
Kähler-Einstein Metrics on Fano Manifolds

Catherine Cannizzo

Contents

1 Introduction 2
1.1 Kähler metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Holomorphic tangent bundle . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Chern classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Calabi-Yau Theorem 7

3 Calabi-Futaki invariant 9
3.1 Formula for the Calabi-Futaki invariant . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Fano surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Asymptotic Chow Stability 21
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.1 Chow form and asymptotic Chow stability . . . . . . . . . . . . . . . . . . 21
4.1.2 Moment map and symplectic quotient . . . . . . . . . . . . . . . . . . . . 22

4.2 Chow polystability is equivalent to balanced . . . . . . . . . . . . . . . . . . . . . 25

5 K-stability 28
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Weak K-stability is an obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Conclusion 34

1



1 Introduction

One way to obtain information about the geometry of a complex manifold is by looking at the
metrics it admits. When do complex manifolds admit metrics which give them a special struc-
ture? For example, requiring a metric of constant bisectional curvature puts a strong restriction
on the manifold; in the case of a complete Kähler manifold, it then has universal cover CPn,Cn
or the unit ball in Cn and its metric pulls back to the canonical metrics on these covers, up
to scaling, [Tia00, Theorem 1.12]. So one may look for a slightly weaker condition, such as
the existence of Kähler-Einstein metrics. These are Kähler metrics for which the Ricci form is
proportional to the Kähler form. Kähler-Einstein (KE) metrics provide a special solution to the
Einstein equation, which describes how space-time curves as a result of gravitation from mass
and energy. An Einstein metric solves the Einstein equation in a vacuum, [Bes87].

In order for KE metrics to exist on a compact complex manifold, the first Chern class must
be definite. Under this condition, the first Chern class separates complex manifolds into three
cases. M always admits a KE metric when c1(M) ≤ 0. In the case of positive first Chern class,
M is called a Fano manifold and does not always admit a Kähler-Einstein metric. Obstructions
include the vanishing of the Calabi-Futaki invariant, asymptotic Chow stability and K-stability.
The answer to when KE metrics exist is known for Fano surfaces. These surfaces have been
classified by N. Hitchin in [Hit75]. CP1 × CP1 and CP2 admit Kähler-Einstein metrics. If
M = CP2(p1, . . . , pk), the blow up of CP2 in k points in general position, then M does not
admit a Kähler-Einstein metric for k ∈ {1, 2} and it does for k ∈ {3, . . . , 8} ([Tia00, pg 87]).

The layout of this essay is as follows: in Section 1 I will give background for Kähler manifolds
and Chern classes. In Section 2 I will state the Calabi-Yau theorem (without proof) and note
some corollaries. In Section 3 I will introduce the Calabi-Futaki invariant, show CP2(p) and
CP1 × CP1(p) do not admit Kähler-Einstein metrics, and discuss the other Fano surfaces. In
Section 4 I will introduce asymptotic Chow stability and describe an equivalence between Chow
polystability and balanced varieties as given in Wang [Wan04], and state the theorem of Don-
aldson [Don01] that the existence of a constant scalar curvature Kähler (cscK) metric implies
there is a sequence of balanced metrics converging to the cscK metric, when the automorphism
group is discrete. In Section 5 I will define Tian’s K-stability and describe his proof [Tia97]
that Kähler-Einstein implies weakly K-stable.

Acknowledgments. I would like to thank Dr Julius Ross for advising me and for discussions
about the material, as well as Emile Bouaziz and Ruadháı Dervan for discussions on algebraic
geometry; I attended a talk given by the latter in the Part III seminar series.
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1.1 Kähler metrics

The background material of this section is similar to that in [Tia00].

Let (M, g) be a smooth Riemannian manifold. An almost complex structure J : TM → TM is
an endomorphism of the tangent bundle such that J2 = −id. The Nijenhuis tensor N(J) is

N(J) : TM × TM → TM

N(J)(u, v) = [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv], u, v ∈ V ect(M)

M is a complex manifold if it admits an almost complex structure J which is also inte-
grable, meaning J is induced from multiplication by i on the holomorphic tangent bundle
T 1,0M ⊂ TCM := TM ⊗ C, defined below. By a theorem of Newlander and Nirenberg, J is
integrable if and only if N(J) = 0.

Definition 1. J is compatible with g if

g(Ju, Jv) = g(u, v), ∀u, v ∈ V ect(M)

Definition 2. The Kähler form of g is defined as

ωg(u, v) := −g(u, Jv)

Remark 3. The Kähler form is alternating by compatibility of J :

ωg(v, u) = −g(v, Ju) = −g(Jv,−u)

= g(u, Jv) = −ωg(u, v)

Let ∇ denote the Levi-Civita connection on M . This is the unique torsion-free connection on
M such that ∇g = 0.

Definition 4. A Riemannian manifold (M, g) with a compatible almost complex structure J
is a Kähler manifold if ∇J = 0. Then g is a Kähler metric.

Throughout this essay, “Kähler metric ωg” means “Kähler form ωg corresponding to Kähler
metric g”.

Remark 5. Note that ∇J = 0 =⇒ N(J) = 0. This can be seen as follows: ∇ is symmetric so
[u, v] = ∇uv −∇vu. Further, J ∈ Γ(M,End(TM)) means

(∇XJ)Y := ∇X(JY )− J(∇XY ) (1)

for all vector fields X,Y on M . Thus taking X = Ju, Y = v and X = v, Y = Ju respectively,

J∇Juv = ∇Ju(Jv)− (∇JuJ)v

J∇v(Ju) = −∇vu− (∇vJ)Ju

and so

N(J)(u, v) = [u, v] + J [Ju, v] + J [u, Jv]− [Ju, Jv]

= ∇uv −∇vu+ J(∇Juv −∇vJu) + J(∇uJv −∇Jvu)− (∇JuJv −∇JvJu)

= (∇uv −∇vu)− J(∇vJu−∇uJv)− (∇JuJ)v + (∇JvJ)u

= (∇vJ)Ju− (∇uJ)Jv − (∇JuJ)v + (∇JvJ)u = 0

if ∇J = 0. So a Kähler manifold is a complex manifold. Equivalently, a Kähler manifold
could be defined as a complex manifold with metric g such that the induced Kähler form ωg is
d-closed. Then g is a Kähler metric. See [Tia00, Prop 1.5] for this equivalence.
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1.1.1 Holomorphic tangent bundle

Definition 6. Assume M is a Kähler manifold. J induces a splitting of TCM into eigenspaces
T 1,0M ⊕ T 0,1M corresponding to eigenvalues +i,−i respectively, called the holomorphic and
antiholomorphic tangent bundles.

We can extend g C-linearly to gC on TCM . Note that TM ∼= T 1,0M as real vector bundles; if M
has local real coordinates x1, . . . , x2n and local complex coordinates zj := xj+ ixn+j , 1 ≤ j ≤ n,
then this isomorphism is given by

∂

∂xi
7→ ∂

∂zi
:=

1

2

(
∂

∂xi
− i ∂

∂xn+i

)
∂

∂xn+i
7→ i

∂

∂zi

for 1 ≤ i ≤ n. T 0,1M is generated by ∂
∂zi

:= 1
2

(
∂
∂xi

+ i ∂
∂xn+i

)
for 1 ≤ i ≤ n.

Define a hermitian inner product on T 1,0M by h(u, v) = g(u, v). In local complex coordinates,

h =
∑
i,j
gijdzi ⊗ dzj , where gij = gC

(
∂
∂zi
, ∂
∂zj

)
. Then from the definition of the Kähler form, ωg

is locally

ωg =
i

2

∑
i,j

gijdzi ∧ dzj (2)

The metric h is hermitian since g is symmetric and ∂
∂zi

= ∂
∂zi

, therefore

hij = gij = gij = gji = hji

Also ωg = ωg so the Kähler form is real.

1.1.2 Connections

We can extend ∇ C-linearly to TCM . Then

∇ ∂
∂zi

∂

∂zj
= Γkij

∂

∂zk
+ Γkij

∂

∂zk

∇ ∂
∂zi

∂

∂zj
= Γk

ij

∂

∂zk
+ Γk

ij

∂

∂zk

where Γkij denote the Christoffel symbols. Since ∇J = 0, by Equation 1 we have

∇ ∂
∂zi

(
J
∂

∂zj

)
= J∇ ∂

∂zi

∂

∂zj
(3)

So putting the Christoffel symbols in (3) and using that ∂
∂zi
, ∂
∂zi

are in the i and −i eigenspaces
of J respectively,

∇ ∂
∂zi

(
J
∂

∂zj

)
= ∇ ∂

∂zi

(
i
∂

∂zj

)
= i

(
Γkij

∂

∂zk
+ Γkij

∂

∂zk

)
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and

J∇ ∂
∂zi

∂

∂zj
= J

(
Γkij

∂

∂zk
+ Γkij

∂

∂zk

)
= i

(
Γkij

∂

∂zk
− Γkij

∂

∂zk

)
=⇒ Γkij = 0

By similar calculations, all Christoffel symbols are zero except Γkij and Γk
ij

. Then the connection

matrix for the induced connection on T 1,0M is θ given by

∇ ∂

∂zj
= θkj ⊗

∂

∂zk
= (Γkijdzi)⊗

∂

∂zk
(4)

As M is Kähler, dωg = 0. Note that

dωg = 0 ⇐⇒
∑
i,j,k

[
∂gij
∂zk

dzk +
∂gij
∂zk

dzk

]
∧ dzi ∧ dzj = 0 (5)

⇐⇒
∂gij
∂zk

=
∂gkj
∂zi

,
∂gij
∂zk

=
∂gik
∂zj

(6)

Since gij = gij = 0 by compatibility of J , we can write out the Christoffel symbols as

Γlij =
1

2
glr
(
∂gir
∂zj

+
∂gjr
∂zi
− ∂gij
∂zr

)
= glr

∂gir
∂zj

(7)

1.2 Chern classes

Set n := dimCM . It is a property of the Chern connection on M that its induced curvature
form on K−1

M := ∧nT 1,0M is equal to the trace of the curvature form on T 1,0M , that is

ΘK−1
M

= tr(ΘT 1,0M )

Let e1, . . . , en be a local frame for T 1,0M so e1 ∧ . . . ∧ en is a local frame for K−1
M . Since K−1

M

is a line bundle, the curvature form induced by the Chern connection is

ΘK−1
M

= ∂∂ log h (8)

where h = h(e1 ∧ . . . ∧ en, e1 ∧ . . . ∧ en) := det(hij) = det(gij).

