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1 Introduction

One way to obtain information about the geometry of a complex manifold is by looking at the
metrics it admits. When do complex manifolds admit metrics which give them a special struc-
ture? For example, requiring a metric of constant bisectional curvature puts a strong restriction
on the manifold; in the case of a complete Kahler manifold, it then has universal cover CP", C™
or the unit ball in C™ and its metric pulls back to the canonical metrics on these covers, up
to scaling, [Tia00, Theorem 1.12]. So one may look for a slightly weaker condition, such as
the existence of Kahler-Einstein metrics. These are Kéahler metrics for which the Ricci form is
proportional to the Kéhler form. Ké&hler-Einstein (KE) metrics provide a special solution to the
Einstein equation, which describes how space-time curves as a result of gravitation from mass
and energy. An Einstein metric solves the Einstein equation in a vacuum, [Bes87].

In order for KE metrics to exist on a compact complex manifold, the first Chern class must
be definite. Under this condition, the first Chern class separates complex manifolds into three
cases. M always admits a KE metric when ¢; (M) < 0. In the case of positive first Chern class,
M is called a Fano manifold and does not always admit a Kéhler-Einstein metric. Obstructions
include the vanishing of the Calabi-Futaki invariant, asymptotic Chow stability and K-stability.
The answer to when KE metrics exist is known for Fano surfaces. These surfaces have been
classified by N. Hitchin in [Hit75]. CP! x CP' and CP? admit Kihler-Einstein metrics. If
M = CP?(py,...,px), the blow up of CP? in k points in general position, then M does not
admit a Kéhler-Einstein metric for k£ € {1,2} and it does for k € {3,...,8} ([Tia00, pg 87]).

The layout of this essay is as follows: in Section 1 I will give background for Kéhler manifolds
and Chern classes. In Section 2 I will state the Calabi-Yau theorem (without proof) and note
some corollaries. In Section 3 T will introduce the Calabi-Futaki invariant, show CP?(p) and
CP! x CP!(p) do not admit Kihler-Einstein metrics, and discuss the other Fano surfaces. In
Section 4 I will introduce asymptotic Chow stability and describe an equivalence between Chow
polystability and balanced varieties as given in Wang [Wan04], and state the theorem of Don-
aldson [Don01] that the existence of a constant scalar curvature Kéhler (cscK) metric implies
there is a sequence of balanced metrics converging to the cscK metric, when the automorphism
group is discrete. In Section 5 I will define Tian’s K-stability and describe his proof [Tia97]
that Kahler-Einstein implies weakly K-stable.

Acknowledgments. 1 would like to thank Dr Julius Ross for advising me and for discussions
about the material, as well as Emile Bouaziz and Ruadhai Dervan for discussions on algebraic
geometry; I attended a talk given by the latter in the Part III seminar series.



1.1 Kahler metrics
The background material of this section is similar to that in [Tia00].
Let (M, g) be a smooth Riemannian manifold. An almost complex structure J : TM — TM is
an endomorphism of the tangent bundle such that J? = —id. The Nijenhuis tensor N(.J) is
N(J):TM xTM —TM
N(J)(u,v) = [u,v] + J[Ju,v] + J[u, Jv] = [Ju, Jv], u,v € Vect(M)

M is a complex manifold if it admits an almost complex structure J which is also inte-
grable, meaning J is induced from multiplication by ¢ on the holomorphic tangent bundle
TYM C TeM := TM ® C, defined below. By a theorem of Newlander and Nirenberg, J is
integrable if and only if N(J) = 0.

Definition 1. J is compatible with g if
g(Ju, Jv) = g(u,v), Yu,v e Vect(M)
Definition 2. The Kéhler form of g is defined as

g (1, 0) = —g(u, J)
Remark 3. The Kéahler form is alternating by compatibility of J:
wylv,4) = —g(v, Ju) = —g(Jv, —u)

= g(u, Jv) = —wqy(u,v)

Let V denote the Levi-Civita connection on M. This is the unique torsion-free connection on
M such that Vg = 0.

Definition 4. A Riemannian manifold (M, g) with a compatible almost complex structure J
is a Kahler manifold if VJ = 0. Then g is a Ké&hler metric.

)

Throughout this essay, “Kahler metric wg’
metric ¢g”.

means “Kahler form w, corresponding to Kahler

Remark 5. Note that VJ =0 = N(J) = 0. This can be seen as follows: V is symmetric so
[u,v] = Vyv — Vyu. Further, J € T'(M, End(TM)) means
(VxJ)Y :==Vx(JY) = J(VxY) (1)
for all vector fields X,Y on M. Thus taking X = Ju, Y =v and X = v,Y = Ju respectively,
IV juv =V ju(Jv) = (VyuJ)v
IVy(Ju) = =Vyu — (Vyd)Ju
and so
N(J)(u,v) = [u,v] + J[Ju,v] + J[u, Jv] — [Ju, Jv]
=V — Vyu+ J(V v — Vydu) + J(VyJv =V ppu) — (Vi Jv — Vg, Ju)
= (Vyv —Vyu) — J(VyJu — Vi Jv) — (Vi J)v + (Vi J)u
= (VyuJ)Ju — (VyJ)Jv = (Vyud)v + (VipJ)u =0
if VJ = 0. So a Kahler manifold is a complex manifold. Equivalently, a K&hler manifold

could be defined as a complex manifold with metric g such that the induced Kahler form w, is
d-closed. Then g is a Kéhler metric. See [Tia00, Prop 1.5] for this equivalence.



1.1.1 Holomorphic tangent bundle

Definition 6. Assume M is a Kéhler manifold. J induces a splitting of TcM into eigenspaces
TYOM @ TO'M corresponding to eigenvalues +i, —i respectively, called the holomorphic and
antiholomorphic tangent bundles.

We can extend g C-linearly to gc on TeM. Note that TM = THOM as real vector bundles; if M
has local real coordinates x1, ..., 2, and local complex coordinates z; := x; +ix,4j, 1 < j < n,
then this isomorphism is given by

0. 0 _1(o . 0
89@ 821 o 2 a.m a$n+i

0 0
OTni 0z;

for1<i<mn. TOIM is generated by % = % (% + iaxa+_) for1 <i<n.

Define a hermitian inner product on T*°M by h(u,v) = g(u, ). In local complex coordinates,

h= Z 9i7 -dz; ® dz;, where 9;5 = 9c ( 9z 05 ) Then from the definition of the Kahler form, w,

is locally

{ _
Wy = B Z gijdzi A dz; (2)
i?j

The metric h is hermitian since g is symmetric and 882_ = 82_, therefore

Also wy = wy so the Kahler form is real.

1.1.2 Connections

We can extend V C-linearly to TcM. Then

0 0 0
Vi on = Tign e,
V o, i :Flﬂ,i—f-I‘Ei

oz 0% 0z, 1 Oz,

where I‘fj denote the Christoffel symbols. Since VJ = 0, by Equation [1| we have

Vo <J8> =JV » i (3)

925 0z

So putting the Christoffel symbols in and using that %, %i are in the 7 and —¢ eigenspaces
of J respectively,



and

Jvii J(F’“ O L1t 8)

2z 02 Y 0z, Yoz
0 = 0
k E O
(F” 0z, Pij azk>
— I% =0

By similar calculations, all Christoffel symbols are zero except Fk and Fk Then the connection

matrix for the induced connection on TH0M is § given by

0 0 0
— =0 — = (Thdu) @ — 4
Ve =0 g = Cdz) @ 5 (4)
As M is Kahler, dwy = 0. Note that
2] 8-91] —
dwg—0<:>§]: dzy, +8kdzk Ndz; NdZj =0 (5)
995 _ agk? 995 _ g5 ©)
0z, N 0z; ’ 0Zy, N 62]-
Since g;; = gz = 0 by compatibility of J, we can write out the Christoffel symbols as
1 - 8g,-; Og i 091" *agz?
Fl I Jr J ) — T 7
29 (azj L= 82 (7)

1.2 Chern classes

Set n := dim¢ M. It is a property of the Chern connection on M that its induced curvature
form on K]\_/[1 := A"THOM is equal to the trace of the curvature form on TH°M, that is

®K;{1 = t?"(@Tl,OM)

Let e1,..., e, be a local frame for THOM so e1 A ... A e, is a local frame for Kﬂ_j. Since K]T/[l
is a line bundle, the curvature form induced by the Chern connection is
@K&l = 00logh (8)

where b = h(e1 A... Aen,e1 A... Aey) = det(hi;) = det(g;5).
M is also a Riemannian manifold. The Riemannian curvature induced by g is

o 0 o 0 o 0 o 0
By = (aaaa) =9 (R (azxaz) aa)

and the Ricci curvature R;; = ginim. Using Equation [7| we can obtain Rﬁki' Recall
R(u,v)w = V,Vyw — V,Vyw — Vuow

: _ 0 _ 0
Thus taking u = 950 V= g W= 8Z we have

o 0 0 = 0
& (a a) o5~ o, )
0
= 1
v@zivaz 8zl (10)



Using the product rule for differentiation of ¢*” g;r = 5{’ we find

99" s wrOgus
({')Zi g 8ZZ
Also from above
_ _0g -
T — gP" PJ
gt 0z

Thus is

_ 0 o ( 095\ O
rm )= & (g
Ve < ﬂaz) 0z <9 o7, > 7,

_9gus 09, 0%g-\ 9
— _ . pS nr ns pJ pr p)
( 99 o, oz Y oz,07 | oz

o — PT
- R,;jkl = Riﬁgrk

500995 | 9
0z 0z 02;0%;

The Ricci curvature is )

0
Rﬁ = — 92207, (log det g,7)

The Ricci form is defined to be

. ? i .=
Ric(g) = 5 Z Rydz N dz; = —558 log det g5
i?j
Note that the Ricci form is, up to a factor of —%, the same as © Ki! in @) On a Kéhler mani-

fold, the Chern connection and Levi-Civita connection are equivalent on TYOM =2TM [Huy05l,
Prop 4.A.9]. Let Q) = gﬁRiﬁkZdzk A dz;. By the equivalence between Chern and Levi-Civita
connections, we can define the Chern classes in terms of 2.

