) gives

edd(x) = χ(x?TX)− χ(TC)

= deg(π?x
?TX)− deg(π?TC) + const

= −htKX
(x) + rDiscx

In order to generalize the condition KX + tL ≥ 0, we translate it to a numerical criterion: we want the
corresponding intersection to be positive. So the right definition seems to be

a(V ) := min t s.t. (− edd(x) + thtV (x)) is generally bounded below.

Then we have
c′εB

a(V ) ≤ N(B) ≤ cεBa(V )+ε

roughly as desired. [What happened to the logB term?]

III.3. Working Group Meeting. In the working group, Martin suggested that perhaps the of heights
should be better understood as a function not on C or on P1, but on IC, the inertia stack. In the hyperelliptic
example above, the inertia stack is C

⊔
Bµ2

⊔
· · ·

⊔
Bµ2, an isolated stacky point for each stacky point on

C. The height with respect to L the nontrivial character is then more naturally a function on IC, as they
defined it on the copy of C corresponding to the identity, and taking values of −1/2 on the isolated points.
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