M is also a Riemannian manifold. The Riemannian curvature induced by g is

Rijkl = R

(
∂

∂zi
,
∂

∂zj
,
∂

∂zk
,
∂

∂zl

)
= g

(
R

(
∂

∂zi
,
∂

∂zj

)
∂

∂zl
,
∂

∂zk

)
and the Ricci curvature Rkl = gijRijkl. Using Equation 7 we can obtain Rijkl. Recall

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w

Thus taking u = ∂
∂zi
, v = ∂

∂zj
, w = ∂

∂zl
we have

R

(
∂

∂zi
,
∂

∂zj

)
∂

∂zl
= Rr

ijl

∂

∂zr
(9)

= ∇ ∂
∂zi

∇ ∂
∂zj

∂

∂zl
(10)
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Using the product rule for differentiation of gprglr = δpl we find

∂gpr

∂zi
= −gpsgnr ∂gns

∂zi

Also from (7) above

Γr
jl

= gpr
∂gpj
∂zl

Thus (10) is

∇ ∂
∂zi

(
Γr
jl

∂

∂zr

)
=

∂

∂zi

(
gpr

∂gpj
∂zl

)
∂

∂zr

=

(
−gpsgnr ∂gns

∂zi

∂gpj
∂zl

+ gpr
∂2gpj
∂zi∂zl

)
∂

∂zr

=⇒ Rijkl = Rr
ijl
grk

= −gps∂gks
∂zi

∂gpj
∂zl

+
∂2gkj
∂zi∂zl

The Ricci curvature is

Rij = − ∂2

∂zi∂zj
(log det gkl)

The Ricci form is defined to be

Ric(g) =
i

2

∑
i,j

Rijdzi ∧ dzj = − i
2
∂∂ log det gij

Note that the Ricci form is, up to a factor of − i
2 , the same as ΘK−1

M
in (8). On a Kähler mani-

fold, the Chern connection and Levi-Civita connection are equivalent on T 1,0M ∼= TM [Huy05,
Prop 4.A.9]. Let Ωj

i = gjpRipkldzk ∧ dzl. By the equivalence between Chern and Levi-Civita
connections, we can define the Chern classes in terms of Ω.

Let c(M) = det
(
I + t i2πΩ

)
. It is a fact that the coefficients on tk are real closed (k, k) forms

and their cohomology classes in Hk,k(M,C) ∩ H2k(M,R) are independent of g. [Huy05, pgs
194–195, 198]. The kth Chern class ck(M) is defined to be the cohomology class represented by
this coefficient.

Definition 7. The first Chern class c1(M) is i
2π [tr(Ω)] = 1

π [Ric(g)].

We write c1(M) > 0 if the first Chern class can be represented by a form with coefficients in
local coordinates given by

√
−1 · φij for φij positive definite, c1(M) < 0 if −c1(M) > 0 and

c1(M) = 0 if it can be represented by a form cohomologous to zero.

Definition 8. [ω] ∈ H1,1(M,C)∩H2(M,R) is a Kähler class if it can be represented by a form
corresponding to a Kähler metric, i.e. we can choose ω to be i

2

∑
i,j gijdzi ∧ dzj for some gij

positive definite.

Remark 9. In particular if c1(M) > 0 for a compact complex manifold M , then c1(M) is a
Kähler class since it can be represented by a positive definite closed (1, 1) form, so M is a
Kähler manifold. In general if L is a positive line bundle over M , i.e. a holomorphic line bundle
with c1(L) > 0, then M is Kähler. The case c1(M) > 0 is the special case L = K−1

M .
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2 Calabi-Yau Theorem

Definition 10. A Kähler metric g on a Kähler manifold M is said to be Kähler-Einstein if

Ric(g) = λωg

for some λ ∈ R. In this case, M is called a Kähler-Einstein manifold.

The question of when a complex manifold M admits a Kähler-Einstein metric has been answered
in the cases c1(M) ≤ 0. The answer makes use of the following theorem first conjectured by
Calabi and later proved by Yau.

Theorem 11 (Calabi-Yau). Let M be a compact Kähler manifold. Let Ω be a representative
form for πc1(M) and [ω] ∈ H1,1(M,C) ∩H2(M,R) a Kähler class. Then there exists a unique
Kähler metric g with ωg ∈ [ω] such that Ric(g) = Ω.

Thus when c1(M) = 0, the Calabi-Yau theorem implies M has a Ricci flat metric g, i.e.
Ric(g) = 0, so g is a Kähler-Einstein metric. Aubin and Yau independently proved that when
c1(M) < 0, there exists a unique Kähler-Einstein metric g such that Ric(g) = −ωg. The full
answer is in progress when c1(M) > 0. In this case, M is called a Fano manifold.

Some ideas in the proof of Theorem 11. I will not give a proof of the Calabi-Yau theorem but
will note a few points from the proof in [Tia00, Theorem 5.1].

The proof makes use of the ∂∂-lemma which will also be used later. The part of the lemma
needed is the following.

Lemma 12 (∂∂-Lemma). Let (M, g) be a compact Kähler manifold. Suppose α ∈ H1,1(M,C)
is d-exact. Then there exists a smooth function β such that α = ∂∂β.

Remark 13. If ω1 and ω2 are two cohomologous Kähler forms associated to Kähler metrics (in
particular they are real), then by the ∂∂-lemma ω1 − ω2 = ∂∂β is real so

∂∂β = ∂∂β = ∂∂β = ∂∂(−β)

which implies we can choose β such that β = i · f for some f ∈ C∞(M,R).

Proof of Lemma, [Huy05, Cor 3.2.10]. Since α is d-exact we can write α = dη for some η ∈
H1(M,C). M is Kähler so the notions of ∂, ∂ and d harmonicity are equivalent. If (·, ·) denotes
the inner product on (p, q) forms given by

(ψ, η) 7→
∫
M
gC(ψ, η)ωng =

∫
M
h(ψ, η)ωng

then d∗ is the formal adjoint of d with respect to this inner product. ψ is d-harmonic if and
only if dψ = d∗ψ = 0. Thus for all ψ ∈ H1,1(M,C), the space of harmonic (1, 1) forms,

(α,ψ) = (dη, ψ) = (η, d∗ψ) = 0

i.e. α ⊥ H1,1(M,C). We know dα = 0, thus ∂α = ∂α = 0. Since α ∈ ker ∂, by the Hodge
decomposition for ∂, α is in the direct sum of the harmonic (1, 1) forms and the image of ∂ on
(0, 1) forms. We know α /∈ H1,1(M,C) hence α = ∂γ for some (0, 1) form γ. Again by Hodge
decomposition, now for ∂

γ = ∂β + ∂
∗
β′ + β′′

=⇒ α = ∂∂β + ∂∂
∗
β′ = −∂∂β − ∂∗∂β′

7



for some β′′ ∈ H0,1(M). Note ∂
∗
∂ = −∂∂∗ by the Hodge identities. So

∂α = 0 =⇒ ∂∂
∗
∂β′ = 0

=⇒ 0 = (∂∂
∗
∂β′, ∂β′) = (∂

∗
∂β′, ∂

∗
∂β′) = ||∂∗∂β′||2

=⇒ ∂
∗
∂β′ = 0

=⇒ α = ∂∂β

Returning to the Calabi-Yau theorem, in local coordinates

ωg =
i

2

∑
i,j

gijdzi ∧ dzj

Ric(g) = − i
2
∂∂ log det(gij)

Since Ric(g) and Ω are cohomologous, the ∂∂-lemma says there exists a real smooth function
f such that

Ω−Ric(g) =
i

2
∂∂f

We normalize f so that
∫
M e−fωng =

∫
M ωng , and then such an f is unique. We want to find

some metric ω ∈ [ωg] such that Ric(ω) = Ω. Again by the ∂∂-lemma, ω must be of the form

ωg + i
2∂∂φ, so ω corresponds to the metric with coefficients gij + ∂2φ

∂zi∂zj
. Then

Ric(ωg +
i

2
∂∂φ) = Ω = Ric(g) +

i

2
∂∂f

In local coordinates this is

− i
2
∂∂ log det

(
gij +

∂2φ

∂zi∂zj

)
= − i

2
∂∂ log(det(gij)) +

i

2
∂∂f

=⇒ −∂∂f = ∂∂ log

det
(
gij + ∂2φ

∂zi∂zj

)
det(gij)


=⇒ −f + c = log

det
(
gij + ∂2φ

∂zi∂zj

)
det(gij)


for some constant c, since harmonic functions on a compact complex manifold are constant.
The left hand side is defined globally so the right hand side is as well. Exponentiating both
sides gives

det

(
gij +

∂2φ

∂zi∂zj

)
= e−f+c det(gij) (11)

Equation (11) is equivalent to

(ωg +
i

2
∂∂φ)n = e−f+cωng (12)
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Note that using Stokes’ theorem for 0 < m ≤ n∫
M
ωn−mg ∧ (∂∂φ)m =

∫
M
∂(ωn−mg ∧ (∂∂φ)m−1 ∧ ∂φ)

=

∫
M
d(ωn−mg ∧ (∂∂φ)m−1 ∧ ∂φ)

= 0

since ωg is closed and we can replace ∂ with d since the form is a (n−1, n) form. So integrating
both sides of Equation 12 over M implies∫

M
ωng =

∫
M
e−f+cωng

so by the normalization condition above, c = 0. Thus to find an ω as in the Calabi-Yau theorem,
we need to solve the complex Monge-Ampère equation, which is

(ωg +
i

2
∂∂φ)n = e−fωng (13)

Yau’s proof of this conjecture is given in [Tia00, Theorem 5.1] and involves a continuity argument
on solutions to

(ωg +
i

2
∂∂φ)n = e−fsωng (14)

where fs := sf + cs, s ∈ [0, 1], and cs are constants uniquely determined by the normalization
condition

∫
M (e−fs − 1)ωng = 0. It is shown that the set

S = {s ∈ [0, 1]| there is a solution to (14) for all t ≤ s}

is open and closed (and non-empty, since it contains zero by setting φ = constant) hence
S = [0, 1] and there is a solution at f .

3 Calabi-Futaki invariant

There are obstructions to the existence of Kähler-Einstein metrics on Fano manifolds. The van-
ishing of the Calabi-Futaki invariant is necessary and is an obstruction related to holomorphic
vector fields.

Assume M is a compact Fano manifold. Let Ka(M) denote the set of Kähler classes on M and
η(M) the space of holomorphic vector fields on M , i.e. in local coords z1, . . . , zn, vector fields
of the form Xi

∂
∂zi

with Xi holomorphic.

Choose [ω] ∈ Ka(M) and Kähler metric ωg ∈ [ω]. Let s(g) denote the complex scalar curvature

of g, i.e. s(g) = gijRij locally. Define a function hg on M by

s(g)− 1

V

∫
M
s(g)ωng = ∆hg

where V =
∫
M ωng is the volume.

Definition 14. The Calabi-Futaki invariant fM is

fM : Ka(M)× η(M)→ C

fM ([ωg], X) =

∫
M
X(hg)ω

n
g

9



Calabi and Futaki proved

Theorem 15. fM ([ω], X) is a holomorphic invariant independent of the representative g cho-
sen in [ω]. In particular, if there exists a constant scalar curvature metric ωg ∈ [ω], then
fM ([ω],−) = 0.

We can restrict the first argument to πc1(M) > 0. Let πc1(M) = [ωg] = [Ric(ωg)]. So
Ric(ωg) − ωg = i

2∂∂hg for some function hg, by the ∂∂-Lemma. A Kähler manifold locally
admits normal coordinates about any x ∈ M [Tia00, Prop 1.6], where gij(x) = δij . We can

assume ωg = i
2

∑
dzi ∧ dzi, Ric(g) = i

2

∑
Riidzi ∧ dzi at x, and

Ric(g) ∧ ωn−1
g = (n− 1)!