Let ¢(M) = det (I +t52Q). It is a fact that the coefficients on t* are real closed (k, k) forms
and their cohomology classes in H**(M,C) N H?*(M,R) are independent of g. [Huy05, pgs
194-195, 198]. The kth Chern class ¢ (M) is defined to be the cohomology class represented by
this coefficient.

Definition 7. The first Chern class ¢1(M) is o= [tr(Q)] = 2[Ric(g)]-

We write ¢ (M) > 0 if the first Chern class can be represented by a form with coefficients in
local coordinates given by /=1 - ¢;; for ¢ positive definite, c1(M) < 0if —¢1(M) > 0 and
c1(M) = 0 if it can be represented by a form cohomologous to zero.

Definition 8. [w] € H'(M,C)N H?(M,R) is a Kihler class if it can be represented by a form
corresponding to a Kéahler metric, i.e. we can choose w to be %Z” gﬁdzi A dzj for some 9i
positive definite.

Remark 9. In particular if ¢;(M) > 0 for a compact complex manifold M, then ¢;(M) is a
Kaéhler class since it can be represented by a positive definite closed (1,1) form, so M is a
Kéhler manifold. In general if L is a positive line bundle over M, i.e. a holomorphic line bundle
with ¢1(L) > 0, then M is Kahler. The case ¢;(M) > 0 is the special case L = K.



2 Calabi-Yau Theorem

Definition 10. A Kéhler metric g on a Kéhler manifold M is said to be Kéhler-Einstein if

Ric(g) = Ay
for some A\ € R. In this case, M is called a Kéahler-Einstein manifold.

The question of when a complex manifold M admits a Kdhler-Einstein metric has been answered
in the cases ¢;(M) < 0. The answer makes use of the following theorem first conjectured by
Calabi and later proved by Yau.

Theorem 11 (Calabi-Yau). Let M be a compact Kihler manifold. Let ) be a representative
form for we1 (M) and [w] € HYY(M,C) N H?(M,R) a Kdhler class. Then there exists a unique
Kdhler metric g with wg € [w] such that Ric(g) = Q.

Thus when ¢;(M) = 0, the Calabi-Yau theorem implies M has a Ricci flat metric g, i.e.
Ric(g) = 0, so g is a Kéhler-Einstein metric. Aubin and Yau independently proved that when
c1(M) < 0, there exists a unique Kéhler-Einstein metric g such that Ric(g) = —wgy. The full
answer is in progress when c¢;(M) > 0. In this case, M is called a Fano manifold.

Some ideas in the proof of Theorem[I1. I will not give a proof of the Calabi-Yau theorem but
will note a few points from the proof in [Tia00, Theorem 5.1].

The proof makes use of the 90-lemma which will also be used later. The part of the lemma
needed is the following.

Lemma 12 (90-Lemma). Let (M, g) be a compact Kihler manifold. Suppose a € H'(M,C)
is d-exact. Then there exists a smooth function B such that o = 900.

Remark 13. If w; and wy are two cohogologous Kahler formﬁ associated to Kéahler metrics (in
particular they are real), then by the 90-lemma wy — we = Q0P is real so

098 = 005 = 99B = 09(—B)
which implies we can choose 3 such that 5 =i - f for some f € C*>°(M,R).

Proof of Lemma, [Huy05, Cor 3.2.10]. Since « is d-exact we can write a = dn for some 7 €
H'(M,C). M is Kihler so the notions of 9,  and d harmonicity are equivalent. If (-,-) denotes
the inner product on (p, q) forms given by

(wa 77) = /M gC(wvﬁ)w;L = /M h(1/J, n)wg

then d* is the formal adjoint of d with respect to this inner product. % is d-harmonic if and
only if di) = d*+) = 0. Thus for all v» € H>!(M,C), the space of harmonic (1, 1) forms,

(a,9) = (dn,v) = (n,d"¢) =0
ie. a L HY(M,C). We know da = 0, thus da = da = 0. Since a € ker 9, by the Hodge

decomposition for 9, « is in the direct sum of the harmonic (1,1) forms and the image of 9 on
(0,1) forms. We know « ¢ HYL(M,C) hence o = 9y for some (0,1) form . Again by Hodge
decomposition, now for 0
y=08+0 8 +p5"
— a=008+00 8 =—-008—-0 08



for some 3" € HO'(M). Note 8 @ = —99" by the Hodge identities. So

da=0 = 9098 =0
— 0=(90"08',08') = (9°08',0 98') = ||0"08'||”
— 998 =0
— o =008

Returning to the Calabi-Yau theorem, in local coordinates

i
wg = 3 Z gijdzi N dz;j
/1:7.]'

Ric(g) = —%Oglog det(g,5)

Since Ric(g) and Q are cohomologous, the dd-lemma says there exists a real smooth function
f such that

Q) — Ric(g) = %85]"

We normalize f so that [, e/ wy = [y wy, and then such an f is unique. We want to find
some metric w € [wy] such that Ric(w) = Q. Again by the d9-lemma, w must be of the form

wg + %8&1), so w corresponds to the metric with coefficients 95 + 8226%‘ Then

Ric(w, + %8%) — Q = Riclg) + %aé f

In local coordinates this is

0%¢
62’2-827

(e i — i
_588 log det <gij + > = —568 log(det(g;7)) + 5é?af

62
det (% + Tziad)zj)
det(g,5)

82
det(g;3)

— —00f = d0log

= —f+c=log

for some constant ¢, since harmonic functions on a compact complex manifold are constant.
The left hand side is defined globally so the right hand side is as well. Exponentiating both
sides gives

det | g;7 + 9 = e /T det(g.5) (11)
Y aziﬁfj Y
Equation (11)) is equivalent to
L on n —f+c, n
(wg + 5009)" = e ey (12)



Note that using Stokes’ theorem for 0 < m <n

w m—1
/M A (99)™ / DW= A (831 A D)
-—t/“ d(w=™ A (9D6)™ 1 A D)
M
=0

since wy is closed and we can replace 0 with d since the form is a (n —1,n) form. So integrating
both sides of Equation [12| over M implies

/wg:/ e*f“w;‘
M M

so by the normalization condition above, ¢ = 0. Thus to find an w as in the Calabi-Yau theorem,
we need to solve the complex Monge-Ampere equation, which is

U= — n
(wg + 583@" =e fwg (13)

Yau’s proof of this conjecture is given in [T1a00, Theorem 5.1] and involves a continuity argument
on solutions to

i ¥aY — n
(wg + 538(;5)" =e fswg (14)

where fs := sf +cs, s € [0,1], and ¢4 are constants uniquely determined by the normalization
condition [y, (e~ — Dwy = 0. It is shown that the set

S = {s € [0, 1]] there is a solution to for all t < s}

is open and closed (and non-empty, since it contains zero by setting ¢ = constant) hence
S =[0,1] and there is a solution at f.

3 Calabi-Futaki invariant

There are obstructions to the existence of Kahler-Einstein metrics on Fano manifolds. The van-
ishing of the Calabi-Futaki invariant is necessary and is an obstruction related to holomorphic
vector fields.

Assume M is a compact Fano manifold. Let Ka(M) denote the set of Kéhler classes on M and
(M) the space of holomorphic vector fields on M, i.e. in local coords z1, ..., z,, vector fields
of the form Xz-% with X; holomorphic.

Choose [w] € Ka(M) and Kéhler metric wy € [w]. Let s(g) denote the complex scalar curvature

of g, i.e. s(g) = ginﬁ locally. Define a function hy on M by
1 n
s(9) = 1 [ s(gwg = Ahg

where V = f M wg is the volume.

Definition 14. The Calabi-Futaki invariant fs is
fu: Ka(M) xn(M) — C

hM%MzAMM%




Calabi and Futaki proved

Theorem 15. fy/([w], X) is a holomorphic invariant independent of the representative g cho-
sen in [w]. In particular, if there exists a constant scalar curvature metric wy € [w], then

fM([w]>_) =0.

We can restrict the first argument to mci(M) > 0. Let mei(M) = [wg] = [Ric(wg)]. So
Ric(wg) — wyg = 500h, for some function hy, by the 90-Lemma. A Kihler manifold locally
admits normal coordinates about any = € M [Tia00, Prop 1.6], where gﬁ(m‘) = 0,;. We can

assume wy = £ > dz; Adz;, Ric(g) = 53 Rizdz; A dz; at x, and

wn
Ric(g) A w;‘_l =(n—1)! ZRﬁﬁ

I
\
V2]
—~~
<
~—
€
i)

at x. Thus

<Is <Is <Is

SSsE
—
LQE
+
5}
o5
=
—
°3

where the last step follows since [}, ddh, /\(,u"*1 Ju @ d(0h /\w”fl) as wy is closed, which equals
Joy d(Bhy Awg™ 1) as Ohy, Awg™ Lisan (n—1 n) form, so this integral vanishes by Stokes’ theorem.

So in the special case [wy] = me1 (M), far([wg], —) gives Futaki’s invariant [Fut88, §3.1] where
hg is equivalently defined as

Ric(w,) — w, = %aéhg (15)

This is equivalent since contracting the coefficients in with gij gives s(g) —n = Ahgy and
we already saw that n = - [, s(g)wy.

