

## Problem Set 8

The following exercises are open-ended and sometimes under-specified, sometimes intentionally so. You should always feel free to ask for help from the mentors (as well as from your fellow students). **Read all the exercises before beginning to work.** You should spend at least 1 hour thinking about at least one of the starred problems.

Fixed notation: for a field  $K$ , let  $\mathcal{O} = K[[x]]$  with maximal ideal  $\mathfrak{m} = (x)$  and fraction field  $F = K((x))$ . Write  $v$  for the additive valuation function on  $F$ .

1. **\*Flags of many colors.** Using the notion of isotropic from the previous problem, give an intrinsic characterization of  $B$ , the upper triangular subgroup in  $\mathrm{Sp}_{2n}$ . Use this to give an interpretation of  $\mathrm{Sp}_{2n}/B$  as the moduli space of certain kinds of flags.
2. **Heavy Lifting.** In this exercise, we will study how polynomials  $f \in \mathcal{O}[\lambda]$  factor. Denote  $\bar{f} \in k[\lambda]$  the polynomial of constant terms, that is, the image of  $f$  under the map  $\mathcal{O}[\lambda] \rightarrow (\mathcal{O}/m)[\lambda] = k[\lambda]$ .

(a) First, let  $f$  be a monic quadratic polynomial. Assume the characteristic of  $k$  is not 2. Assume that we have a factorization

$$\bar{f} = (\lambda - \bar{a})(\lambda - \bar{b})$$

with  $\bar{a} \neq \bar{b} \in k$ . Prove that  $f$  admits a factorization  $(\lambda - a)(\lambda - b)$  such that  $a$  has constant term  $\bar{a}$  and  $b$  has constant term  $\bar{b}$ .

Here are some hints, as this can be tricky. The constants  $\bar{a} = a_0, \bar{b} = b_0$  are “approximate zeros” of  $f$ , in the sense that  $f(a_0), f(b_0)$ . You want to show that you can inductively add higher-order modifications to build power series  $a_n, b_n \in \mathcal{O}$  such that  $f(a_n)$  and  $f(b_n)$  get closer to 0, i.e. are contained in higher and higher powers of  $\mathfrak{m}$ . Take inspiration from Newton’s method for approximating zeroes of real polynomials.<sup>1</sup>

- (b) Can you extend this to more general kinds of factorizations? For example, what if  $f$  is degree  $n$  and  $\bar{f} = \prod_i (\lambda - \bar{a}_i)$  factors into distinct linear factors?
- (c) Can you figure out what goes wrong if  $\bar{a}, \bar{b}$  are not distinct in  $k$ ? Can you strengthen hypotheses to match this?
- (d) Application: It is a fact from basic number theory that  $-1$  is a square in  $\mathbb{F}_p$  if and only if  $p \equiv 1, 2 \pmod{4}$ . Using this, for which fields  $F = \mathbb{F}_p((t))$  is  $-1$  a square?
3. **Further afield.** In this exercise, we will start to investigate the field theory of the Laurent series field  $F = \mathbb{F}_q((x))$ .

- (a) Let  $K/F$  be a finite field extension, i.e.  $K = F[x]/f(x)$  for some  $f \in F[x]$  irreducible. Show that there exists a unique valuation  $v_K$  valued in  $\mathbb{Q}$  with the usual properties (ultrametric inequality,  $v_K(xy) = v_K(x) + v_K(y)$ ,  $v_K(0) = \infty$ ) such that  $v_K|_F = v$ .
- (b) We call an extension  $K/F$  *unramified* if  $v_K$  still has image in  $\mathbb{Z}$  – that is, if 1 is still the smallest possible valuation in  $K$ . Otherwise, we call  $K/F$  *ramified*. Construct examples of specific  $f$  generating ramified and unramified quadratic extensions of  $\mathbb{F}_3((x))$ . (The previous problem may inspire you).