∑
i

Rii
ωng
n!

=
1

n
s(g)ωng

at x. Thus

1

V

∫
M
s(g)ωng =

n

V

∫
M
Ric(g) ∧ ωn−1

g

=
n

V

∫
M

(
ωg +

i

2
∂∂hg

)
∧ ωn−1

g

=
n

V

∫
M
ωng = n

where the last step follows since
∫
M ∂∂hg∧ωn−1

g =
∫
M ∂(∂hg∧ωn−1

g ) as ωg is closed, which equals∫
M d(∂hg∧ωn−1

g ) as ∂hg∧ωn−1
g is an (n−1, n) form, so this integral vanishes by Stokes’ theorem.

So in the special case [ωg] = πc1(M), fM ([ωg],−) gives Futaki’s invariant [Fut88, §3.1] where
hg is equivalently defined as

Ric(ωg)− ωg =
i

2
∂∂hg (15)

This is equivalent since contracting the coefficients in (15) with gij gives s(g) − n = ∆hg and
we already saw that n = 1

V

∫
M s(g)ωng .

Remark 16. In πc1(M) > 0, the notions of constant scalar curvature Kähler (cscK) metrics and
KE metrics are equivalent. We have πc1(M) = [ωg] = [Ric(g)] and Ric(g) − ωg = i

2∂∂hg. KE
implies cscK since Ric(g) = λωg implies locally Rij = λgij therefore s(g) = nλ by taking the
trace of both sides, where n = dimCM .

Conversely, suppose ωg ∈ πc1(M) has constant scalar curvature. We know n = 1
V

∫
M s(g)ωng .

Thus if s is constant, s = n so hg is harmonic on a compact manifold hence constant. Therefore
Ric(g) = ωg and (M, g) is Kähler-Einstein.

Proof of Theorem 15, [Fut83],[TD92]. The following proof is for the Kähler-Einstein case using
the Futaki invariant and follows [Fut83] and [TD92]. I will give the idea behind the proof for
the general case, given in [Tia00, Theorem 3.3]. The second statement of the theorem is clear
in the more general case; if s(g) is constant then ∆hg = 0 so hg is constant. Hence X(hg) = 0
∀X ∈ η(M) and fM ([ω],−) = 0.

Let fM (X) := fM (πc1(M), X). To show fM (X) is independent of the representative g chosen,
it suffices to show ft(X) :=

∫
M X(hgt)ω

n
t is locally constant for an arbitrary differentiable family

10



of Kähler metrics ωt := ωgt in πc1(M), that is d
dtft(X) = 0. This will suffice since the set of all

Kähler metrics in πc1(M) is a cone, hence contractible.

Let πc1(M) be represented by ω. By the ∂∂-lemma, there exists smooth real functions ψt such
that

ωt − ω =
i

2
∂∂ψt

Then differentiating with respect to t gives

∂ωt
∂t

=
i

2
∂∂

(
∂ψt
∂t

)
Set φt := ∂ψt

∂t . Here ωnt denotes det(gt)ij . Then using Ric(ωt)− ωt = i
2∂∂ht

∂

∂t
(ωnt ) = n

∂ωt
∂t
∧ ωn−1

t

∂

∂t
(Ric(ωt)) = − i

2
∂∂

(
∂

∂t
logωnt

)
=
ni

2
∂∂φt ∧ ωn−1

t = − i
2
∂∂

(
∆φtω

n
t

ωnt

)
= ∆φtω

n
t = − i

2
∂∂∆φt

∂

∂t
(∂∂hgt) = −2i

∂

∂t
(Ric(ωt)− ωt)

= ∂∂(−∆φt − φt)

So choose hgt ≡ ht such that
∂ht
∂t

= −∆φt − φt

Then

d

dt
ft(X) =

∫
M

∂

∂t
(X(ht)ω

n
t )

=

∫
M

(
X

(
∂ht
∂t

)
+X(ht)∆φt

)
ωnt

=

∫
M

(X(−∆φt − φt) +X(ht)∆φt)ω
n
t

The following argument is from [TD92]. Note that

X(∆φt) = Xi ∂

∂zi

(
gt
jk ∂2φt
∂zj∂zk

)
=

∂

∂zi

(
Xigt

jk ∂2φt
∂zj∂zk

)
−∆φt

∂Xi

∂zi

The first term vanishes when integrating over M , by the divergence theorem, and the second
term is −div(X) · ∆φt. Similarly we can replace X(−φt) with div(X) · φt. Also in local

coordinates, iXωg = i
2X

jgjkdzk and ωg is closed so
∂gij
∂zk

=
∂gik
∂zj

. Since the Xj are holomorphic

11



−2i∂(iXωt) = Xj∂(gtjk)dzk

= Xj

[∑
i<k

∂gtjk
∂zi

dzi ∧ dzk +
∑
i>k

∂gtjk
∂zi

dzi ∧ dzk

]

= Xj

[∑
i<k

∂gtjk
∂zi

dzi ∧ dzk −
∑
i<k

∂gtjk
∂zi

dzi ∧ dzk

]
= 0

So by the Hodge theorem
ιXωt = αt + ∂ηt

for some harmonic (0, 1) form αt and smooth function ηt. The αt will vanish in the integral
(n.b. (αt,∆φt) = (∆αt, φt) = 0) so we can assume it is zero. Then LXωt = d(ιXωt) = ∂(ιXωt)
by Cartan’s formula and (divX)ωnt = LX(ωnt ), so

∂(ιXωt) = ∂∂ηt =⇒ div(X) = ∆ηt

Since (φt,∆ηt) = (∆φt, ηt) with respect to the inner product (,) induced by integrating over M

d

dt
ft(X) =

∫
M

[(div(X) +X(ht))∆φt + div(X)φt]ω
n
t

=

∫
M

(∆ηt +X(ht) + ηt)∆φtω
n
t

We show ∂(∆ηt +X(ht) + ηt) = 0. Since ∂2ht
∂zi∂zj

= Rij − gtij (where Rij depends on t)

∂(X(ht)) = ∂

(
Xi∂ht

∂zi

)
= Xi ∂

2ht
∂zi∂zj

dzj

= ιX(Ric(gt)− ωt)
∂ηt = ιXωt

and from the definition of Ric(gt) we show ∂∆ηt = −ιXRic(gt) (from [Tia00, pg 25])

ιXRic(gt) = − i
2
Xi ∂2

∂zi∂zj
log det(gtkl)dzj

= − i
2
∂

(
Xi ∂

∂zi
log det(gtkl)

)
= − i

2
∂

(
Xigt

kl ∂gtkl
∂zi

)
= − i

2
∂

(
Xigt

kl ∂gtil
∂zk

)
= − i

2
∂

(
gt
kl ∂

∂zk
(Xigtil)− gt

klgtil
∂Xi

∂zk

)
= − i

2
∂

(
gt
kl ∂

∂zk
(Xigtil)

)
= −∂

(
gt
kl ∂

∂zk

∂

∂zl
ηt

)
= −∂∆ηt

12



The fact that X is holomorphic is used in the second line and sixth lines, the definition of the
inverse of a matrix A as 1

detAadj(A), where adj(A) is the adjugate matrix, is used in the third
line, the fourth line uses that ωg is closed, the fifth line is the Chain rule, and the penultimate
line uses ιXωt = ∂ηt. So ∂(∆ηt + ηt +X(ht)) = 0 and by the chain rule and divergence theorem
d
dtft(X) = 0.

In the more general case, one can show that fM ([ω], X) =
∫
M θX∆ghgω

n
g , for a specified func-

tion θX . By the Hodge theorem, iXωg = i
2(α + ∂θX) for some harmonic 1-form α and smooth

function θX . Thus Xj = gjk
(
αk + ∂θX

∂zk

)
.

Let ∆g denote the ∂-Laplacian on functions, which is ∂
∗
∂. Note that the inner product gC(ψ, η)

on forms is the dual of the inner product on vector fields, so has coefficients gjk. Then

fM ([ω], X) =

∫
M
X(hg)ω

n
g

=

∫
M
Xj ∂hg

∂zj
ωng

=

∫
M
gjk
(
αk +

∂θX
∂zk

)
∂hg
∂zj

ωng

= (∂hg, α) + (∂hg, ∂θX)

= (α, ∂hg) + (∂θX , ∂hg)

= (∂
∗
α, hg) + (θX , ∂

∗
∂hg)

=

∫
M
θX∆ghgω

n
g

The final line follows since α is harmonic, so ∂
∗
α = 0. Then defining F (g,X) = (n +

1)2n+1
∫
M hg∆θXω

n
g , one takes a family of metrics {gt} in the given Kähler class [ω] and shows

d
dtF (gt, X)|t=0 = 0, done in [Tia00, pg 24–27].

3.1 Formula for the Calabi-Futaki invariant

With the additional condition that X ∈ V ect(M) be non-degenerate, Futaki gives a formula for
fM (πc1(M),−), by looking at the zero set of X, [Fut88].

Here is the set-up. Suppose Z ⊆ M is a smooth complex submanifold and let NM |Z denote
the normal bundle TM/TZ to Z in M . A metric g on M induces an orthogonal decomposition
TM |Z = TZ ⊕NM |Z . If ∇ is the Levi-Civita connection on M , ∇X induces a section DX of
End(NM |Z), given by restricting to vectors in NM |Z , taking the covariant derivative of X in the
given direction, and projecting the result to NM |Z . With the orthogonal decomposition above,

DX = (∇X)⊥|NM|Z where (∇X)⊥ denotes the component in TM perpendicular to TZ.

Definition 17. We say X ∈ V ect(M) is non-degenerate if

zero(X) =
∐
λ∈Λ

Zλ

where the Zλ are smooth complex connected submanifolds, and

DzX : TzM/TzZλ → TzM/TzZλ
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is a non-degenerate linear map of vector spaces, i.e. has nonzero determinant, for all z ∈ Zλ,
∀λ ∈ Λ.

Then

Theorem 18 ([Fut88, Theorem 5.2.8]). For X a non-degenerate vector field on M

fM (πc1(M), X) =
πn

n+ 1

∑
λ∈Λ

∫
Zλ

[tr(Lλ(X)) + c1(M)]n+1

det(Lλ(X) + i
2πKλ)

(16)

where n = dimCM , Lλ(X) = (∇X)⊥|NM|Zλ and Kλ is the induced curvature form on NM |Zλ.