Remark 16. In mey (M) > 0, the notions of constant scalar curvature Kéhler (cscK) metrics and
KE metrics are equivalent. We have mci(M) = [wy] = [Ric(g)] and Ric(g) —wyg = 500hy. KE
implies cscK since Ric(g) = Awy implies locally R = Ag;; therefore s(g) = n\ by taking the
trace of both sides, where n = dim¢ M.

Conversely, suppose wy € mci(M) has constant scalar curvature. We know n = 3 [}, s(g)wg -
Thus if s is constant, s = n so hy is harmonic on a compact manifold hence constant. Therefore
Ric(g) = wg and (M, g) is Kéhler-Einstein.

Proof of Theorem [Fut83],[TD92]. The following proof is for the Kéhler-Einstein case using
the Futaki invariant and follows [Fut83] and [TD92]. I will give the idea behind the proof for
the general case, given in [Tia00, Theorem 3.3]. The second statement of the theorem is clear
in the more general case; if s(g) is constant then Ahgy = 0 so hy is constant. Hence X (hy) =0
VX € n(M) and fay([w],—) =0.

Let fy(X) := fM(ﬂ'Cl( ), X). To show fys(X) is independent of the representative g chosen,
it suffices to show f;(X) := [,, X (hg,)w}" is locally constant for an arbitrary differentiable family

10



of Kahler metrics w; := wy, in ey (M), that is % ft(X) = 0. This will suffice since the set of all
Kahler metrics in mep (M) is a cone, hence contractible.

Let mc1 (M) be represented by w. By the 00-lemma, there exists smooth real functions vy such
that

W —w = %Ggwt

Then differentiating with respect to t gives

Qwg i 0y
8t_2aa<8t)

Set ¢y := %t. Here w;' denotes det(g;);;. Then using Ric(w;) — wy = 100h,

0 _ Owy 0,.. im0
at( V) = Ny Aw E(ch(wt» = 288 <8t log wy’ )
- faa@ A - —%aa (Mf’t )
. Wt
= Agywy’ = *%agA(ﬁt
0 .= L0 .
a(@@hgt) = —fza(ch(wt) —wy)
= 00(—Adt — )
So choose hg, = h; such that
Oh
8; = —Ad —

Then

7ft /at (he)wr)

=), e () e

= / (X(=A¢; — ) + X (he) Ay )wy
M
The following argument is from [TD92]. Note that

X(Agy) = x1-2 <gtﬂ€ 01 >

azi 8zj8zk
9 2, oX'
— i gk
0z; (X 9t 82j82k> ¢t

The first term vanishes when integrating over M, by the divergence theorem, and the second

term is —div(X) - A¢;. Similarly we can replace X (—¢¢) with div(X) - ¢¢. Also in local

. . R — . 0 dg,
coordinates, ixwy; = 5X’ ngdzk and wy is closed so 692 = 8* Since the X7 are holomorphic

11



—2i0(ixw;) = 8
! Jkdzﬁ/\dzk+2 ]deAdzk]
i<k >k
gtjk 8gtjk
dz; N dz, — 0% dz; Ndz, | =
i<k i<k

So by the Hodge theorem _
Lxwt = o + One

for some harmonic (0,1) form a; and smooth function 7;. The a; will vanish in the integral
(n.b. (ag, A¢r) = (Aay, ¢¢) = 0) so we can assume it is zero. Then Lxw; = d(txwi) = O(txwt)
by Cartan’s formula and (divX)w}’ = Lx(wj'), so

Oixwy) = 00, = div(X) = An,
Since (¢, Ane) = (Agpy, m¢) with respect to the inner product (,) induced by integrating over M

RO = [ [(div(X) + X (b)) Aoy + div(X)]

— /M(Am + X (he) + ne) Aggwy”

We show O(An; + X (hy) + n;) = 0. Since B0 ht = R — gi;7 (where Rz depends on t)

= _ = laht
B(X (hy)) = D <X 62i>
0% hy
822-62]-
= 1x(Ric(gr) — wt)

577:& = lXWt

= Xi dfj

and from the definition of Ric(g;) we show dAn; = —ix Ric(g;) (from [T1a00, pg 25])

2

. i, O
txRic(gt) = —§X 9207,

; 3
X 5 log det(gtkl)>

)

109t
X g, K Kl
gt 02

<
<
<
<

-log det(gs,7)dZ;




The fact that X is holomorphic is used in the second line and sixth lines, the definition of the
inverse of a matrix A as ﬁadj(A), where adj(A) is the adjugate matrix, is used in the third
line, the fourth line uses that wy is closed, the fifth line is the Chain rule, and the penultimate
line uses txw; = On. So A(An;+mn;+ X (ht)) = 0 and by the chain rule and divergence theorem

%ft(X) =0.

In the more general case, one can show that fus([w], X) = [, 0xAghgwy, for a specified func-
tion fx. By the Hodge theorem, ixw, = %(a + 00x) for some harmonic 1-form o and smooth

function fx. Thus X7 = giF (O‘E + 89X),

oz,

Let A, denote the O-Laplacian on functions, which is 8"0. Note that the inner product gc (¥, 7)
on forms is the dual of the inner product on vector fields, so has coefficients ¢/*. Then

far(jw], X) = /MX<hg>w;
O,

T 00 oh
- gk (e X ) 20 n
/Mg <ak+ 8@{) sz Wy

= (8h975) + (ahgv 8€X)
= (Oé,ghg + (5:9;(,5119)
= (0, hy) + (0x,0 hy)

= / HXAghgwg
M

The final line follows since a is harmonic, so d a = 0. Then defining F(g, X) = (n +
12"+ [}, hgAbBxw]', one takes a family of metrics {g;} in the given Kéhler class [w] and shows

4 F(g, X)|t=o = 0, done in [Tia00, pg 24-27]. O

3.1 Formula for the Calabi-Futaki invariant

With the additional condition that X € Vect(M) be non-degenerate, Futaki gives a formula for
fau(mer (M), —), by looking at the zero set of X, [Fut8§].

Here is the set-up. Suppose Z C M is a smooth complex submanifold and let Ny denote
the normal bundle TM/TZ to Z in M. A metric g on M induces an orthogonal decomposition
TM|z; =TZ @ Nupz. 1f V is the Levi-Civita connection on M, VX induces a section DX of
End(N M|z), given by restricting to vectors in Ny 7, taking the covariant derivative of X in the
given direction, and projecting the result to Ny 7. With the orthogonal decomposition above,
DX = (VX)HNM‘Z where (VX)+ denotes the component in T'M perpendicular to TZ.

Definition 17. We say X € Vect(M) is non-degenerate if

zero(X) = H Z

AEA

where the Z) are smooth complex connected submanifolds, and

D.X : T.M/T.Zy — T.M/T.Z)
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is a non-degenerate linear map of vector spaces, i.e. has nonzero determinant, for all z € Zj,
VA e A.

Then
Theorem 18 ([Fut88, Theorem 5.2.8]). For X a non-degenerate vector field on M

[tr(La(X)) + c (M)
far(mes (M), X n+1§\/z det( L,\ X) + LK) (16)

where n = dimg M, L)(X) = (VX)J_|NM\Z)\ and Ky s the induced curvature form on Nyjz, .

Consider the special case where M is a complex surface and A = Ag U A1, where A; consists of
1 dimensional submanifolds. Since only forms of degree 2 - dim Z) contribute to the integral in
, the sum over A € Ay becomes

For one-dimensional submanifolds Zy, T'Z) and the normal bundle are line bundles, i.e. rank
one vector bundles, so Ly(X) and K are both one-by-one matrices hence we can omit the trace
and determinant. Note that X is non-degenerate so Ly(X) # 0. Then using an expansion for
the denominator and omitting terms not of degree 2 we find

/ (La(X) + 1 (M))?
zn LX) + £ Ky

:/ Ly(X)? 4+ 3Ly(X)?c1 (M)
2y IA(X)(1+ 5= K\Lx(X)71)

= /ZA <(L/\(X)2+3L>\( Jer(M))(1 — ;TKALA(X)_I)>
_ /Z A <3LA(X)C1(M) - ;;TLA(X)KQ

= L\(X)(2e1(M)(Z)) + 2 — 29(Z)))

The final step was obtained as follows. K is the induced curvature form on the line bundle
Nz, thus [52Ky] = c1(Npy)z, ). Note that

TM’Z/\ :TZ/\@NM|Z/\ == Cl(TM‘Z)\) :Cl(TZ)\)+Cl(NM|Z/\) (17)

Then using the pairing of cohomology on homology, given by integrating a form over a subman-
ifold, we find by the Gauss-Bonnet theorem

/ZA cl(Z,\)—/Zk cl(TZ,\)—/ZA %@ NEA

where ® is the volume form and C) is the Gaussian curvature of 7y, using the fact that C'\® is
i times the curvature form on the line bundle T'Z), see [GH94, pg 77]. Further

(TM|2,)(Zy) = /Z el(TM]z,) = /Z et (TM)

:/ZA01(M)

= c1(M)(2y)

14



So by Equation [17]
c1(Nagjzy)(Z2x) = et(TM|z,)(Zx) — eci(TZ))(Z)
o[ K= alNuz)(2)
Zy 4T

= cl(M)(Z)\) — X(Z)\)
= cl(M)(Z)\) - (2 - 29(Z/\)>

and we have the result above. So

fu(re (M), X) = % = fiz(tffif +y Agl La(X)(2c1(M)(Zx) +2 = 29(2)))

3.2 Example 1

This example was done in [Tia00, pg 32-33]. Consider CP?(p), the blow up of CP? in a point p.
Usmg the automorphism group of CP?, SL(3,C)/ ~ where A ~ AA, YA € C*, we may assume
=[1:0:0].

The blow up of a general complex manifold in a point p is given by taking a local coordinate
chart centred about p, blowing up at the origin in C" and then glueing the resulting BoC" back
onto the manifold. The following theory is from [GH94, pg 182-185].

