
Problem Set 6

The following exercises are open-ended and sometimes under-specified, sometimes intentionally so. You should always feel free to ask for help from the mentors (as well as from your fellow students). **Read all the exercises before beginning to work.** You should spend at least 1 hour thinking about at least one of the starred problems.

Fixed notation: for a field K , let $\mathcal{O} = K[[x]]$ with maximal ideal $\mathfrak{m} = (x)$ and fraction field $F = K((x))$.

1. **Why can't you just be normal???** Let T be the diagonal subgroup in GL_n . Compute the normalizer $N(T) = \{g \in \mathrm{GL}_n : gTg^{-1} = T\}$. To be more specific, describe $N(T)/T$. (Hint: go looking for matrices which send T to itself but are not themselves diagonal. Find enough that you can guess the answer.)
2. **Woooord up!** The symmetric group S_n is generated by adjacent transpositions (i.e. transpositions of the form $s_i = (i \ i + 1)$ for $1 \leq i \leq n - 1$). Define the *length* $\ell(w)$ of a permutation $w \in S_n$ to be the length of the shortest presentation of w as a word in the adjacent transpositions.
 - (a) Show that $\ell(w)$ is well defined.
 - (b) Compute the lengths of every element of S_3 . It may be helpful to compute which relations are satisfied by the s_i (Hint: $s_i^2 = 1$, but there is one additional series of relations).
 - (c) What does the previous part tell you about $B \backslash \mathrm{GL}_3 / B$?
3. **Haaaaar haar, I'm a pirate!** Hopefully you have now figured out a way to equip GL_n with a nice multiplication-invariant measure. Using as building blocks the additive measure dx on F and the multiplicative measure dx^\times on F^\times , we would like to build Haar measures on some matrix subgroups of GL_n . (That is, your answer should probably look something like $f(a, b, c, \dots)da \ db^\times \ \dots$ where a, b, c, \dots are entries of the matrix.)
 - (a) Find an invariant measure to put on $T(F)$, the subgroup of (Hint: T is isomorphic to the product $F^\times \times \dots \times F^\times$).
 - (b) Find a measure on B which is invariant under left multiplication by B . Is it also invariant under the right multiplication?
4. **Let your freak flag fly.** Recall that in GL_2 we have explicitly described the flag variety GL_2 / B : every coset can be represented by either

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{or} \quad \begin{pmatrix} 0 & 1 \\ 1 & d \end{pmatrix}.$$

So we can identify the flag variety with $K \cup \{\infty\}$ in this case. What are the left B -orbits? (There should be 2, corresponding to the 2 $B \times B$ orbits in GL_2 .)

5. **Convolutations!!** Let $K = \mathbb{F}_q$. Working in GL_2 , take the indicator functions

$$1_e \quad \text{and} \quad 1_{(1\ 2)}$$

of the two $B \times B$ -orbits. Can you compute the convolution $(1_e \star 1_{(1\ 2)})$? (Just the basic convolution formula in G , no weird $B \backslash G/B$ stuff here.) Since you are working over \mathbb{F}_q , everything involved is just a finite sum. The result will be another $B \times B$ -invariant function, so it can be expressed as a linear combination of 1_e and $1_{(1\ 2)}$. What are the coefficients?

6. **Eternal Sunshine of the Symplectic Mind.** Let G denote the group of 4x4 matrices A such that

$$A^TJA = J, \quad \text{where} \quad J = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}.$$

Let $B \leq G$ denote the subgroup of matrices which are upper triangular and contained in G . We want to study B -row and column operations in this group. That is, we want to study the left and right actions of B on G .

- (a) Can you figure out what the “elementary” row or column operations should be in G ? Which matrices do they correspond to? Using your list, can you informally determine the dimension of G ? What about of B ?
- (b) Can you characterize the $B \times B$ orbits in G ? Can you guess at orbit closures?

7. **More convoluted than expected...** Let G be a group, with H a subgroup.

- (a) Consider the diagonal action of G on $H \backslash G \times G / H$. Show that the quotient of this space by G can be identified with $H \backslash G / H$. (Feel free to work in whatever context you are comfortable with – the important thing is having the right formula for a bijection of sets).
- (b) Suppose G acts on X . Show that $\mathrm{Fun}(X/G)$ can naturally be identified with G -invariant functions on X .
- (c) Recall that $\mathrm{Fun}(X \times X)$ is always a ring, with operation defined by

$$(f_1 \star f_2)(x, y) = \sum_{z \in X} f_1(x, z) f_2(z, y).$$

Now identify a ring structure on $\mathrm{Fun}(H \backslash G / H)$ using the previous parts. If f_1, f_2 are two $H \times H$ -invariant functions on G , what is their convolution product?