Consider the special case where M is a complex surface and Λ = Λ0 ∪ Λ1, where Λi consists of
i dimensional submanifolds. Since only forms of degree 2 · dimZλ contribute to the integral in
(16), the sum over λ ∈ Λ0 becomes

π2

3

∑
λ∈Λ0

tr(Lλ(X))3

det(Lλ(X))

For one-dimensional submanifolds Zλ, TZλ and the normal bundle are line bundles, i.e. rank
one vector bundles, so Lλ(X) and Kλ are both one-by-one matrices hence we can omit the trace
and determinant. Note that X is non-degenerate so Lλ(X) 6= 0. Then using an expansion for
the denominator and omitting terms not of degree 2 we find∫

Zλ

(Lλ(X) + c1(M))3

Lλ(X) + i
2πKλ

=

∫
Zλ

Lλ(X)3 + 3Lλ(X)2c1(M)

Lλ(X)(1 + i
2πKλLλ(X)−1)

=

∫
Zλ

(
(Lλ(X)2 + 3Lλ(X)c1(M))(1− i

2π
KλLλ(X)−1)

)
=

∫
Zλ

(
3Lλ(X)c1(M)− i

2π
Lλ(X)Kλ

)
= Lλ(X)(2c1(M)(Zλ) + 2− 2g(Zλ))

The final step was obtained as follows. Kλ is the induced curvature form on the line bundle
NM |Zλ thus [ i2πKλ] = c1(NM |Zλ). Note that

TM |Zλ = TZλ ⊕NM |Zλ =⇒ c1(TM |Zλ) = c1(TZλ) + c1(NM |Zλ) (17)

Then using the pairing of cohomology on homology, given by integrating a form over a subman-
ifold, we find by the Gauss-Bonnet theorem∫

Zλ

c1(Zλ) =

∫
Zλ

c1(TZλ) =

∫
Zλ

Cλ
2π

Φ = χ(Zλ)

where Φ is the volume form and Cλ is the Gaussian curvature of Zλ, using the fact that CλΦ is
i times the curvature form on the line bundle TZλ, see [GH94, pg 77]. Further

c1(TM |Zλ)(Zλ) =

∫
Zλ

c1(TM |Zλ) =

∫
Zλ

c1(TM)

=

∫
Zλ

c1(M)

= c1(M)(Zλ)

14



So by Equation 17

c1(NM |Zλ)(Zλ) = c1(TM |Zλ)(Zλ)− c1(TZλ)(Zλ)

∴
∫
Zλ

i

2π
Kλ = c1(NM |Zλ)(Zλ)

= c1(M)(Zλ)− χ(Zλ)

= c1(M)(Zλ)− (2− 2g(Zλ))

and we have the result above. So

fM (πc1(M), X) =
π2

3

∑
λ∈Λ0

tr(Lλ(X))3

det(Lλ(X))
+
π2

3

∑
λ∈Λ1

Lλ(X)(2c1(M)(Zλ) + 2− 2g(Zλ))

3.2 Example 1

This example was done in [Tia00, pg 32–33]. Consider CP2(p), the blow up of CP2 in a point p.
Using the automorphism group of CP2, SL(3,C)/ ∼ where A ∼ λA, ∀λ ∈ C∗, we may assume
p = [1 : 0 : 0].

The blow up of a general complex manifold in a point p is given by taking a local coordinate
chart centred about p, blowing up at the origin in Cn and then glueing the resulting B0Cn back
onto the manifold. The following theory is from [GH94, pg 182–185].

Here we consider a neighbourhood U = {[x : y : z]|x 6= 0} ∼= C2 in CP2. We have a parametriza-
tion given by

f : C2 → U

(x, y) 7→ [1 : x : y]

and B0C2 = {((x, y), [ξ : η])|xη = yξ} ⊂ C2 × CP1. Thus there is a commutative diagram

B0C2

C2

π1∨

f
> U
>

where π1 is the projection onto the first factor. Note that fπ1 restricts to an isomorphism
B0C2 − {(0, 0)× CP1} → U − {p}. Then the blow-up of CP2 at p is obtained by glueing along
this restriction

M = CP2\{p} ∪fπ1 B0C2

= (CP2\{p}) ∪ Ũ

where Ũ = {([1 : x : y], [ξ : η])|xη = yξ} and E = {([1 : 0 : 0], [ξ : η])} ∼= CP1 is the exceptional
divisor which has replaced p. Points ([1 : x : y], [ξ : η]) ∈ Ũ\E are identified one-to-one with
points [1 : x : y] ∈ CP2\{p}. Away from E, M is isomorphic to CP2, which is a complex
manifold. We define local coordinates about E as follows. Take a cover V0, V1 of Ũ given by

V0 = {([1 : x : y], [ξ : η]) ∈ Ũ |ξ 6= 0}

V1 = {([1 : x : y], [ξ : η]) ∈ Ũ |η 6= 0}
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On these open sets we have coordinates (z0
1 , z

0
2) = (x, η/ξ) and (z1

1 , z
1
2) = (ξ/η, y) since y and x

are then respectively determined by xη = yξ. In particular E∩V0 = {z0
1 = 0}, E∩V1 = {z1

2 = 0}.
Thus the transition functions for [E]|E ∼= NM |E are the inverse of those for the hyperplane

bundle. Any line bundle L over CP1 is a multiple of the hyperplane bundle. This multiple is
denoted deg(L) and corresponds to the image of L under the isomorphism

{line bundles} = H1(CP1,O∗CP1) ∼= H2(CP1,Z) ∼= Z

L↔ deg(L)

N.B. This isomorphism arises from taking the long exact sequence of cohomology from the
exponential sequence

0→ Z→ OCP1 → O∗CP1 → 0

and observing that H1(CP1,OCP1) = 0 and H2(CP1,OCP1) ∼= H0,2

∂
(CP1) = 0. deg(L) is also the

integer obtained by pairing cohomology and homology, c1(L)(CP1). Further, in the case of the
normal bundle to a submanifold Z, this degree coincides with the self-intersection number of
Z, denoted Z ∩ Z. Since the transition functions for [E]|E are inverse those for the hyperplane
bundle, we have E ∩E = −1. Any other curve on M which is not E can be considered a curve
on CP2, and these always have self-intersection number +1.

To obtain a holomorphic vector field X, we first define a flow φt on CP2 and then lift it to M .
Note that φt must fix p, so that when p is blown up to E, φt lifts to M where it fixes E.

On U , set
φt([1 : x : y]) = [1 : etx : ety]

so φt(p) = p. Extend this to CP1
∞ := {[0 : x : y]} by taking a limit

φt([0 : x : y]) = lim
λ→∞

φt([1 : λx : λy])

Note that φt fixes CP1
∞; we have [1 : etλx : etλy] = [e−tλ−1 : x : y] for λ 6= 0, so as λ becomes

large, we see taking the limit gives [0 : x : y] again.

φt lifts to M by φt([1 : x : y], [ξ : η]) 7→ ([1 : etx : ety], [ξ : η]) and is defined on CP1
∞ as above.

The fixed points of φt on Ũ are precisely E, and everything outside Ũ , namely CP1
∞, is fixed.

So if X is the vector field induced by φt

Fix(φt) = E ∪ CP1
∞

=⇒ zero(X) = E t CP1
∞

Both E,CP1
∞ are isomorphic to CP1 so have genus 0 and Euler characteristic 2. As noted earlier

E ∩ E = −1, CP1
∞ ∩ CP1

∞ = +1. It remins to compute Lλ(X).

In coordinates about E, e.g. in V0, the flow sends

(x0
1, x

0
2) = (x, η/ξ) 7→ (etx, η/ξ)

Since d
dt(e

tx, η/ξ) = (etx, 0), X is locally given by X = x0
1
∂
∂x01

. Since E∩V0 = {x0
1 = 0}, we have

a local frame for TE|V0 given by ∂
∂x02

therefore we can choose ∂
∂x01

as a local frame for NM |E . So

with respect to the basis ∂
∂x01

for NM |E ,

∇ ∂

∂x01

X = 1 · ∂

∂x0
1

+ x0
1∇ ∂

∂x01

∂

∂x0
1
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On E, x0
1 = 0 so we get Lλ(X) = 1 on E.

Next we find local coordinates about CP1
∞. CP1

∞ is contained in U1 ∪U2 where Ui := {[s0 : s1 :
s2]|si 6= 0}. U1 has coordinates (u, v) = (s0/s1, s2/s1) on which φt is

(u, v) 7→ (e−tu, v)

so X = −u ∂
∂u locally. CP1

∞ ∩ U1 = {u = 0} so we can choose NM |CP1
∞

to be generated by ∂
∂u .

As in the calculation above, ∇ ∂
∂u
X = − ∂

∂u on CP1
∞ and Lλ(X) = −1.

So putting everything together

1

π2
fM (πc1(M), X) =

1

3

(
[2c1(M)(E) + 2− 2g(E)]− [2c1(M)(CP1

∞) + 2− 2g(CP1
∞)]
)

=
2

3

(
[χ(E) + E ∩ E]− [χ(CP1

∞) + CP1
∞ ∩ CP1

∞]
)

=
2

3
(2− 1− 2− 1)

= −4

3
6= 0

therefore CP2(p) never admits a Kähler-Einstein metric.

3.3 Example 2

Let M be the blow-up of CP1×CP1 at the point ([1 : 0], [1 : 0]). That is, M is the blow up of the
image of the Segre embedding φ : CP1×CP1 → CP3 at p := [1 : 0 : 0 : 0]. Let X = φ(CP1×CP1)
and w0, . . . , w3 be coordinates on CP3. So X is the zero set of w0w3 − w1w2. Note that if we
blow up CP1 × CP1 in any point p, using the automorphism group PSL(2,C)× PSL(2,C) y
CP1 × CP1 we may assume p = [1 : 0], [1 : 0]. On X, p lies in the open set U := U0 ∩X on X,
where Ui is the open set in CP3 consisting of points with nonzero ith coordinate. We have local
parametrization

f : C2 → U

(x, y) 7→ [1 : x : y : xy]

The projection onto the first factor is π1 : B0C2 → C2 as earlier. Thus

M = X\{p} ∪fπ1 B0C2

= X\{p} ∪ Ũ

where Ũ = {[1 : x : y : xy], [ξ : η]|xη = yξ}. The exceptional divisor is E = {[1 : 0 : 0 : 0], [ξ : η]}.
Take

V0 = {([1 : x : y : xy], [ξ : η]) ∈ Ũ |ξ 6= 0}

V1 = {([1 : x : y : xy], [ξ : η]) ∈ Ũ |η 6= 0}

Then V0 has coordinates (x0
1, x

0
2) = (x, η/ξ) and V1 has coordinates (x1

1, x
1
2) = (ξ/η, y), where

E is given by {x = 0} and {y = 0} on V0 and V1 respectively. So as in Example 1, E ∩E = −1.