Here we consider a neighbourhood U = {[z : y : ]|z # 0} = C2 in CP?. We have a parametriza-
tion given by
f:C2>U
(z,y) = [L:a:y]
and BoC? = {((z,v), [¢ : n])|zn = y€} C C% x CP'. Thus there is a commutative diagram

B,C?

AN
C? —> U

where 7y is the projection onto the first factor. Note that fm; restricts to an isomorphism
ByC? — {(0,0) x CP!} — U — {p}. Then the blow-up of CP? at p is obtained by glueing along
this restriction

M = C]PQ\{p} Upm BUC2
= (CP2\{p}) LU

where U = {([1:z : y],[€ : n)])|zn = y€} and E = {([1:0:0],[¢ : 5])} = CP' is the exceptional
divisor which has replaced p. Points ([1 : z : y],[¢ : 5]) € U\FE are identified one-to-one with
points [1 : z : y] € CP?\{p}. Away from E, M is isomorphic to CP?, which is a complex
manifold. We define local coordinates about E as follows. Take a cover Vp, V; of U given by

Vo={([1:2:9),[¢:n) € UJ¢ 0}
Vi={([l:2:y],[¢:n]) € Uln+#0}

15



On these open sets we have coordinates (29, 28) = (z,7/€) and (21,23) = (¢/n,y) since y and x
are then respectively determined by xn = y£. In particular ENVy = {z{ = 0}, ENV; = {23 = 0}.
Thus the transition functions for [E]|r = Ny g are the inverse of those for the hyperplane
bundle. Any line bundle L over CP! is a multiple of the hyperplane bundle. This multiple is
denoted deg(L) and corresponds to the image of L under the isomorphism

{line bundles} = H'(CP", Ofp1) = H*(CP',Z) = Z
L > deg(L)

N.B. This isomorphism arises from taking the long exact sequence of cohomology from the
exponential sequence
0—=7Z— Ocprt = Ofpr — 0

and observing that H!(CP', Ogp1) = 0 and H?(CP', Ogp1) H%Q((CIP)l) = 0. deg(L) is also the
integer obtained by pairing cohomology and homology, ¢;(L)(CP'). Further, in the case of the
normal bundle to a submanifold Z, this degree coincides with the self-intersection number of
Z, denoted Z N Z. Since the transition functions for [E]|g are inverse those for the hyperplane
bundle, we have EN E = —1. Any other curve on M which is not F can be considered a curve
on CP?, and these always have self-intersection number +1.

To obtain a holomorphic vector field X, we first define a flow ¢; on CP? and then lift it to M.
Note that ¢; must fix p, so that when p is blown up to E, ¢; lifts to M where it fixes E.

On U, set
e([1:2:y]) =[1:elz:ely
s0 ¢¢(p) = p. Extend this to CPL := {[0: z : y]} by taking a limit

([0 2 :y]) = )\li_)rgo &r([1: Az = Ay))

Note that ¢; fixes CPL_; we have [1 : e?Ax : etAy] = [e*A"! 1z : y] for A # 0, so as A becomes

o !
large, we see taking the limit gives [0 : z : y] again.

¢ lifts to M by ¢¢([1: 2 : y],[§ = n)) = ([1: etz : €'yl [€ - m]) and is defined on CP., as above.
The fixed points of ¢; on U are precisely E, and everything outside U, namely CIP%O, is fixed.
So if X is the vector field induced by ¢

Fiz(¢y) = EUCPL
— zero(X) = EUCPL,

Both F, (CIP’})O are isomorphic to CP! so have genus 0 and Euler characteristic 2. As noted earlier
ENE=-1,CP,, NCPL = +1. It remins to compute Ly (X).

In coordinates about F, e.g. in Vj, the flow sends
(29, 3) = (z,1/€) = (e'z,n/€)
Since 4 (etx,n/¢) = (e'z,0), X is locally given by X = x?%. Since ENVy = {2 = 0}, we have
1
a local frame for T'Ely, given by % therefore we can choose 8%0 as a local frame for Ny . So
2 1
with respect to the basis 8%(1) for Ny,

0 0
VaX:1-7+ZEOVL7
OxY !

80 Bz? 6$

=
=Oo
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On E,29 =0 so we get L\(X)=1on E.

Next we find local coordinates about CPL . CPL is contained in Uy UUs where U; := {[sg : 1 :
s9]|s; # 0}. Uy has coordinates (u,v) = (s0/$1,$2/51) on which ¢y is
(u,v) = (e tu,v)
so X = —ua% locally. CPL. NnU; = {u = 0} so we can choose Nygicpr, to be generated by %.
As in the calculation above, V o X = —% on CPL and Ly(X) = —1.
ou

So putting everything together

L Putrer (), X) = L (e 40)(B) + 2~ 29(5)] ~ er (M) (€BL) 2 — 29(CEL )
. % (X(E) + EN E] - [x(CPL) + CP., N CP))
—S@-1-2-1)

4
=2 #0

therefore CPP?(p) never admits a Kihler-Einstein metric.

3.3 Example 2

Let M be the blow-up of CP! x CP! at the point ([1 : 0], [1 : 0]). That is, M is the blow up of the
image of the Segre embedding ¢ : CP! x CP! — CP? at p:=[1:0:0:0]. Let X = ¢(CP! xCP!)
and wyo, . .., ws be coordinates on CP3. So X is the zero set of wows — wiwsy. Note that if we
blow up CP! x CP! in any point p, using the automorphism group PSL(2,C) x PSL(2,C) ~
CP! x CP! we may assume p = [1:0],[1:0]. On X, p lies in the open set U := Uy N X on X,
where Uj is the open set in CP? consisting of points with nonzero ith coordinate. We have local
parametrization

f:C*=U
(,y) = [l:z:y:axy]
The projection onto the first factor is 71 : ByC? — C? as earlier. Thus
M = X\{p} Usz, BoC”
= X\{pjuU
where U = {[1: z : y : zy], [¢ : n]|lzn = y&}. The exceptional divisoris £ = {[1:0:0: 0], [€ : n]}.

Take .
[L:iz:y:ayl, [§:n]) € UIE#0}

[L:z:y:ayl,[¢:n]) € Uln+#0}
0 ,.0 1

Then Vy has coordinates (29,29) = (z,7/¢) and V; has coordinates (z1,z3) = (¢/n,y), where
E is given by {x = 0} and {y = 0} on V) and V] respectively. So as in Example 1, ENE = —1.

Vo=A{

(
Vi={(

Define a flow on CP? given by

b ([wo : w1 = wo = ws]) = [wo : elwy : elwy 1 2]

17



This restricts to a flow on X and fixes p, so lifts to a flow on M fixing E. Also

[0: elwy @ elws : e2tw3] = [0:wy : ws : elws]
=1[0:w; :wy:ws] Vt

= w3 =0
Thus

{[0:wy:wy:0]}NX=[0:1:0:00U[0:0:1:0]
— Fiz(¢) = FUq Uq

where ¢1, g2 are the two fixed points. The flow locally on Vj is

(7,29) v (e'a}, x3)

thus X := %qﬁt = m?a%? on Vy gives

VX|p=V (:U?a‘;))
)

99

— Ly(X)=1onE

E

_ .0
= dx;

where we used that 2 = 0 on E so 8%0 is a generator for N/ p. About g1 we have open set Up
1

and coordinates (u,v) = (wg/w1,ws/wi) and then wsq is determined by wows = wiwg. Here

bi(u,v) = (e tu, e'v)

= Xy, = ~u—+v—
u

Then VX at q1 is VX =V (—u(% + va%) = —du% + dva% since X vanishes at ¢;. As ¢1 is a
point, its normal bundle is all of T, M so Ly(X) is a 2 x 2 matrix given by L)(X) = (_01 (1))
therefore tr(Ly(X)) = 0.

The calculation for ¢s is identical, with coordinates (u,v) = (wo/we, w3/w2), ¢¢(u,v) = (e tu, elv),

X|u, and Ly(X) are the same, so tr(Lx(X)) = 0. So the points do not contribute to fps. Then

7[.2

fu(rer(M), X) = —(2a1(M)(E) +2 — 29(E))
ZQ;TQ(X(E)+E0E+1)
:237#(2—1“):1?27&0

So CP! x CP!(p) never admits a Kihler-Einstein metric.
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3.4 Fano surfaces

We’ve shown above that CP! x CP!(p) and CP?(p) do not admit Kéhler-Einstein metrics. CP"

n

admits the Fubini-Study metric, given by (where ||z||? = 3 |2]|? for local coordinates z1, .. ., z,
i=1
on CP")
- 7 Z dz; N\ dz; Zz Zidz; N Z ; Zjdzj
wrs = =001og(1 + z2:< L — J 18
FS =35 g( 12117 9 1+ [|2]]2 (1+ [|2]]2)2 (18)
i\"dzi NdzZi AL N dzp N dZy,
no_ o2 19
RO 1)

The latter equality can be seen as follows:
2

Zzidzi AN Z Zjd?j = Z Eizjikzldzi VAN d?j ANdzi N\ dz;
i J 1,5,k
= ZEiZjEkzlei VAN dzj Ndzi N dz; + Zzizj'szldzi A d?j ANdzy N dz;
i<k >k
= ZizZea(dz AN dZ; A dzg AdZ — dz A dZj A dz, AdZ) =0
i<k

. Zidzi Y 2dz \
Thus in wig, the terms <ZZ Z(liHj:;)j] ZJ) for k > 2 are zero. Then

(—2iwpg)" = <W>n —n <W)n_1 A 2 Zidzi N ) 2z,
1+ [[2]]? 1+ ]]z]|? 1+ ||2]]2)2
(Cidz Adz)" (L |23 0 (S dei A dz)"
e P ey
. (Zz dZZ' A\ dfl)n
B ERE

Thus

Ric(wps) = — %85 log(wig)

1= 1

- =395 ( (e

= (n+1)500log(1 +||2]*)

=(n+1)wrs
So CP" is K&hler-Einstein.
M := CP! x CP! is also Kéhler-Einstein. Let m; : M — CP! be the projection onto the ith
factor. M admits a Kéhler structure as a product of two Kéahler manifolds, induced by the
metric g := g}ps + 912?3 where

(9Fs + i) (u,v) = ghg (M1, T1,0) + ghog (T2, T2,0)

So in local coordinates (z1, z) on CP* x CP!

w_i(dzl/\dzl dzo N\ dZo
2\ (1) (1422

_ 1 2
2> = Wpg T Wrg
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Then
. U= 9
Ric(w) = —568 logw

= —%35 log(wps A whs)

- _365 [log (M) + log ((1+\122|2)2H

= 2(Wpg + whg) = 2w

Theorem 19 ([Hit75]). The Fano surfaces are CP* x CP' and CP?(py, ..., py) blown up at k
points in general position for 0 < k < 8.

