Math 53 Discussion: Review for Midterm 2

Lagrange multipliers. §14.8

- Lagrange multipliers: to find the extreme values of some function f subject to a condition $g=c$ for some constant c, solve for $\nabla f=\lambda \nabla g$ and $g=c$, a system of three equations in three unknowns in 2 D , or four equations and four unknowns in 3D. If the constraining curve/surface is bounded and smooth (i.e. no corners), then a maximum and minimum of f is always achieved, and can be checked by plugging the points into f. If the domain is unbounded, then we need to check the behavior of f as we tend to infinity.
Double integrals. §15.1-15.6
- Cartesian and polar coordinates. §15.1-15.4.
- Analogous to an integral in 1D being the area under a curve, we can think of integrals in 2D as the volume under a surface. Integration can be done in the order $d x d y$ or $d y d x$. E.g. if the integral is in the order $d x d y$ over a region R, take the shadow of R on the y-axis to get the y-bounds, then see how x varies at each such y.
- In polars, the area element is $d A=r d r d \theta$.
- Applications - mass, center of mass, average value of a function. $\S 15.5$
- Mass of lamina (infinitely thin sheet of paper) occupying 2D region R, with density ρ : integrate density over the region R to get mass equals $m=\iint_{R} \rho d A$.
- Center of mass (\bar{x}, \bar{y}) is obtained by finding the average x and y coordinates, weighted by the density.

$$
\bar{x}=\frac{1}{m} \iint_{R} x \rho d A
$$

\bar{y} is similar.

- Average value of a function f over region R is $\frac{1}{\operatorname{area}(R)} \iint_{R} f d A$.
- Surface area. §15.6
- Surface area of a surface obtained as a graph $z=f(x, y)$ over region R in the $x y$-plane is

$$
\iint_{R} \sqrt{f_{x}^{2}+f_{y}^{2}+1} d x d y
$$

Triple integrals. §15.7-15.9

- Triple integrals involve integrating a function f over a 3D solid. We can think of this as finding the mass of such a solid with density f.
- Method: e.g. suppose the area element is $d x d y d z$, and we want to integrate over a solid E. First find the shadow of E on the $y z$-plane (this will be the slice parallel to the $y z$-plane where E is "widest" and not necessarily the same as setting $x=0$ in the equation for E). Express the region for this shadow as you would a double integral to get the y and z bounds. Then at each point (y, z) in this region, see how x varies as a function of y and z.
- Cylindrical coordinates (r, θ, z) : these are 2D polar coordinates along with the third coordinate being z. The volume element is $d V=r d r d \theta d z$.
- Spherical coordinates (ρ, θ, ϕ) : here ρ is the distance of the point to the origin, θ is the same as in cylindrical, i.e. the angle from the positive x-axis when projected to the $x y$-plane, and ϕ is the angle from the positive z-axis. Note that ϕ takes values between 0 and π.
- Applications: analogous to the formulas above. Now density is a function of three variables, and for average value of a function we divide by volume instead of area.

Change of variables using the Jacobian. §15.10

- Allows us to evaluate integrals by changing variables so the domain is nicer. Examples include polar coordinates in 2D, and spherical and cylindrical coordinates in 3D.
- Method in 2D (3D is similar):

1. Change from region R in $x y$-plane to region S in $u v$-plane by $x=x(u, v), y=y(u, v)$. E.g. see where the boundaries of R map to by finding equations describing them in x and y, then plugging in $x(u, v)$ and $y(u, v)$ to find the corresponding equations in u and v of the boundaries for S.
2. The area element $d A$ becomes $\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$. (One way to remember what goes on top and on bottom is to think of $\partial(u, v)$ as "canceling" $d u d v$ to give $d x d y$. Mathematically this is not what's happening, but it's a way to remember the order.)
3. Here $\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right)$ is called the Jacobian of the transformation. So the first order partials of x go in the first row and of y go in the second row. (We have a 3×3 matrix in 3D.) We take the absolute value of this determinant when evaluating the integral.
4. Evaluate the double integral now in terms of u and v.

- If we're given u and v in terms of x and y there are two ways to find $\frac{\partial(x, y)}{\partial(u, v)}$:

1. Solve for x and y as functions of u and v and find the partial derivatives directly.
2. Find $\frac{\partial(u, v)}{\partial(x, y)}$ and then take the reciprocal to get what we want, i.e. $\frac{\partial(x, y)}{\partial(u, v)}$. In other words,

$$
\frac{1}{\frac{\partial(u, v)}{\partial(x, y)}}=\frac{\partial(x, y)}{\partial(u, v)}
$$

- To summarize:

1. Find the new region S in the $u v$-plane and the new bounds describing S.
2. The area element becomes $\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v$.
3. Write the function we're integrating, $f(x, y)$, in terms of u and v as $f(x(u, v), y(u, v))$.
4. Evaluate the integral now written in terms of u and v, using the usual tools for multiple integrals.