Define a flow on CP3 given by

φt([w0 : w1 : w2 : w3]) = [w0 : etw1 : etw2 : e2tw3]
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This restricts to a flow on X and fixes p, so lifts to a flow on M fixing E. Also

[0 : etw1 : etw2 : e2tw3] = [0 : w1 : w2 : etw3]

= [0 : w1 : w2 : w3] ∀t
=⇒ w3 = 0

Thus

{[0 : w1 : w2 : 0]} ∩X = [0 : 1 : 0 : 0] t [0 : 0 : 1 : 0]

=⇒ Fix(φt) = E t q1 t q2

where q1, q2 are the two fixed points. The flow locally on V0 is

(x0
1, x

0
2) 7→ (etx0

1, x
0
2)

thus X := d
dtφt = x0

1
∂
∂x01

on V0 gives

∇X|E = ∇
(
x0

1

∂

∂x0
1

) ∣∣∣∣
E

= dx0
1

∂

∂x0
1

=⇒ Lλ(X) = 1 on E

where we used that x0
1 = 0 on E so ∂

∂x01
is a generator for NM |E . About q1 we have open set U1

and coordinates (u, v) = (w0/w1, w3/w1) and then w2 is determined by w0w3 = w1w2. Here

φt(u, v) = (e−tu, etv)

=⇒ X|U1 = −u ∂
∂u

+ v
∂

∂v

Then ∇X at q1 is ∇X = ∇
(
−u ∂

∂u + v ∂
∂v

)
= −du ∂

∂u + dv ∂
∂v since X vanishes at q1. As q1 is a

point, its normal bundle is all of Tq1M so Lλ(X) is a 2× 2 matrix given by Lλ(X) =

(
−1 0
0 1

)
therefore tr(Lλ(X)) = 0.

The calculation for q2 is identical, with coordinates (u, v) = (w0/w2, w3/w2), φt(u, v) = (e−tu, etv),
X|U2 and Lλ(X) are the same, so tr(Lλ(X)) = 0. So the points do not contribute to fM . Then

fM (πc1(M), X) =
π2

3
(2c1(M)(E) + 2− 2g(E))

=
2π2

3
(χ(E) + E ∩ E + 1)

=
2π2

3
(2− 1 + 1) =

4π2

3
6= 0

So CP1 × CP1(p) never admits a Kähler-Einstein metric.
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3.4 Fano surfaces

We’ve shown above that CP1×CP1(p) and CP2(p) do not admit Kähler-Einstein metrics. CPn

admits the Fubini-Study metric, given by (where ||z||2 =
n∑
i=1
|zi|2 for local coordinates z1, . . . , zn

on CPn)

ωFS =
i

2
∂∂ log(1 + ||z||2) =

i

2

(∑
i dzi ∧ dzi

1 + ||z||2
−
∑

i zidzi ∧
∑

j zjdzj

(1 + ||z||2)2

)
(18)

ωnFS = n!

(
i

2

)n dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn
(1 + ||z||2)n+1

(19)

The latter equality can be seen as follows:∑
i

zidzi ∧
∑
j

zjdzj

2

=
∑
i,j,k,l

zizjzkzldzi ∧ dzj ∧ dzk ∧ dzl

=
∑
i<k

zizjzkzldzi ∧ dzj ∧ dzk ∧ dzl +
∑
i>k

zizjzkzldzi ∧ dzj ∧ dzk ∧ dzl

=
∑
i<k

zizjzkzl(dzi ∧ dzj ∧ dzk ∧ dzl − dzi ∧ dzj ∧ dzk ∧ dzl) = 0

Thus in ωnFS , the terms
(∑

i zidzi∧
∑
j zjdzj

(1+||z||2)2

)k
for k ≥ 2 are zero. Then

(−2iωFS)n =

(∑
i dzi ∧ dzi

1 + ||z||2

)n
− n

(∑
i dzi ∧ dzi

1 + ||z||2

)n−1

∧
∑

i zidzi ∧
∑

j zjdzj

(1 + ||z||2)2

=
(
∑

i dzi ∧ dzi)
n (1 + ||z||2)

(1 + ||z||2)n+1 − ||z||2
(
∑

i dzi ∧ dzi)
n

(1 + ||z||2)n+1

=
(
∑

i dzi ∧ dzi)
n

(1 + ||z||2)n+1

Thus

Ric(ωFS) = − i
2
∂∂ log(ωnFS)

= − i
2
∂∂ log

(
1

(1 + ||z||2)n+1

)
= (n+ 1)

i

2
∂∂ log(1 + ||z||2)

= (n+ 1)ωFS

So CPn is Kähler-Einstein.

M := CP1 × CP1 is also Kähler-Einstein. Let πi : M → CP1 be the projection onto the ith
factor. M admits a Kähler structure as a product of two Kähler manifolds, induced by the
metric g := g1

FS + g2
FS where

(g1
FS + g2

FS)(u, v) = g1
FS(π1∗u, π1∗v) + g2

FS(π2∗u, π2∗v)

So in local coordinates (z1, z2) on CP1 × CP1

ω =
i

2

(
dz1 ∧ dz1

(1 + |z1|2)2
+

dz2 ∧ dz2

(1 + |z2|2)2

)
= ω1

FS + ω2
FS
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Then

Ric(ω) = − i
2
∂∂ logω2

= − i
2
∂∂ log(ω1

FS ∧ ω2
FS)

= − i
2
∂∂

[
log

(
1

(1 + |z1|2)2

)
+ log

(
1

(1 + |z2|2)2

)]
= 2(ω1

FS + ω2
FS) = 2ω

Theorem 19 ([Hit75]). The Fano surfaces are CP1 × CP1 and CP2(p1, . . . , pk) blown up at k
points in general position for 0 ≤ k ≤ 8.

Note that CP2(p1, p2) ∼= CP1 × CP1(p), see [GH94, pg 478–450].

Ideas in the proof of 19. Hitchin’s proof showed that c1(M) > 0 implies M is birational to CP2,
and further blowing down M does not change the sign of c1(M) so we may look at the minimal
models for rational surfaces, which are CP2 and Fn := P(Hn ⊕ 1), n 6= 1, where H is the
hyperplane bundle over CP1. Using the Riemann-Roch theorem for surfaces for a non-singular
rational curve D on M gives

−c1(M) · [D] + [D]2 = −2

so using c1(M) > 0 one can show this implies [D]2 > −2. The manifold Fn has a rational curve
with self-intersection −n so we can exclude all Fn except F0

∼= CP1×CP1. As CP1×CP1(p) ∼=
CP2(p1, p2), we can assume we blow up in points on CP2. The first Chern classes of a blow up
π : M̂ →M of M in a point are related by

c1(M̂) = π∗c1(M)− [E]

where E is the exceptional divisor. If we blow up CP2 in k points then this implies

c1(CP2(p1, . . . , pk))
2 = 9− k > 0

using the result that c1(CP2) corresponds to the integer 3. So we require k ≤ 8. We must blow
up in distinct points since blowing up in a point gives an exceptional divisor of self-intersection
−1 and blowing up again in the same point gives a curve of self-intersection −2, but [C]2 > −2
for all non-singular rational curves C.

The following theorem and the previous examples answer the Kähler-Einstein question for Fano
surfaces.

Theorem 20 ([Tia00, pg 87]). The Fano surfaces CP2(p1, . . . , pk) for 3 ≤ k ≤ 8 and pi in
general position all admit Kähler-Einstein metrics.
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4 Asymptotic Chow Stability

The existence of KE metrics is also related to stability. We can generalize to the case of a
compact complex manifold M with positive line bundle L. Then the pair (M,L) is called
a polarized manifold. c1(L) is represented by a positive closed (1, 1) form, locally given by
i
2

∑
i,j gijdzi∧dzj , where gij is a positive definite hermitian matrix. Then g :=

∑
i,j gijdzi⊗dzj

is a hermitian Kähler metric and M is a Kähler manifold. Note that since L is positive, for
sufficiently large k we can embed ιk : M → CPNk via sections of Lk. This is the statement of
the Kodaira Embedding theorem, [GH94, pg 181].

We seek to find a constant scalar curvature Kähler (cscK) metric in c1(L), which is a general-
ization of finding a KE metric in c1(M). I will describe some results related to this question
and then give the background behind them.

Let Aut(M,L) denote the subgroup of Aut(L) consisting of automorphisms of L which commute
with the C∗-action on fibers. In particular, these descend to automorphisms of M , so Aut(M,L)
can be identified with a subgroup of Aut(M). When Aut(M,L) is discrete its Lie algebra is
trivial. Donaldson proved in [Don01], for the sequence of metrics ωk := 2π

k ι
∗
k(ωFS),

Theorem 21 ([Don01]). Suppose (M,L) is a polarized manifold and Aut(M,L) is discrete.
If ω is a cscK metric in 2πc1(L), then (M,Lk) is balanced for all sufficiently large k and the
sequence of metrics ωk converges in C∞ to ω, as k →∞.

Corollary 22. When Aut(M,L) is discrete, if 2πc1(L) admits a cscK metric it is unique.

Wang showed using moment maps and symplectic reduction

Theorem 23 ([Wan04]). Let (M,L) be polarized by a very ample line bundle L, with embedding
M → PN via L. Then (M,L) is Chow polystable if and only if it can be balanced.

Theorem 23 was originally due to Zhang, and there is a proof by Paul as well.

Corollary 24. Asymptotic Chow stability of a polarized manifold (M,L) is an obstruction to
the existence of cscK metrics in c1(L) when Aut(M,L) is discrete.

4.1 Background

4.1.1 Chow form and asymptotic Chow stability

The Chow form gives a way of parametrizing polarized manifolds. Chow polystability is defined
in terms of stability of the Chow form. There are two equivalent ways of defining the Chow
form. Let (M,L) be a polarized manifold as above with embedding ιk : M → CPNk . Set
n := dimCM and dk is the degree of ιk(M) ⊂ CPNk .

1) Consider the set of all Nk − (n + 1) dimensional subspaces V of CPNk , i.e. points in
G(Nk−n,Nk +1), the Grassmannian of Nk−n dimensional subspaces of CNk+1. Given a set of
coordinates e1, . . . , en on Cn, we have a set of coordinates ei1 ∧ . . .∧eir , 1 ≤ i1 < . . . < ir ≤ n on∧r Cn, called the Plücker coordinates. Then G(Nk − n,Nk + 1) embeds into P(

∧Nk−nCn)
by sending a space V spanned by e1, . . . , eNk−n to the one dimensional space spanned by

e1 ∧ . . . ∧ eNk−n in
∧Nk−nCn. This is called the Plücker embedding.

V does not generically intersect M since dimV + dimM = dimCPNk − 1. However, the set of
V such that V ∩M 6= φ forms an irreducible codimension one subvariety of G(Nk − n,Nk + 1)
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and hence is defined by the vanishing of some polynomial degree dk in the Plücker coordinates
of G(Nk − n,Nk + 1). This is proved in [GKZ94, Chapter 3, §2, A and B]. This polynomial is
the Chow point or Chow form. It is a point in the Chow space

CHOWPNk (n, dk) ⊂ PH0(G(Nk − n,Nk + 1),OG(dk))

whose points parametrize polarized varieties (M,L) where Lk induces an embedding ιk : M →
PNk , n = dimCM and dk = deg(ιk(M)). This is the approach taken in [Wan04].

2) Following Futaki [Fut11], let Vk = H0(M,Lk)∗ so Nk+1 = dimVk. Elements in P(V ∗k ) define
hyperplanes in P(Vk) so if

DM := {(H1, . . . ,Hn+1) ∈ P(V ∗k )× . . .× P(V ∗k )|H1 ∩ . . . ∩Hn+1 ∩M 6= φ}

then DM is a divisor in P(V ∗k )× . . .× P(V ∗k ) defined by a polynomial in (Symdk(Vk))
⊗n+1, also

called the Chow form. These two definitions of the Chow form are equivalent as described by
Mumford [Mum77, pg 16 – 17].