Note that CP?(py,p2) = CP! x CP(p), see [GHI4, pg 478-450].

Ideas in the proof of . Hitchin’s proof showed that ¢; (M) > 0 implies M is birational to CP?,
and further blowing down M does not change the sign of ¢; (M) so we may look at the minimal
models for rational surfaces, which are CP? and F, := P(H" @ 1), n # 1, where H is the
hyperplane bundle over CP'. Using the Riemann-Roch theorem for surfaces for a non-singular
rational curve D on M gives

—c1(M) - [D] + [D)? = 2

so using ¢1(M) > 0 one can show this implies [D]? > —2. The manifold F}, has a rational curve
with self-intersection —n so we can exclude all F}, except Fy = CP! x CP!. As CP! x CP!(p) =
CP? (p1,p2), we can assume we blow up in points on CP?. The first Chern classes of a blow up

X

m: M — M of M in a point are related by

~

(M) =7"ci(M) — [E]
where F is the exceptional divisor. If we blow up CP? in k points then this implies
c1(CP(py,...,pp)) 2 =9—k >0

using the result that cl((CIF’2) corresponds to the integer 3. So we require £ < 8. We must blow
up in distinct points since blowing up in a point gives an exceptional divisor of self-intersection
—1 and blowing up again in the same point gives a curve of self-intersection —2, but [C]? > —2
for all non-singular rational curves C.

The following theorem and the previous examples answer the Kahler-Einstein question for Fano
surfaces.

Theorem 20 ([Tia00, pg 87]). The Fano surfaces CP*(p1,...,px) for 3 < k < 8 and p; in
general position all admit Kahler-Finstein metrics.
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4 Asymptotic Chow Stability

The existence of KE metrics is also related to stability. We can generalize to the case of a
compact complex manifold M with positive line bundle L. Then the pair (M, L) is called
a polarized manifold. ¢;(L) is represented by a positive closed (1,1) form, locally given by
% Zz ; gﬁdzi Adzj, where g;7 1s a positive definite hermitian matrix. Then g := Zl j gﬁdzi ®dzj
is a hermitian Kéahler metric and M is a Ké&hler manifold. Note that since L is positive, for
sufficiently large k& we can embed ¢, : M — CP™* via sections of L¥. This is the statement of

the Kodaira Embedding theorem, [GH94, pg 181].

We seek to find a constant scalar curvature Kéhler (cscK) metric in ¢;(L), which is a general-
ization of finding a KE metric in ¢;(M). I will describe some results related to this question
and then give the background behind them.

Let Aut(M, L) denote the subgroup of Aut(L) consisting of automorphisms of L which commute
with the C*-action on fibers. In particular, these descend to automorphisms of M, so Aut(M, L)
can be identified with a subgroup of Aut(M). When Aut(M, L) is discrete its Lie algebra is

trivial. Donaldson proved in [Don01], for the sequence of metrics wy, := ZZ i} (wps),

Theorem 21 ([Don01]). Suppose (M, L) is a polarized manifold and Aut(M, L) is discrete.
If w is a cscK metric in 2mei (L), then (M, LF) is balanced for all sufficiently large k and the
sequence of metrics wy converges in C™ to w, as k — co.

Corollary 22. When Aut(M, L) is discrete, if 2wci (L) admits a cscK metric it is unique.
Wang showed using moment maps and symplectic reduction

Theorem 23 ([Wan04]). Let (M, L) be polarized by a very ample line bundle L, with embedding
M — PN wia L. Then (M, L) is Chow polystable if and only if it can be balanced.

Theorem [23] was originally due to Zhang, and there is a proof by Paul as well.

Corollary 24. Asymptotic Chow stability of a polarized manifold (M, L) is an obstruction to
the existence of cscK metrics in c1(L) when Aut(M, L) is discrete.

4.1 Background

4.1.1 Chow form and asymptotic Chow stability

The Chow form gives a way of parametrizing polarized manifolds. Chow polystability is defined
in terms of stability of the Chow form. There are two equivalent ways of defining the Chow
form. Let (M, L) be a polarized manifold as above with embedding ¢, : M — CP™:. Set
n := dimc M and dj, is the degree of ¢ (M) C CPNk,

1) Consider the set of all Ny — (n + 1) dimensional subspaces V of CPY* ie. points in
G(Ny, —n, Ni+1), the Grassmannian of Ny —n dimensional subspaces of CV¢*1. Given a set of

coordinates eq, ..., e, on C", we have a set of coordinates e;; A...Ae;., 1 < i3 <...<i, <non
A" C", called the Pliicker coordinates. Then G(Nj — n, Nj, + 1) embeds into P(AN-~"C")
by sending a space V' spanned by ei,...,en,—, to the one dimensional space spanned by

e1N\...\Nen,—p in /\N’“_n C™. This is called the Pliicker embedding.

V does not generically intersect M since dim V + dim M = dim CP™* — 1. However, the set of
V such that VN M # ¢ forms an irreducible codimension one subvariety of G(Ny —n, Ny + 1)
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and hence is defined by the vanishing of some polynomial degree dj in the Pliicker coordinates
of G(Ni —n, Ny +1). This is proved in [GKZ94, Chapter 3, §2, A and B]|. This polynomial is
the Chow point or Chow form. It is a point in the Chow space

CHOWpn,, (n,dy,) C PHY(G(Ny — n, Ny + 1), Og(dy))

whose points parametrize polarized varieties (M, L) where LF induces an embedding ¢, : M —
PNk, n = dime M and dy, = deg (1, (M)). This is the approach taken in [Wan04].

2) Following Futaki [Futll], let Vi, = H°(M, L¥)* so N+ 1 = dim V}. Elements in P(V}*) define
hyperplanes in P(V}) so if

Dy = {(Hl,. . .,Hn+1) € ]P)(Vk*) X ... X P(V;)‘Hl N...0VHpp1 NM #* gZS}

then D)y is a divisor in P(V;) x ... x P(V}*) defined by a polynomial in (Sym®(V}))®"+1, also
called the Chow form. These two definitions of the Chow form are equivalent as described by
Mumford [Mum77, pg 16 — 17].

Let Chow(M, L¥) denote the kth Chow form of (M, L) as defined above. Note that G :=
SL(Ny, +1) acts on CPM* | which corresponds to changing the chosen basis for H?(M, L*). This
induces an action on (Sym® (V4))®"*+1 or PHO(G(Ny, —n, Ny + 1), Og(dx)) so we can consider
the orbit of Chow(M, L¥). Chow stability of M corresponds with the geometric invariant theory
(GIT) stability of Chow(M, L*) with respect to this G-action.

Definition 25. Let (M, L) be a polarized manifold.

1. M is Chow polystable w.r.t. L* if the orbit of Chow(M, L*) under G is closed.

2. M is Chow stable w.r.t L* if it is polystable and the stabilizer of Chow(M, L*) is finite.

3. M is asymptotically Chow stable w.r.t. L if there exists a kg > 0 such that for all k£ > ko,
M is Chow stable w.r.t L.

4.1.2 Moment map and symplectic quotient

I learned the following background from [DK90], [Tho06], [Wan04] and Wikipedia.

Definition 26. A symplectic manifold M is a smooth manifold equipped with a closed, non-
degenerate global 2-form w.

Definition 27. We say an automorphism g of M is symplectic or a symplectomorphism if it
preserves w, i.e. g*w = w.

For example a Kéahler manifold is symplectic, Wllfre w is its Kéhler metric. If M = CP" is
equipped with the Fubini-Study metric wpg = $081og(]|z[|?) then g € GL(N + 1, C) preserves
wpg if and only if g € U(N + 1) since

lg(2)[1? = 2TgTgz =2"2" = |||

for all z = (z1,...,2n41) if and only if g7g =T i.e. g € U(N + 1).
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Let G be a compact Lie group acting on M by symplectomorphisms. Let g denote the Lie algebra
of G. Each element £ € g defines a vector field o(§) on M by considering its infinitesimal action.
On T, M the vector o,(§) is defined to be

d
72(6) = 5| elie) 2
t=

where exp(t€) is the 1-parameter subgroup (1-PS) of G induced by & via the exponential map.
Since G acts by symplectomorphisms the Lie derivative Lyw = 0. Thus using Cartan’s
formula and the fact that w is closed we obtain

0= Logw = dltog)w) + to(g)dw
= d(to(ew)

So if H'(M,R) = 0, then Lo(g)w 18 exact. For example, when M is Kéhler and ¢;(M) > 0, the
Calabi-Yau theorem states that M admits a metric with positive Ricci curvature, which implies
M is simply connected ([Tia00, Remark 2.14]). So H'(M,R) = 0 in that case.

