Practice problems: more chain rule, gradient

1) Use a tree diagram to write out the Chain Rule for u=f(x,y) and $x=x(r,s,t),\ y=y(r,s,t).$

2) Let
$$w = xy + yz + zx$$
, $x = r\cos\theta$, $y = r\sin\theta$, $z = r\theta$. Use the Chain Rule to find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ at $(r, \theta) = (2, \pi/2)$. \times $(2, \pi/2) = 0$, $y(2, \pi/2) = 2$, $z(2, \pi/2) = \pi$

• $\frac{\partial \omega}{\partial r} = \frac{\partial \omega}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial \omega}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial \omega}{\partial z} \frac{\partial z}{\partial r} = (y+z)(\cos\theta) + (x+z)(\sin\theta)$

= $(2+\pi)(0) + (0+\pi)(1) + (2)(\pi/2) = (2\pi)(1+\pi/2)(r\cos\theta) + (y+\pi/2)(r\cos\theta) + (y+\pi/2)(r$

3) The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, where x and y are measured in centimeters. The temperature function satisfies $T_x(2,3) = 4$ and $T_y(2,3) = 3$. How fast is the temperature rising on the bug's path after 3 seconds?

$$\chi(3) = 2$$
, $y(3) = 3$

$$\frac{dT}{dt}\Big|_{t=3} = \frac{2T}{2x}\Big|_{(2,3)} \frac{dx}{dt}\Big|_{t=3} + \frac{2T}{2y}\Big|_{(2,3)} \frac{dy}{dt}\Big|_{t=3}$$

$$= 4\left(\frac{1}{2\sqrt{1+3}}\right) + 3\left(\frac{1}{3}\right)$$

$$= 2^{\circ}\%$$

- 4) Find ∇f for $f(x,y,z)=x^2yz-xyz^3$. Evaluate the gradient at the point P(2,-1,1). Find the rate of change of f at P in the direction of the vector $\overrightarrow{u}=\langle 0,4/5,-3/5\rangle$.
- · V7=<\$, \$\frac{1}{2}, \$\frac{1}{2}, \$\frac{1}{2} = \left(2xyz-yz^3, x^2z-xz^3, x^2y-3xyz^2\right)
- $\nabla f|_{(2,-1,1)} = \langle -4+1, 4-2, -4+6 \rangle = \langle -3, 2, 2 \rangle$
- \vec{u} unit so $\vec{D}_{\vec{a}} = \vec{\nabla} + \vec{\nabla} \cdot \vec{u} = \langle -3, 2, 2 \rangle \cdot \langle 0, 4/5, -3/5 \rangle$ $= |\vec{z}| = |\vec{$
 - 5) Show that $\nabla(uv) = u\nabla v + v\nabla u$ for u, v differentiable functions of x and y, and z.

$$\nabla(uv) = \langle \hat{\beta}_{x}(uv), \hat{\beta}_{y}(uv), \hat{\beta}_{z}(uv) \rangle$$

$$= \langle u_{x}v + uv_{x}, u_{y}v + uv_{y}, u_{z}v + uv_{z} \rangle = v \langle u_{x}, u_{y}, u_{z} \rangle + u \langle v_{x}, v_{y}, v_{z} \rangle$$

$$= \langle u_{x}v + v_{x} \rangle \langle u_{x}v + uv_{y}, u_{z}v + uv_{z} \rangle = v \langle u_{x}, u_{y}, u_{z} \rangle + u \langle v_{x}, v_{y}, v_{z} \rangle$$

6) Suppose that over a certain region of space the electric potential is given by $V(x,y,z)=5x^2-3xy+xyz$. Find the rate of change of the potential at P(3,4,5) in the direction of the vector $\overrightarrow{v}=\frac{1}{\sqrt{3}}\left(\widehat{i}+\widehat{j}-\widehat{k}\right)$. \overrightarrow{V} unit 30 want \overrightarrow{V}

$$\nabla V = \langle 10x - 3y + y = 2, -3x + x = 3x + x = 3$$

$$= \frac{32}{\sqrt{3}} = \frac{38,6,12}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} < 1,1,-1 > 0$$