Let Chow(M,Lk) denote the kth Chow form of (M,L) as defined above. Note that G :=
SL(Nk + 1) acts on CPNk , which corresponds to changing the chosen basis for H0(M,Lk). This
induces an action on (Symdk(Vk))

⊗n+1 or PH0(G(Nk − n,Nk + 1),OG(dk)) so we can consider
the orbit of Chow(M,Lk). Chow stability of M corresponds with the geometric invariant theory
(GIT) stability of Chow(M,Lk) with respect to this G-action.

Definition 25. Let (M,L) be a polarized manifold.

1. M is Chow polystable w.r.t. Lk if the orbit of Chow(M,Lk) under G is closed.

2. M is Chow stable w.r.t Lk if it is polystable and the stabilizer of Chow(M,Lk) is finite.

3. M is asymptotically Chow stable w.r.t. L if there exists a k0 > 0 such that for all k ≥ k0,

M is Chow stable w.r.t Lk.

4.1.2 Moment map and symplectic quotient

I learned the following background from [DK90], [Tho06], [Wan04] and Wikipedia.

Definition 26. A symplectic manifold M is a smooth manifold equipped with a closed, non-
degenerate global 2-form ω.

Definition 27. We say an automorphism g of M is symplectic or a symplectomorphism if it
preserves ω, i.e. g∗ω = ω.

For example a Kähler manifold is symplectic, where ω is its Kähler metric. If M = CPN is
equipped with the Fubini-Study metric ωFS = i

2∂∂ log(||z||2) then g ∈ GL(N + 1,C) preserves
ωFS if and only if g ∈ U(N + 1) since

||g(z)||2 = zT gT gz = zT zT = ||z||2

for all z = (z1, . . . , zN+1) if and only if gT g = I i.e. g ∈ U(N + 1).
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LetG be a compact Lie group acting onM by symplectomorphisms. Let g denote the Lie algebra
of G. Each element ξ ∈ g defines a vector field σ(ξ) on M by considering its infinitesimal action.
On TzM the vector σz(ξ) is defined to be

σz(ξ) :=
d

dt

∣∣∣∣
t=0

exp(tξ) · z

where exp(tξ) is the 1-parameter subgroup (1-PS) of G induced by ξ via the exponential map.
Since G acts by symplectomorphisms the Lie derivative Lσ(ξ)ω = 0. Thus using Cartan’s
formula and the fact that ω is closed we obtain

0 = Lσ(ξ)ω = d(ισ(ξ)ω) + ισ(ξ)dω

= d(ισ(ξ)ω)

So if H1(M,R) = 0, then ισ(ξ)ω is exact. For example, when M is Kähler and c1(M) > 0, the
Calabi-Yau theorem states that M admits a metric with positive Ricci curvature, which implies
M is simply connected ([Tia00, Remark 2.14]). So H1(M,R) = 0 in that case.

Then we may write ισ(ξ)ω = dmξ for some function mξ on M . Note that in general if df = 0,
then f lies in the kernel of d, which consists of locally constant functions on M , so for M simply
connected f is constant. That is, mξ is unique up to a constant.

Definition 28. A moment map for the action of G on M is a map

m : M → g∗

where 〈m(z), ξ〉 = mξ(z), such that

d 〈m, ξ〉 = ισ(ξ)ω (20)

The final equation is an expression in terms of z ∈ M , where 〈m, ξ〉 (z) = 〈m(z), ξ〉, and
(ισ(ξ)ω)(z) = ισz(ξ)ω. That is, a moment map for the action of G on M is obtained by combining
all the components mξ into a map. Here 〈, 〉 denotes the evaluation pairing g× g∗ → R. If we
have a bi-invariant non-degenerate pairing on g× g, such as taking the trace of the product of
two matrices in the Lie algebra of the special linear group, then we can identify g with its dual
via this pairing and consider m as a map M → g.

Definition 29. G acts on itself by conjugation, which induces the adjoint action on g.

ψ(g) : G→ G

h 7→ ghg−1

This induces Ad(g) := (dψ(g))e : TeG → TeG, the adjoint action of G on g. Then m is
G-equivariant if

〈m(g · z), ξ〉 = 〈Ad(g)∗m(z), ξ〉 , ∀z ∈M,∀ξ ∈ g

where the right hand side is
〈
m(z),Ad(g−1) · ξ

〉
.

Recall the mξ are unique up to constants. It is possible to choose these constants such that m is
a G-equivariant moment map. Then m is uniquely defined up to addition of a central element
in g∗, [DK90],[Tho06].
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The moment map generalizes the notion of angular and linear momentum, hence its name. The
possible locations of a particle in 3-space form its configuration space, R3. The phase space cor-
responding to this configuration space is M := T ∗R3; each point of M corresponds to a unique
state of the particle, describing its position and momentum. The group G of translations R3

and rotations SO(3) acts on M and the components of the moment map m : M → g∗ are the
components of angular and linear momentum in each of the three directions.

Assuming m is G-equivariant, G acts on m−1(0).

Definition 30. The symplectic quotient of M by G is

M//G := m−1(0)/G

When M is a compact Kähler manifold we consider the action of a compact Lie group G
and extend the action to its complexification GC, where gC = g + ig, via the almost complex
structure J . So σ(iξ) = Jσ(ξ). For example, SU(N + 1) ⊂ SL(N + 1,C), sl(N + 1,C) =
trace 0 matrices over C and su(N + 1) = trace 0 skew-hermitian matrices, as a Lie algebra
over R. Since any trace 0 matrix A can be written as a sum of trace 0 hermitian and skew-

hermitian matrices A = 1
2(A+A

T
)+ 1

2(A−AT ), we have sl(N+1,C) = su(N+1)+i ·su(N+1).

As an example (PN , ωFS) has a canonical moment map µFS

µFS : (z0 : . . . : zN ) 7→ 1

2i

(
zizj
||z||2

− δij
N + 1

)
∈ su(N + 1)

Note that the trace of the image is 1
2i

(
||z||2
||z||2 −

δii
N+1

)
= 1− 1 = 0 as required.

Proof follows [MFK94, Example 8.1(ii)] and [Kir84, Lemma 2.5]. As noted above U(N + 1)

acts on PN by symplectomorphisms. Note that 1
2i

(
||z||2
||z||2 −

δii
N+1

)
can be identified with its

dual element in su(N+1)∗ via the Killing form −tr(a ·b) for a, b ∈ su(N+1). This is symmetric
and bilinear. So

〈µFS(z), a〉su = − i
2
tr

((
zizj
||z||2

− δij
N + 1

)
· ajk

)
=

1

2i

(
zizj · aji
||z||2

− aii
N + 1

)
A G-equivariant moment map is unique up to addition of an element which is central in the Lie
algebra, and in this case the central elements of u(N + 1) are constant scalar multiples of the
identity which are skew-hermitian, i.e. elements of the form i · rIN+1 for r ∈ R. Thus we’ve

chosen to add the constant i
2
δij
N+1 above so the image of the moment map is in su(N + 1), i.e.

it is trace free.

First note that µFS is independent of the non-zero representative chosen for z in CN+1; this is
because if we chose λz instead then the λ2 cancel in the numerator and denominator. µFS is
SU(N + 1)-equivariant since for g ∈ SU(N + 1) and z ∈ PN ,

〈µFS(g · z), a〉 =
1

2i

(
zT gTagz

||z||2
− tr(a)

N + 1

)
=

1

2i

(
zT g−1agz

||z||2
− tr(g−1ag)

N + 1

)
= 〈Ad(g)∗µFS(z), a〉
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Since U(N + 1) is transitive on PN , it suffices to prove that Equation 20 holds at the point
p = (1 : 0 : . . . : 0) which corresponds to the origin in the coordinate chart on U0, the set of
points with nonzero first coordinate. The vector field induced by a ∈ su(N + 1) takes the value
at p in coordinates z1, . . . , zn on U0 given by

d

dt

∣∣∣∣
t=0

eta · p =
d

dt

∣∣∣∣
t=0

(I + ta+O(t2)) · p

= a · p
= (a10, . . . , an0)

From Equation 18, at p

ωFS =
i

2

n∑
i=1

dzi ∧ dzi

Thus in coordinates on U0 (n.b. ||p||2 = 1)

dp 〈µFS , a〉 = dp

[
1

2i

(
zizj · aji
||z||2

− aii
N + 1

)]
=

1

2i
dp (zizj · aji)

=
1

2i

n∑
i,j=0

n∑
k=1

aji[δikzjdzk + δjkzidzk]p

=
1

2i

∑
k

a0kdzk + ak0dzk

=
i

2

∑
k

ak0dzk − ak0dzk

= ισ(a)ωFS |p

using that a is skew-hermitian.

4.2 Chow polystability is equivalent to balanced

The space of Chow points admits the structure of a Kähler manifold, with Kähler form Ω as
follows. Each f ∈ CHOWPNk (n, dk) is a symmetric degree dk polynomial in the Plücker coor-
dinates of G(Nk − n,Nk + 1), and parameterizes a polarized variety (M,L). The tangent space
TfCHOWPNk (n, dk) can be identified with Γ(M,TPNk |M ). In order to see how CHOWPNk (n, dk)
varies infinitesimally at f , we can look at the “velocity” of each point on M , since M corre-
sponds to the point f . That is, a tangent vector at f in the Chow space corresponds to assigning
a “direction” everywhere on M , i.e. a global section of TPNk |M , because we know M ↪→ PNk
([GKZ94, §4.3]).

Define Ωf on u, v ∈ Γ(M,TPNk |M ) by

Ωf (u, v) =

∫
M

ιv(ιu(ωn+1
FS ))

(n+ 1)!
(21)

where ιu denotes contraction with u.
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Lemma 31 ([Wan04, Proposition 17]). The map

µΩ : CHOWPNk (n, dk)→ su(Nk + 1)

given by

Chow(M,Lk) 7→
∫
M
µFS

ωnFS
n!

is a moment map for (CHOWPNk (n, dk),Ω).

We can check that
d 〈µΩ, ξ〉 = ισ(ξ)Ω, ∀ξ ∈ su(Nk + 1) (22)

holds pointwise at each Chow point f . The right side is computed by evaluating at some
Y ∈ TfCHOWPNk (n, dk), which can be identified as an element in Γ(M,TPNk |M ). The left side
of (22) is computed by taking a path ft in the Chow space with f0 = f such that its “velocity”
at t = 0 is Y (cf [Wan04]). So µΩ is the required moment map. In particular, µΩ inherits
G-equivariance from µFS so we can form the symplectic quotient

CHOWPNk (n, dk)//SU(N + 1) = µ−1
Ω (0)/SU(N + 1)

Definition 32. We say that (M,Lk) can be balanced if there exists a choice of basis for em-
bedding M in CPNk such that Chow(M,Lk) is a zero of the moment map µΩ.