Then we may write ty¢)w = dmg for some function mg on M. Note that in general if df = 0,
then f lies in the kernel of d, which consists of locally constant functions on M, so for M simply
connected f is constant. That is, m¢ is unique up to a constant.

Definition 28. A moment map for the action of G on M is a map

m: M —g*
where (m(z), &) = mg(z), such that
d{m,§) = Lye)w (20)
The final equation is an expression in terms of z € M, where (m,&) (2) = (m(z),§), and

(to(e)w)(2) = Lo (eyw- That is, a moment map for the action of G on M is obtained by combining
all the components m¢ into a map. Here (,) denotes the evaluation pairing g x g* — R. If we
have a bi-invariant non-degenerate pairing on g x g, such as taking the trace of the product of
two matrices in the Lie algebra of the special linear group, then we can identify g with its dual
via this pairing and consider m as a map M — g.

Definition 29. G acts on itself by conjugation, which induces the adjoint action on g.
v(g):G—G

h — ghg_1

This induces Ad(g) := (d¥(g))e : TeG — T.G, the adjoint action of G on g. Then m is
G-equivariant if
(m(g-2),§) = (Ad(g)"m(2),§),  Vze M,vEeg

where the right hand side is (m(z), Ad(g™!) - £).

Recall the m¢ are unique up to constants. It is possible to choose these constants such that m is
a G-equivariant moment map. Then m is uniquely defined up to addition of a central element
in g*, [DK90],[Tho06].
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The moment map generalizes the notion of angular and linear momentum, hence its name. The
possible locations of a particle in 3-space form its configuration space, R3. The phase space cor-
responding to this configuration space is M := T*R3; each point of M corresponds to a unique
state of the particle, describing its position and momentum. The group G of translations R?
and rotations SO(3) acts on M and the components of the moment map m : M — g* are the
components of angular and linear momentum in each of the three directions.

Assuming m is G-equivariant, G acts on m~1(0).
Definition 30. The symplectic quotient of M by G is
M//G :=m™(0)/G

When M is a compact Kéahler manifold we consider the action of a compact Lie group G
and extend the action to its complexification G, where gc = g + ig, via the almost complex
structure J. So o(i€) = Jo(§). For example, SU(N + 1) C SL(N + 1,C), sl(N +1,C) =
trace 0 matrices over C and su(N + 1) = trace 0 skew-hermitian matrices, as a Lie algebra
over R. Since any trace 0 matrix A can be written as a sum of trace 0 hermitian and skew-

hermitian matrices A = %(A—i—ZT) —i—%(A—ZT), we have s[((N+1,C) = su(N +1)+i-su(N+1).

As an example (PV,wrg) has a canonical moment map pprg

1 ZiZj 6ij
: N — — — esu(N +1
prs (20 ZN) 2i<||z!|2 N1 u(N +1)
IEs i

Note that the trace of the image is 2% ( Ll N+1> =1—1=0 as required.

II=]

Proof follows [MFK9/, Example 8.1(ii)] and [Kir84, Lemma 2.5]. As noted above U(N + 1)

2
acts on PV by symplectomorphisms. Note that 2% (HEHQ — ]\‘,Sjil) can be identified with its

dual element in su(N +1)* via the Killing form —tr(a-b) for a,b € su(/N +1). This is symmetric

and bilinear. So
o _i ZiZj B 52‘3' o
<MFS(z)7a>5u_ 2tr<<H2H2 N+1> a]k’)

_ L (zzjai  ai
20\ |]2]]? N +1

A G-equivariant moment map is unique up to addition of an element which is central in the Lie
algebra, and in this case the central elements of u(N + 1) are constant scalar multiples of the
identity which are skew-hermitian, i.e. elements of the form ¢ - riy4; for » € R. Thus we've

chosen to add the constant %]\?jil above so the image of the moment map is in su(N + 1), i.e.
it is trace free.

First note that pupg is independent of the non-zero representative chosen for z in CN*1; this is
because if we chose Az instead then the A? cancel in the numerator and denominator. prg is
SU(N + 1)-equivariant since for g € SU(N + 1) and z € PV,

1 (zTgTagz tr(a))

<,qu(g : Z)7a> =

2\ [z]2 N+1
1 zlg tagz  tr(g 'ag)
2 ||2]|2 N +1

= (Ad(9)*prs(2),a)
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Since U(N 4+ 1) is transitive on PV, it suffices to prove that Equation holds at the point
p=(1:0:...:0) which corresponds to the origin in the coordinate chart on Uy, the set of
points with nonzero first coordinate. The vector field induced by a € su(N + 1) takes the value
at p in coordinates z1, ..., z, on Uy given by

d t d 2
Ll et =21 (T+ta+O@?) p
dt|,— dt|,—_o

:a-p

= (al[)a--'aan0>

From Equation at p

. n

? —

wWrs = 3 E 1 dz; N\ dz;
-

Thus in coordinates on Uy (n.b. ||p||? = 1)

1 Zig"a" Qii
d —d - 7 Jji i
p{urs,a) p[%( RS
1

= 5; (ziZj - ai)

1 n n
= 271 Z Z aji[éikfjdzk + 5jkzid2k]p
1,j=0 k=1

1
= Z Z aordzr + apodZy
k

I —
=5 Z arodzy, — agodzy,
k

= La(a)wFS|p

using that a is skew-hermitian. O

4.2 Chow polystability is equivalent to balanced

The space of Chow points admits the structure of a Kahler manifold, with K&hler form €2 as
follows. Each f € CHOW,pn, (n,d)) is a symmetric degree dj, polynomial in the Pliicker coor-
dinates of G(Ny —n, Ny + 1), and parameterizes a polarized variety (M, L). The tangent space
TiCHOWpn, (n, di) can be identified with I'(M, TPVx| /). In order to see how CHOWpn, (n, di)
varies infinitesimally at f, we can look at the “velocity” of each point on M, since M corre-
sponds to the point f. That is, a tangent vector at f in the Chow space corresponds to assigning
a “direction” everywhere on M, i.e. a global section of TPV¢|,;, because we know M — PNk
(IGKZ94, §4.3]).

Define Q¢ on u,v € T'(M, TPN*|5r) by
n+1))

Op(u,v) = /M Lo (bu (Wi

(n+1)! (21)

where ¢, denotes contraction with w.
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Lemma 31 ([Wan04, Proposition 17]). The map
po s CHOWpn, (n, di) — su(Ny + 1)

given by

Chow(M, L*) / MFSMF'S
M n:
is a moment map for (CHOWpn, (n,dy), ).

We can check that
d{ua, &) = toe)Q, V€ € su(Ny +1) (22)

holds pointwise at each Chow point f. The right side is computed by evaluating at some
Y € T{CHOWpn, (n,dy), which can be identified as an element in T'(M, TPVx| /). The left side
of is computed by taking a path f; in the Chow space with fy = f such that its “velocity”
at t = 0is Y (cf [Wan04]). So pgq is the required moment map. In particular, ug inherits
G-equivariance from ppg so we can form the symplectic quotient

CHOWpw, (n,dy,)//SU(N +1) = pg'(0)/SU(N + 1)

Definition 32. We say that (M, L¥) can be balanced if there exists a choice of basis for em-
bedding M in CPYk such that Chow(M, L¥) is a zero of the moment map pq.

Sketch proof of Theorem[23. There are several intermediate results in the following which I
state without proof, hence I've labelled this as a sketch proof.

Since L is very ample we can assume k = 1 and drop the k’s. By the Hilbert-Mumford Criterion
IMFK94, §2.1], to check polystability of Chow(M, L) with respect to the SU(N + 1)-action we
need only check it for all 1-parameter subgroups outside its stabilizer.

In order to define an action of a one-parameter subgroup, we need something which is invariant.
Define My, := lim; 5o €€ - M for € € su(N + 1) — aut(M, L). Here aut(M, L) is the Lie algebra
of Aut(M,L). Then My, is invariant under the action of the 1-PS {e'¢},cc, since SU(N + 1)
acts by symplectomorphisms and we’ve made M, invariant under isu(N + 1) as well.

Definition 33. The A-weight p(x) of a C*-action on an element x in an invariant one-dimensional
space is the exponent of the eigenvalue, where A € C* acts by

Aoz =Ny

In general, given a C*-action on a space V', there are eigenvectors vy, ..., v, with eigenspaces
of dimension d; with respect to the action such that A € C* acts by A-v; = A% - v;. Then the
A-weight of the action on this space is 3, a;d;. Equivalently, C* ~V = C* ~ A"V and
we can compute the weight on A"” V as in the one-dimensional case.

Definition 34. The ¢-weight of Chow(M, L) is defined to be the weight of the action induced
by £ on the one dimensional space Z := Ocyow,y (n,a)(1) at the point Chow(Mso, L).

Chow polystability was defined earlier by looking at orbits of Chow(M, L). There is an equiva-
lent notion of polystability by [MFK94]: M is Chow polystable if the &-weight of Chow(M, L)
is negative for all £ € su(N + 1) — aut(M, L).

We use the following two results:
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Proposition 35 ([Mum?77, Prop 2.11]). Suppose M is an n-dimensional manifold embedded
in PN via very ample line bundle L and is fized by a 1-PS € of SL(N + 1). Let Ry be the
degree N part of the projective homogenous coordinate ring for M. Let aps be the &-weight of
Chow(M, L) and r% the &-weight of Ry. Then for large N, 1"]]{,/[ 1s represented by a polynomial
in N of degree at most n+ 1, with normalized leading coefficient ayy, i.e. the leading coefficient
is apr/n!.

In the notation of [Wan04], the leading coefficient of 74/ is denoted wy_ o(€).

Theorem 36 ([Wan04, Theorem 26]).