<sup>1</sup>[https://en.wikipedia.org/wiki/Newton%27s\\_method](https://en.wikipedia.org/wiki/Newton%27s_method)

4. **\*It's semi-simple!** Let  $A \in \text{Mat}_{n \times n}(k)$  for any field  $k$ . We say that  $A$  is *semisimple* if every  $A$ -stable subspace has a complement. That is, for every  $W \subseteq k^n$  such that  $A(W) \subset W$ , there exists a  $W'$  such that  $A(W') \subset W'$  and  $W \oplus W' = k^n$  is a direct sum decomposition.

- (a) Consider the real-valued matrix  $R$  corresponding to a quarter-rotation in the plane. Show that  $R$  is semisimple.
- (b) Prove that diagonalizable matrices are semisimple.
- (c) Prove in fact a stronger biconditional characterization: Let  $\bar{k}$  be an algebraically closed field containing  $k$ . Prove that a matrix  $A \in \text{Mat}_{n \times n}(k)$  is semisimple if and only if, when we view  $A$  as a matrix with  $\bar{k}$ -entries, it is diagonalizable. (Hint: Jordan canonical form works over any algebraically closed field  $\bar{k}$ ).
- (d) Call  $A$  *regular semisimple* if, when viewed in  $\bar{k}$ ,  $A$  is diagonalizable with distinct eigenvalues. Show that a matrix is regular semisimple if and only if its centralizer in  $\text{GL}_n(\bar{k})$  is isomorphic to  $(\bar{k}^\times)^n$ .
- (e) What is the centralizer of the matrix  $R$  from part (a) in  $\text{GL}_2(\mathbb{R})$ ?

5. **\*The Incidence Incident.** Recall that  $\text{GL}_n/B$  can be interpreted as the moduli space of complete flags  $0 \subset V_1 \subset \cdots \subset V_{n-1} \subset V_n = V$ , where  $\dim V_i = i$ . We know that the left  $B$ -orbits on  $G/B$  are parameterized by  $W$ . Can you characterize geometrically which flags lie in the orbit corresponding to  $w$ ? (It might be good to start with  $\text{GL}_2$  and/or with small-length elements of  $W$ ).

6. **Kuala Lumpur.** Let  $\mathcal{H} = \text{Fun}(B \backslash \text{GL}_n / B) = \mathbb{C}\langle 1_w \rangle_{w \in W}$ , where we write  $1_w$  for the indicator function of the  $B \times B$  orbit containing  $w$ . In this exercise, we specialize to  $\text{GL}_2$  and  $\text{GL}_3$ , so the Hecke algebra is 2-dimensional or 6-dimensional. Do this problem first for  $\text{GL}_2$ , then for  $\text{GL}_3$ .

- (a) The basic convolution relation satisfied by the indicator functions  $1_w$  is that if  $w, w'$  satisfy  $l(w) + l(w') = l(ww')$ , then

$$1_w \star 1_{w'} = 1_{ww'}.$$

(It is only when the elements “overlap” that the convolution is complicated). Taking this as given, show  $1_e$  is the unit for convolution. Show also that  $(1_s + 1_e)^2 = (q+1)(1_s + 1_e)$  for each simple reflection.

- (b) Using these identities, find convolution inverses for  $1_w$  for each  $w \in W$ . That is, find functions  $1_w^{-1}$  such that  $1_w \star 1_w^{-1} = 1_e$ . (Hint: start with doing this for the simple reflections).
- (c) Consider the involution  $D : \mathcal{H} \rightarrow \mathcal{H}$  defined by the formula

$$D(1_w) = (1_{w^{-1}})^{-1}.$$

We would like to find a skewed basis for  $\mathcal{H}$  which is closely related to the indicator basis but is fixed by  $D$ . To be precise, find a new basis  $\{f_w\}_{w \in W}$  for  $\mathcal{H}$  with the following properties:

- $D(f_w) = f_w$ , and
- the change of basis matrix from  $\{1_w\}_{w \in W}$  to  $\{f_w\}_{w \in W}$  is upper triangular, has 1's on the diagonal, and everything above the diagonal is a polynomial in  $q$  which is divisible by  $q$ .