Sketch proof of Theorem 23. There are several intermediate results in the following which I
state without proof, hence I’ve labelled this as a sketch proof.

Since L is very ample we can assume k = 1 and drop the k’s. By the Hilbert-Mumford Criterion
[MFK94, §2.1], to check polystability of Chow(M,L) with respect to the SU(N + 1)-action we
need only check it for all 1-parameter subgroups outside its stabilizer.

In order to define an action of a one-parameter subgroup, we need something which is invariant.
Define M∞ := limt→∞ e

itξ ·M for ξ ∈ su(N + 1)− aut(M,L). Here aut(M,L) is the Lie algebra
of Aut(M,L). Then M∞ is invariant under the action of the 1-PS {etξ}t∈C, since SU(N + 1)
acts by symplectomorphisms and we’ve made M∞ invariant under isu(N + 1) as well.

Definition 33. The λ-weight ρ(x) of a C∗-action on an element x in an invariant one-dimensional
space is the exponent of the eigenvalue, where λ ∈ C∗ acts by

λ · x = λρ(x)x

In general, given a C∗-action on a space V , there are eigenvectors v1, . . . , vm with eigenspaces
of dimension di with respect to the action such that λ ∈ C∗ acts by λ · vi = λai · vi. Then the
λ-weight of the action on this space is

∑
i aidi. Equivalently, C∗ y V =⇒ C∗ y

∧top V and

we can compute the weight on
∧top V as in the one-dimensional case.

Definition 34. The ξ-weight of Chow(M,L) is defined to be the weight of the action induced
by ξ on the one dimensional space Z := OCHOWPN (n,d)(1) at the point Chow(M∞, L).

Chow polystability was defined earlier by looking at orbits of Chow(M,L). There is an equiva-
lent notion of polystability by [MFK94]: M is Chow polystable if the ξ-weight of Chow(M,L)
is negative for all ξ ∈ su(N + 1)− aut(M,L).

We use the following two results:
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Proposition 35 ([Mum77, Prop 2.11]). Suppose M is an n-dimensional manifold embedded
in PN via very ample line bundle L and is fixed by a 1-PS ξ of SL(N + 1). Let RN be the
degree N part of the projective homogenous coordinate ring for M . Let aM be the ξ-weight of
Chow(M,L) and rMN the ξ-weight of RN . Then for large N , rMN is represented by a polynomial
in N of degree at most n+ 1, with normalized leading coefficient aM , i.e. the leading coefficient
is aM/n!.

In the notation of [Wan04], the leading coefficient of rMN is denoted wM∞,0(ξ).

Theorem 36 ([Wan04, Theorem 26]).

wM∞,0(ξ)

n+ 1
= lim

t→∞

〈
µΩ(eitξ · Chow(M,L)), ξ

〉
su

Thus the ξ-weight of Chow(M,L) has the same sign as lim
t→∞

〈
µΩ(eitξ · Chow(M,L)), ξ

〉
su

. Hence

Chow polystability of M is equivalent to

− lim
t→∞

〈
µΩ(eitξ · Chow(M,L)), ξ

〉
su
> 0

for all ξ ∈ su(N + 1)− aut(M,L).

We then use the following results from [DK90, Section 6.5.2], also described in [Tho06]. Let
G = SU(N + 1). We can lift the G-action on CHOWPN (n, d) to one on Z, which extends to
GC. We have a projection map

π : Z → CHOWPN (n, d)

π∗ : TZ → TCHOWPN (n, d)

Then TZ is the direct sum of the vertical subspace, which is ker π∗, and a horizontal subspace
orthogonal to the vertical subspace, with respect to the induced inner product on Z. Tangent

vectors on the Chow space have a horizontal lift to the horizontal subspace. Let σ̃(ξ) be the lift
to this horizontal subspace, which projects to σ(ξ) via π∗.

Recall 〈µΩ, ξ〉 is the function corresponding to the vector field σ(ξ) on CHOWPN (n, d), i.e.
d 〈µΩ, ξ〉 = ισ(ξ)Ω. Then the infinitesimal action of ξ on Z is defined at a point γ over z (where
z corresponds to the point Chow(M,L))

σ̃z(ξ) + i 〈µΩ(z), ξ〉 γ (23)

Z carries a G-invariant hermitian metric induced by Ω so ||g · γ|| = ||γ|| for all g ∈ G. So when
considering how ||g · γ|| changes along a 1-PS, we need only look at iξ ∈ ig ⊂ gC.

Let
Hξ(t) = log ||eitξ · γ||2

defined by exponentiating the infinitesimal action above. Then (defining zt := eitξz)

H ′ξ(t) =
2
〈
d
dt(e

itξ · γ), eitξγ
〉

||eitξ · γ||2

=
2
〈
i 〈µΩ(zt), iξ〉 eitξγ, eitξγ

〉
||eitξ · γ||2

= −2 〈µΩ(zt), ξ〉
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using Equation 23 and orthogonality of horizontal and vertical subspaces. If γ is a point in
some GC-orbit GC · γ0, then it is a critical point of log ||g · γ0||2 if and only if µΩ(π(γ)) = 0.
Critical points of Hξ(t) are minima; note that

H ′′ξ (t) = −2d 〈µΩ, ξ〉 |zt(σzt(iξ))
= −2(ισzt (ξ)Ω)(Jσzt(ξ))

= −2Ω(σzt(ξ), Jσzt(ξ))

= 2||σzt(ξ)||2

Thus Hξ(t) is convex and has at most one minimum. This minimum is either attained on GC/G
or at infinity; the former occurs if and only if lim

t→∞
H ′ξ(t) > 0. So

lim
t→∞

[H ′ξ(t) = −2 〈µΩ(zt), ξ〉] > 0 ∀ξ ∈ g− gz

⇐⇒ ∃! minimum of Hξ(t) ∀ξ ∈ g− gz

⇐⇒ ∃g ∈ SL(N + 1), µΩ(g · z) = 0

where gz is the Lie algebra of the stabilizer of z = Chow(M,L), which is aut(M,L). This final
expression is the condition that (M,L) can be balanced, i.e. µΩ(Chow(g ·M,L)) = 0.

Thus by Donaldson’s theorem, Theorem 21 above, asymptotic Chow stability of (M,L) is an
obstruction to the existence of a cscK metric on c1(L) when the stabilizer Aut(M,L) is discrete.

5 K-stability

It has been conjectured by Yau, Tian and Donaldson that another type of stability, K-stability,
is equivalent to the existence of cscK metrics. I will describe Tian’s proof that the existence of
a Kähler-Einstein metric implies weak K-stability, [Tia97].

5.1 Background

The following background is from [Tia00]. K-stability is defined by looking at special degener-
ations of a Kähler manifold M into normal varieties. Assume dimCM = n ≥ 3.

Definition 37. A fibration is a map π : A→ B between two topological spaces which satisfies
the homotopy lifting property.

Definition 38. A special degeneration of M is a fibration π : Wn+1 → ∆, where ∆ is the unit
disc in C, such that π−1(s) is smooth ∀s 6= 0, π−1(1/2) is biholomorphic to M and there exists
vW ∈ η(W ) such that π∗vW = −s ∂∂s , generating a 1-PS e−sz on ∆. W is trivial if W = M ×∆.

Tian assumes the central fiber π−1(0) and all other fibers are smooth in [Tia00], and defines
special degenerations for π−1(0) a normal variety in [Tia97]. This more general version of spe-
cial degeneration is that for which K-stability is defined. Donaldson re-defined K-stability for
polarized varieties.

Let Wt denote the fiber π−1(t) where t = e−s. Since π∗vW vanishes at t = 0, vW restricts to
a vector field on W0, as it has no component in the ∂/∂t direction on W0. Thus the Calabi-
Futaki invariant fW0(vW ) = fW0(vW |W0) makes sense, using a generalized version of the Futaki
invariant when W0 is normal.
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Assume M is a Fano manifold, we’ve embedded M ⊂ CPN by sections of a power of the
anticanonical line bundle, and W ⊂ CPN ×∆ so Wt ⊂ CPN × {t}. Let σt be the 1-PS arising
from <(vW ), t ∈ C, in the sense that

d

ds
σt = <(vW ) (24)

that is, we have a 1-PS subgroup ηs such that d
dsηs = <(vW ), and define σt = σe−s := ηs. We

have that σt flows M to Wt, i.e. σt(M) = Wt for t 6= 0. And σt : W0 → W0 since π∗vW = 0 on
W0. All Wt are biholomorphic to M for t 6= 0, but the complex structure may “jump” at t = 0.
For example, when Wt = {xy = t}, this is not smooth when t = 0 but it is when t 6= 0.

Since σt(W0) = W0 for all t ∈ C, we can restrict σt to W0 and obtain a 1-parameter subgroup
σt of diffeomorphisms of W0 ⊂ CPN . So we assume σt ∈ SL(N + 1,C).

Definition 39. M is weakly K-stable if for every special degeneration W of M

<(fW0(vW )) ≥ 0

with equality if and only if W is trivial. M is K-stable if it is weakly K-stable and η(M) = {0}.

The main result is:

Theorem 40 ([Tia97]). If a Fano manifold M admits a KE metric, then M is weakly K-stable.

The proof uses some analytical background. Let P (M,ω) correspond to the space of Kähler
metrics in [ω],

P (M,ω) = {φ ∈ C∞(M,R)|ω +
i

2
∂∂φ > 0}

M is a Fano manifold so πc1(M) = [ω] for some Kähler metric ω. There exists a unique function
hω s.t.

Ric(ω)− ω =
i

2
∂∂hω

1

V

∫
M
ehωωn = 1

Suppose M admits a Kähler-Einstein metric ωφ, where ωφ = ω+ i
2∂∂φ, and assume we’ve scaled

so that Ric(ωφ) = ωφ. Then

ω +
i

2
∂∂φ = Ric(ωφ) = − i

2
∂∂ log det(ωφ)

= − i
2
∂∂ log

ωnφ
ωn

+Ric(ω)

= − i
2
∂∂ log

ωnφ
ωn

+ ω +
i

2
∂∂hω

which implies
ωnφ = ehω−φωn (25)

So finding a Kähler-Einstein metric ωφ is equivalent to solving (25). We define a functional Fω
on P (M,ω)

Fω(φ) = Jω(φ)− 1

V

∫
M
φωn − log

(
1

V

∫
M
ehω−φωn

)
where Jω(φ) := 1

V

n−1∑
i=0

i+1
n+1

∫
M ∂φ ∧ ∂φ ∧ ωi ∧ ωn−1−i

φ is called the generalized energy.
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Definition 41. Fω is proper on P (M,ω) if

1. it is bounded from below, meaning there exists c = c(ω) > 0 such that Fω(φ) ≥ −c, and

2. there exists an increasing function µ : R→ [c(ω),∞) such that lim
t→∞

µ(t) =∞ and

Fω(φ) ≥ µ(Jω(φ))

∀φ ∈ P (M,ω).

The following theorem gives a way of determining if M is KE, when M has no non-trivial
holomorphic vector fields.