28 _ o 1 Chonr 1)

n+1 t—o0 su

Thus the &-weight of Chow(M, L) has the same sign as tlim (o (e - Chow(M, L)), §>5u. Hence
—00
Chow polystability of M is equivalent to
— lim </,LQ(€it€ - Chow(M, L)),£> >0

t—o00 su

for all £ € su(N + 1) — aut(M, L).

We then use the following results from [DK90, Section 6.5.2], also described in [Tho06]. Let
G = SU(N +1). We can lift the G-action on CHOWpn (n,d) to one on Z, which extends to
GC. We have a projection map

7 Z — CHOWpn (n,d)
7w 1 TZ — TCHOWpn (n, d)

Then T'Z is the direct sum of the vertical subspace, which is ker 7, and a horizontal subspace
orthogonal to the vertical subspace, with respect to the induced inner product on Z. Tangent

vectors on the Chow space have a horizontal lift to the horizontal subspace. Let o () be the lift
to this horizontal subspace, which projects to o(§) via 7.

Recall (uq,&) is the function corresponding to the vector field (&) on CHOWpn (n,d), i.e.
d{po,§) = ty(e)Q- Then the infinitesimal action of £ on Z is defined at a point v over z (where
z corresponds to the point Chow(M, L))

—~—

0:(&) +i{palz), &)~y (23)

Z carries a G-invariant hermitian metric induced by Q so ||g - v|| = [|7]| for all g € G. So when
considering how ||g - 7|| changes along a 1-PS, we need only look at i¢ € ig C g©.

Let '
He(t) = log |[e" -~

defined by exponentiating the infinitesimal action above. Then (defining z; := €< z)
(€™ ), e)
[ TP

_ 2 <Z <MQ(Zt)7 z£> eit{,% eit§7>
P

= -2 <MQ(Zt)7 €>

H{(t) = %
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using Equation 23] and orthogonality of horizontal and vertical subspaces. If v is a point in
some GC-orbit GC - ~g, then it is a critical point of log||g - vo||? if and only if ug(7(v)) = 0.
Critical points of H¢(t) are minima; note that

H{ (t) = —2d (g, €) |-, (02, (i€))
= = 2(to., () (J02(8))
= —20(02,(£), Jo,(§))

= 2/|o=, (6)I1?

Thus H(t) is convex and has at most one minimum. This minimum is either attained on G*/G
or at infinity; the former occurs if and only if tlim H{(t) > 0. So
—00

Jim [H(t) = =2 (na(20),€)] >0 V€€ g—g-
<= J! minimum of H¢(t) V{€g—g.
<= 3dge SL(N+1),ua(g-2)=0

where g, is the Lie algebra of the stabilizer of z = Chow(M, L), which is aut(M, L). This final
expression is the condition that (M, L) can be balanced, i.e. uq(Chow(g-M,L)) = 0. O

Thus by Donaldson’s theorem, Theorem above, asymptotic Chow stability of (M, L) is an
obstruction to the existence of a cscK metric on ¢1 (L) when the stabilizer Aut(M, L) is discrete.

5 K-stability

It has been conjectured by Yau, Tian and Donaldson that another type of stability, K-stability,
is equivalent to the existence of cscK metrics. I will describe Tian’s proof that the existence of
a Kéhler-Einstein metric implies weak K-stability, [T1a97].

5.1 Background

The following background is from [Tia00]. K-stability is defined by looking at special degener-
ations of a Ké&hler manifold M into normal varieties. Assume dim¢ M =n > 3.

Definition 37. A fibration is a map 7w : A — B between two topological spaces which satisfies
the homotopy lifting property.

Definition 38. A special degeneration of M is a fibration 7 : W™l — A, where A is the unit
disc in C, such that 7~ !(s) is smooth Vs # 0, 7~%(1/2) is biholomorphic to M and there exists
v € (W) such that Ty = —s%, generating a 1-PS e %z on A. W is trivial if W = M x A.

Tian assumes the central fiber 7=1(0) and all other fibers are smooth in [Tia00], and defines
special degenerations for 771(0) a normal variety in [Tia97]. This more general version of spe-
cial degeneration is that for which K-stability is defined. Donaldson re-defined K-stability for
polarized varieties.

Let W; denote the fiber ﬂ_l(t) where t = e¢7*. Since m,vy vanishes at ¢ = 0, vy restricts to
a vector field on Wy, as it has no component in the 9/9t direction on Wy. Thus the Calabi-
Futaki invariant fyy, (vw) = fuw, (vw|w,) makes sense, using a generalized version of the Futaki
invariant when Wy is normal.
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Assume M is a Fano manifold, we’ve embedded M < CPM by sections of a power of the
anticanonical line bundle, and W C CPY x A so W; € CPY x {t}. Let o; be the 1-PS arising
from R(vw ), t € C, in the sense that

d

—01 = R(ow) (24)

that is, we have a 1-PS subgroup ns such that d%ns = R(vw ), and define oy = 0,-s := n5. We
have that oy flows M to Wy, i.e. oy(M) = Wy for t # 0. And oy : Wy — W) since mo = 0 on
Wo. All W, are biholomorphic to M for ¢ # 0, but the complex structure may “jump” at ¢t = 0.
For example, when W; = {xy = t}, this is not smooth when ¢t = 0 but it is when ¢ # 0.

Since o4(Wy) = W) for all t € C, we can restrict o, to Wy and obtain a 1-parameter subgroup
oy of diffeomorphisms of Wy ¢ CPV. So we assume oy € S L(N +1,C).
Definition 39. M is weakly K-stable if for every special degeneration W of M
R(fw, (vw)) = 0
with equality if and only if W is trivial. M is K-stable if it is weakly K-stable and n(M) = {0}.

The main result is:

Theorem 40 ([Tia97]). If a Fano manifold M admits a KE metric, then M is weakly K-stable.

The proof uses some analytical background. Let P(M,w) correspond to the space of Kéhler
metrics in [w],

P(M,w) = {¢ € C®(M,R)|w + %6&5 > 0}
M is a Fano manifold so me (M) = [w] for some Kéhler metric w. There exists a unique function
h, s.t.
Ric(w) —w = aah

V/ew

Suppose M admits a Kéhler-Einstein metric wg, where wy = w+ %Gggﬁ, and assume we’ve scaled
so that Ric(wg) = wy. Then

W+ %85¢ = Ric(wy) = —%Gglog det (w,)
L oBlog % + Ri

= —500log — + Ric(w)

— _loplg LD

= —500log — +w+ B he
which implies

wg = ehe=on (25)

So finding a Kéhler-Einstein metric wy is equivalent to solving . We define a functional F,,

on P(M,w) 1 1
Fuld) = Jul9) - vV /M g~ log (V /M ehw_¢w">

where J,(¢) := % Z f;fl A 00 A 0 A w' A wg_l_i is called the generalized energy.

1=0
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Definition 41. F,, is proper on P(M,w) if

1. it is bounded from below, meaning there exists ¢ = ¢(w) > 0 such that F,(¢) > —¢, and

2. there exists an increasing function p : R — [¢(w), 00) such that tlim w(t) = oo and
—00

Fu(¢) =2 n(Ju(9))

Vo € P(M,w).

The following theorem gives a way of determining if M is KE, when M has no non-trivial
holomorphic vector fields.

Theorem 42 ([Tia00, Theorem 6.7]). Assume n(M) = {0}. Then M is Kihler-Einstein if and
only if F,, is proper on P(M,w).

The proof of Theorem [40] makes use of the Sobolev constant, defined as follows.

Definition 43 (Sobolev inequality). Given a Fano manifold (M, w), there exists a constant o,
called the Sobolev constant of (M,w), such that Yu € C*°(M)

n—1
1/ 20 > aw</ = . / 2 >
— u| =T < = OuNOuNw' " + ul“w™
<V M| | Vv M M| |

Definition 44. Define P(M,w,¢€) to be

P(M,w,€) ={¢ € P(M,w)|oy,, <1/e}
where wy = w + %85(15.

Remark 45 ([Tia97, Example before Thm 5.2]). For a KE Fano manifold (M, wkg) embedded
into CP" via K]\_f, the set of ¢ € P(M,wkE) such that

1 ) —
%J*wpg = wWKE + %88(;5, some 0 € SL(N +1,C)

is contained in P(M,wkp,€) for some € depending on k and where wrg is the Fubini-Study
metric on CPV.

Finally, we define K-energy.

Definition 46. Let ¢ € P(M,w) and {¢:}o<i<1 be any path from 0 to ¢ in P(M,w) where
¢o = 0 and ¢1 = ¢. Then the K-energy of ¢ is

1
LM@——&%L@@UMWQﬂMA@HAﬁ

where wy = w + %85@ and (J.St = %
The K-energy and the functional F,, are related by ([Tia00, pg 95])

1 1
IM@Z%W+VAf%%_VAﬂW"
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Assuming h,, has been normalized so its average value over M is 1 (since [wy] = [w] = me1 (M)
there is some hy,, such that Ric(wy)—wy = %85]% »), We can use the concavity of the logarithmic

function to see
1 e 1 he
V/Me ¢w$:1:>0:log<v/Me ¢wg>

1 hoy ),
> v Mlog (e ¢>w¢
1 n
= J Pt
Thus if F,, is proper then v, is too since
1 n 1 n
vo(@®) = Ful@) = [ Mo+ [ b (26)
1
> Fu(¢) + — / R (27)
Vi

5.2 Weak K-stability is an obstruction

Sketch proof of Theorem following [T1a97]. In the following assume ¢ # 0. The Fubini-
Study metric on CPY restricts to a Kéhler metric on W;. Define w; = %wFS|Wt where k is such
that M is embedded into CPY by sections of K;f , a power of the anticanonical line bundle.
Since oy (M) = W, this gives a metric @y := o} (%wpg|wt) on M, which is Kahler as d commutes
with pullbacks. Define h; on Wy by

Rz’c(wt) — Wt = %85ht
— RZC((:}t) — Wy = %agafht
where the h; are normalized so that their average over W, is 1.