Theorem 42 ([Tia00, Theorem 6.7]). Assume η(M) = {0}. Then M is Kähler-Einstein if and
only if Fω is proper on P (M,ω).

The proof of Theorem 40 makes use of the Sobolev constant, defined as follows.

Definition 43 (Sobolev inequality). Given a Fano manifold (M,ω), there exists a constant σω,
called the Sobolev constant of (M,ω), such that ∀u ∈ C∞(M)(

1

V

∫
M
|u|

2n
n−1ωn

)n−1
n

≤ σω
V

(∫
M
∂u ∧ ∂u ∧ ωn−1 +

∫
M
|u|2ωn

)
Definition 44. Define P (M,ω, ε) to be

P (M,ω, ε) = {φ ∈ P (M,ω)|σωφ ≤ 1/ε}

where ωφ = ω + i
2∂∂φ.

Remark 45 ([Tia97, Example before Thm 5.2]). For a KE Fano manifold (M,ωKE) embedded
into CPN via K−kM , the set of φ ∈ P (M,ωKE) such that

1

k
σ∗ωFS = ωKE +

i

2
∂∂φ, some σ ∈ SL(N + 1,C)

is contained in P (M,ωKE , ε) for some ε depending on k and where ωFS is the Fubini-Study
metric on CPN .

Finally, we define K-energy.

Definition 46. Let φ ∈ P (M,ω) and {φt}0≤t≤1 be any path from 0 to φ in P (M,ω) where
φ0 = 0 and φ1 = φ. Then the K-energy of φ is

νω(φ) = − 1

V

∫ 1

0

∫
M
φ̇t(Ric(ωt)− ωt) ∧ ωn−1

t ∧ dt

where ωt = ω + i
2∂∂φt and φ̇t = ∂φt

∂t .

The K-energy and the functional Fω are related by ([Tia00, pg 95])

Fω(φ) = νω(φ) +
1

V

∫
M
hωφω

n
φ −

1

V

∫
M
hωω

n
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Assuming hωφ has been normalized so its average value over M is 1 (since [ωφ] = [ω] = πc1(M)

there is some hωφ such that Ric(ωφ)−ωφ = i
2∂∂hωφ), we can use the concavity of the logarithmic

function to see

1

V

∫
M
ehωφωnφ = 1 =⇒ 0 = log

(
1

V

∫
M
ehωφωnφ

)
≥ 1

V

∫
M

log
(
ehωφ

)
ωnφ

=
1

V

∫
M
hωφω

n
φ

Thus if Fω is proper then νω is too since

νω(φ) = Fω(φ)− 1

V

∫
M
hωφω

n
φ +

1

V

∫
M
hωω

n (26)

≥ Fω(φ) +
1

V

∫
M
hωω

n (27)

5.2 Weak K-stability is an obstruction

Sketch proof of Theorem 40, following [Tia97]. In the following assume t 6= 0. The Fubini-
Study metric on CPN restricts to a Kähler metric on Wt. Define ωt = 1

kωFS |Wt where k is such

that M is embedded into CPN by sections of K−kM , a power of the anticanonical line bundle.
Since σt(M) = Wt, this gives a metric ω̃t := σ∗t

(
1
kωFS |Wt

)
on M , which is Kähler as d commutes

with pullbacks. Define ht on Wt by

Ric(ωt)− ωt =
i

2
∂∂ht

=⇒ Ric(ω̃t)− ω̃t =
i

2
∂∂σ∗t ht

where the ht are normalized so that their average over Wt is 1.

We’ve seen that vW restricts to a vector field on W0 ⊂ CPN . Its real part generates a 1-PS of
diffeomorphisms σt of W0. These σt are matrices in SL(N + 1,C) so give rise to a vector field v
on all of CPN . Since ∂(ιvωFS) = 0 (cf the calculation on page 12) there is a smooth θv on CPN
such that

∂θv =
1

k
ιv(ωFS)

Note that the theorem (Fω is proper on P (M,ω)) if and only if ((M,ω) is KE) requires η(M) = 0.
Tian gives inequalities which show that Fω is bounded below when M is KE, but without the
assumption η(M) = 0.

Holomorphic vector fields on a KE manifold M are in one-to-one correspondence with eigen-
functions ψ of the Laplacian of eigenvalue one, i.e. ∆ψ = −ψ. A holomorphic vector field X
corresponds to ψ if gKE(X,Y ) = dψ(Y ), for any holomorphic vector field Y , where gKE denotes
the Kähler-Einstein metric. Let Λ1 denote the space of eigenfunctions of ∆ of eigenvalue one.

Definition 47. We say φ ∈ P (M,ωKE) is orthogonal to Λ1 if∫
M
φψωnKE = 0 ∀ψ ∈ Λ1
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Theorem 48 ([Tia97, Theorem 5.2]). Let (M,ωKE) be a Kähler-Einstein manifold. Then for
any φ ∈ P (M,ωKE , ε) with ε > 0 and φ ⊥ Λ1, we have

FωKE (φ) ≥ a1,εJωKE (φ)
β

2n+2+β − a2,ε

where a1,ε, a2,ε are constants which depend only on n, ε and the lower bound of the difference
between the first nonzero eigenvalue of ∆gKE and 1, i.e. λ1,ωKE − 1, from zero. β is a positive
constant depending only on n.

Tian shows that it is possible to find suitable automorphisms τt of M and φt ⊥ Λ1 in P (M,ωKE),
such that

τ∗t ω̃t = ωKE + ∂∂φt, ωnKE = e
hτ∗t ω̃t−φt τ∗t ω̃

n
t

By Remark 45, φt ∈ P (M,ωKE , ε), some ε > 0. So Theorem 48 applies to FωKE (φt).

Next we define a path {ψs} ∈ P (M,ωKE), t = e−s, which satisfies

ω̃t − ωKE = ∂∂ψs, ωnKE = ehω̃t−φt ω̃nt (28)

The K-energy is invariant under automorphisms of M so νωKE (φt) = νωKE (ψs), ([Tia97]). To
determine the rate of change of the K-energy of this path with respect to s, we need ψ̇s = ∂ψs/∂s.
Taking the derivative of (28) with respect to s,

∂ω̃t
∂s

= ∂∂

(
∂ψs
∂s

)
(29)

We know σt extends to all of CPN and d
dsσt = <(v) from (24). Also, by Cartan’s formula and

page 12 we have LXω = d(ιXω) = ∂(ιXω) for a Kähler metric ω and holomorphic vector field
X. Then using the Chain rule and the definition of θv we have

∂∂ψ̇s =
1

k

d

ds
(σ∗t ωFS)

=
1

k
L<(v)(σ

∗
t ωFS)

=
1

k
d(ι<(v)(σ

∗
t ωFS))

=
1

k
∂(ι<(v)(σ

∗
t ωFS))

= ∂∂<(σ∗t θv)

=⇒ ψ̇s = σ∗t<(θv) + c
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for some constant c. Then if t(u) = e−u,

νωKE (ψs) = − 1

V

s∫
0

∫
M
ψ̇u(Ric(ω̃t(u))− ω̃t(u)) ∧ ω̃n−1

t(u) ∧ du

∴
d

ds
νωKE (ψs) = − 1

V

∫
M
ψ̇s(Ric(ω̃t(s))− ω̃t(s)) ∧ ω̃n−1

t(s)

= − i

2V

∫
Wt

<(θv)∂∂ht ∧ ωn−1
t

= − 1

V

∫
Wt

<(θv)∆thtω
n
t

=
1

V
<
[
−
∫
Wt

gt
ij ∂

∂zj

(
θv
∂ht
∂zi

)
ωnt +

∫
Wt

gt
ij ∂θv
∂zj

∂ht
∂zi

ωnt

]
= <

[
1

V

∫
Wt

(∇tθv)htωnt
]

where ∇t denotes the (1, 0) gradient with respect to the metric ωt, ∇tθv = gt
ij ∂θv
∂zj

∂
∂zi

. The third

line follows from the second by a change of variables from M to Wt and using Ric(ωt) − ωt =
i
2∂∂ht. The term with c in ψ̇s vanishes by Stokes’ theorem. The penultimate line follows by
the chain rule, and the divergence theorem implies the first term in this line vanishes.

In [TD92] Ding and Tian consider deformations of M as t→∞, converging to some W∞. This
is analogous to the case here, but we’re using the parameter t on Wt, where t = e−s, instead of
Ws. We can apply a result from that paper because s→ +∞ implies Wt converges to W0. The
corresponding result is

lim
t→0

1

V

∫
Wt

(∇tθv)htωnt = fW0(vW )

Thus

lim
s→∞

d

ds
νωKE (ψs) = <

(
lim
t→0

[
1

V

∫
Wt

(∇tθv)htωnt
])

= <(fW0(vW )) ≥ 0

For if d
dsνωKE (ψs) < 0 for all sufficiently large s, then νωKE becomes arbitrarily negative, con-

tradicting that νωKE is non-negative when M admits a KE metric ([Tia00, Theorem 7.13]).

Showing that equality occurs if and only if W is trivial uses the following two results proved by
Tian.

Theorem 49 ([Tia97, Lemma 6.1]). Assume W is non-trivial. Then ||φt||C0 →∞ as t→ 0.

Further, the generalized energy JωKE (φt) dominates ||φt||C0 ([Tia97]) so that JωKE (φt)→∞ as
t → 0 by Theorem 49. Since M admits a Kähler-Einstein metric, FωKE (φt) → ∞ by Theorem
48 and so νωKE (φt)→∞ as t→ 0 from Equation 27.

Proposition 50 ([Tia97, Prop 6.2]). There are positive numbers C, γ which may depend on W
such that ∣∣∣∣ 1

V

∫
Wt

(∇tθv)htωnt − fW0(vW )

∣∣∣∣ ≤ C|t|γ (30)

for small t.
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In particular if fW0(vW ) = 0 then ∣∣∣∣ ddsνωKE (ψs)

∣∣∣∣ ≤ Ce−sγ
thus νωKE (φt) = νωKE (ψs) is bounded as s→ +∞. So W must be trivial by Theorem 49.

Conversely if W is trivial, then W0 is biholomorphic to M which is KE, so W0 admits a KE
metric and the Calabi-Futaki invariant fW0 must vanish.

So if one can find a non-trivial special degeneration π : W → ∆ of a Fano manifold M with
fW0 ≡ 0, then M cannot admit a KE metric.

6 Conclusion

The Kähler-Einstein problem is solved for c1(M) ≤ 0 and Fano surfaces. In the general Fano
manifold case there are conditions necessary for the existence of KE metrics. As mentioned
above these include the Calabi-Futaki invariant, asymptotic Chow stability and weak K-stability.
K-stability appears the closest to providing a sufficient condition for the existence of cscK
metrics. Donaldson has proved this converse direction in certain cases (with a re-defined notion
of K-stability for polarized manifolds) and has nearly solved it in general (as mentioned in
discussions with my essay advisor). These metrics give an additional structure to complex
manifolds, and the results previously mentioned help establish which manifolds are sufficiently
“nice” that they admit KE metrics, or more generally cscK metrics.
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