We’ve seen that vy restricts to a vector field on Wy ¢ CPVN. Its real part generates a 1-PS of
diffeomorphisms o; of; Wpy. These o, are matrices in SL(N + 1, C) so give rise to a vector field v
on all of CPV. Since d(t,wrg) = 0 (cf the calculation on page|12)) there is a smooth 6, on CPY
such that

— 1
00, = %Lv(wFs)

Note that the theorem (F,, is proper on P(M,w)) if and only if ((M, w) is KE) requires (M) = 0.
Tian gives inequalities which show that F,, is bounded below when M is KE, but without the
assumption n(M) = 0.

Holomorphic vector fields on a KE manifold M are in one-to-one correspondence with eigen-
functions v of the Laplacian of eigenvalue one, i.e. Ay = —1). A holomorphic vector field X
corresponds to ¥ if gxp(X,Y) = dy(Y), for any holomorphic vector field Y, where gk g denotes
the Kahler-Einstein metric. Let A; denote the space of eigenfunctions of A of eigenvalue one.

Definition 47. We say ¢ € P(M,wgp) is orthogonal to A; if

/ PYwp =0 Vi € Ay
M
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Theorem 48 ([Tia97, Theorem 5.2]). Let (M,wkg) be a Kdhler-Einstein manifold. Then for
any ¢ € P(M,wkg,€) with € >0 and ¢ L Ay, we have

[
FWKE (¢) 2 al,EJwKE (¢) 2+ — 0275

where a1, a2 are constants which depend only on n,e and the lower bound of the difference
between the first nonzero eigenvalue of Ny, and 1, i.e. A\, — 1, from zero. B is a positive
constant depending only on n.

Tian shows that it is possible to find suitable automorphisms 73 of M and ¢y 1. Ay in P(M,wgkp),
such that
T, W = Wk E + 00¢;, Whep = eltrir oo @)

By Remark ¢+ € P(M,wkE, €), some € > 0. So Theorem {48 applies to F,, , (¢+).

Next we define a path {¢s} € P(M,wkp), t = e~*, which satisfies
@ — wrp = 000y, Wip = e (28)

The K-energy is invariant under automorphisms of M 80 Vi (1) = Vi (¥s), ([Tia97]). To

determine the rate of change of the K-energy of this path with respect to s, we need 15 = 915 /0s.
Taking the derivative of with respect to s,

a(Z)t a9 8ws
o, =00 ( 5 > (29)

We know oy extends to all of CPY and %Ut = R(v) from . Also, by Cartan’s formula and
page [12| we have Lyw = d(txw) = 0(txw) for a Kéhler metric w and holomorphic vector field
X. Then using the Chain rule and the definition of 8, we have

_ 1d
067,/13—%%
1

= ELm(v)(UZ‘WFS)

1 *
= Ed(@?(v) (0fwrs))

1 *
= Ea(L%(v) (0fwrs))

= OOR(a/0,)
— @Z;s = o, R(0,) + ¢

(o7 wrs)
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for some constant ¢. Then if t(u) = e™",

Vo "
Vwk g (ws) = _V / /M wu(Rlc(wt(u)) ( )) N wt(ﬂ)l A du
0

d 1 : .~ ~ ~n—
- %VWKE (¥s) = Y /M wS(RZC(wt(S)) - Wt(s)) A wt(s)l

i

:_W W, éR( )8aht/\wt
1

=—= R(0,) Arhwy
V (00) Arhiw;

1 70 (, O =90, Oh;
= — _ J__ 1y 20U n
VéR[ /tht 8@- (6 82’1) “ +/tht 827 8ziwt:|
1 n
= §R |:V /Wt (Vﬁ%)htwt]
ij 00y

where V; denotes the (1,0) gradient with respect to the metric wy, V0, = g¢ % az The third

line follows from the second by a change of variables from M to W; and using ch(wt) —wy =
Zaﬁht The term with ¢ in 45 vanishes by Stokes’ theorem. The penultimate line follows by
the chain rule, and the divergence theorem implies the first term in this line vanishes.

In [TD92] Ding and Tian consider deformations of M as t — oo, converging to some W,. This
is analogous to the case here, but we’re using the parameter ¢t on W;, where t = ¢~*, instead of
Ws. We can apply a result from that paper because s — +oo implies W, converges to Wy. The
corresponding result is

1 n
%gr(l)v Wt(Vtev)htWt = fW()(UW)

Thus

d 1
ti g =% (i | [ Puner ]
= R(fw,(vw)) =0

For if 4 sV (Ws) < 0 for all sufficiently large s, then v, becomes arbitrarily negative, con-
tradlctlng that v, is non-negative when M admits a KE metric ([Tia00, Theorem 7.13]).

Showing that equality occurs if and only if W is trivial uses the following two results proved by
Tian.

Theorem 49 ([Tia97, Lemma 6.1]). Assume W is non-trivial. Then ||¢¢||co — o0 as t — 0.

Further, the generalized energy J,, , (¢¢) dominates ||¢¢||co ([T1a97]) so that Jy, ,(¢:) — oo as
t — 0 by Theorem Since M admits a Kéahler-Einstein metric, Fy,, ,(¢:) — oo by Theorem
and 8o v, (¢:) = 0o as t — 0 from Equation

Proposition 50 ([Tia97, Prop 6.2]). There are positive numbers C,~y which may depend on W
such that

5 [ @0t~ fuy ()| <l (30)

for small t.
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In particular if fyy, (viw) = 0 then

< Ce™®7

d
‘dstKE (ws)

thus vy, (0) = Vi (¥s) is bounded as s — +00. So W must be trivial by Theorem

Conversely if W is trivial, then W is biholomorphic to M which is KE, so W admits a KE
metric and the Calabi-Futaki invariant fy;, must vanish.
O

So if one can find a non-trivial special degeneration 7 : W — A of a Fano manifold M with
fw, =0, then M cannot admit a KE metric.

6 Conclusion

The Kéhler-Einstein problem is solved for ¢;(M) < 0 and Fano surfaces. In the general Fano
manifold case there are conditions necessary for the existence of KE metrics. As mentioned
above these include the Calabi-Futaki invariant, asymptotic Chow stability and weak K-stability.
K-stability appears the closest to providing a sufficient condition for the existence of cscK
metrics. Donaldson has proved this converse direction in certain cases (with a re-defined notion
of K-stability for polarized manifolds) and has nearly solved it in general (as mentioned in
discussions with my essay advisor). These metrics give an additional structure to complex
manifolds, and the results previously mentioned help establish which manifolds are sufficiently
“nice” that they admit KE metrics, or more generally cscK metrics.

34



References

[Bes87] A. L. Besse, Finstein manifolds, Springer-Verlag, Berlin Heidelberg, 1987.

[DK90] S.K. Donaldson and P.B. Kronheimer, The geometry of four-manifolds, Oxford Univer-
sity Press, New York, 1990.

[Don01] S.K. Donaldson, Scalar curvature and projective embeddings, I, J. Differential Geometry
59 (2001), 479-522.

[Fut83] A. Futaki, An obstruction to the existence of Einstein Kdhler metrics, Invent. math.
73 (1983), 437-443.

[Fut88] , Kdhler-Einstein metrics and integral invariants, Lecture Notes in Mathematics,
Springer, Berlin, 1988.
[Futl1] , Asymptotic Chow polystability in Kdhler geometry, 2011, arXiv:1105.4773v2

[math.DG].

[GH94] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley-Interscience, New
York, 1994.

[GKZ94] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky, Discriminants, resultants, and
multidimensional determinants, Birkhauser, Boston, Mass., 1994.

[Hit75] N. Hitchin, On the curvature of rational surfaces, Proc. Symp. Pure Math, vol. 27,
Amer. Math. Soc., 1975, pp. 65-80.

[Huy05] D. Huybrechts, Complex geometry, Universitext Springer, Berlin, 2005.

[Kir84] F. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Mathemati-
cal Notes, vol. 31, Princeton University Press, Princeton, NJ, 1984.

[MFK94] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3 ed., Springer-
Verlag, Berlin Heidelberg, 1994.

[Mum?77] D. Mumford, Stability of projective varieties, L'Enseignement Mathematique, 1977.

[TD92] G. Tian and W. Ding, Kdihler-Einstein metrics and the generalized Futaki invariant,
Invent. math. 110 (1992), 315-335.

[ThoO6] R.P. Thomas, Notes on GIT and symplectic reduction for bundles and varieties, 2006,
arXiv:math/0512411v3 [math.AG].

[Tia97] G. Tian, Kdhler-Finstein metrics with positive scalar curvature, Invent. math. 137

(1997), 1-37.

[Tia00] , Canonical metrics in Kdhler geometry, Lectures in Mathematics ETH Ziirich

Birkh&auser, Basel, 2000.

[Wan04] X. Wang, Moment map, Futaki invariant and stability of projective manifolds, Com-
munications in analysis and geometry 12 (2004), no. 5, 1009-1037.

35



	Introduction
	Kähler metrics
	Holomorphic tangent bundle
	Connections

	Chern classes

	Calabi-Yau Theorem
	Calabi-Futaki invariant
	Formula for the Calabi-Futaki invariant
	Example 1
	Example 2
	Fano surfaces

	Asymptotic Chow Stability
	Background
	Chow form and asymptotic Chow stability
	Moment map and symplectic quotient

	Chow polystability is equivalent to balanced

	K-stability
	Background
	Weak K-stability is an obstruction

	Conclusion

