
Math 53 Discussion: Review for Midterm 1

Curves: Sections 10.1–10.4

• Parametric equations: x = f(t), y = g(t) for some functions f, g.
Self-intersections of curves occur when two different values of t give same point (x, y).
Derivative dy/dx at a point on the curve can be computed via dy/dx = dy/dt

dx/dt .

• Length of curves: length of small piece of curve is ∆s ≈
√

∆x2 + ∆y2 so length L of curve traced out

from time t1 to time t2 is L =
∫ t2
t1

√(
dx
dt

)2
+

(
dy
dt

)2
dt.

• Area under a curve: A =
∫ x2

x1
ydx =

∫ t2
t1

y(t)dx
dt dt. Want x1 < x2 so we’re integrating from left to right,

however it may be that t1 is greater than t2.

• Polar coordinates and curves: (r, θ) where r is the distance from the origin, θ is the angle from the
positive x-axis. x = r cos θ, y = r sin θ, x2 + y2 = r2 and tan θ = y/x.
A polar curve is of the form r = f(θ).

• Polar areas: find the range of the angle θ in the area you are trying to compute, then A =
∫ θ2

θ1

1
2r(θ)2dθ.

Sometimes θ1, θ2 were the intersection points of two polar curves, and we found the area between the
two curves.

Vectors: Sections 12.1–12.4

• Vectors: how to manipulate vectors, such as adding and subtracting

• Dot product: This gives us a scalar. There are two ways of writing the dot product −→a ·
−→
b =

∑
i aibi

and |−→a | |
−→
b | cos θ where θ is the angle (at most π) between −→a and

−→
b .

Scalar and vector projections: projecting a vector −→a onto
−→
b means finding the component of −→a in

the (unit) direction of
−→
b . That is, comp−→

b
−→a = −→a ·

−→
b

|
−→
b |

. The vector projection means we multiply this

by the unit vector b̂.
One can also use the dot product to find the angle between two vectors, if we know the lengths of these
vectors. −→a ·

−→
b = 0 iff −→a ⊥

−→
b .

• Cross product: This gives us a vector perpendicular to the two original vectors. −→a ×
−→
b has length

|a| |b| sin θ and symbolically can be expressed as

det

 î ĵ k̂
a1 a2 a3

b1 b2 b3


|−→a .(

−→
b × −→c )| gives the volume of the parallelepiped spanned by these three vectors. A cross product

is zero if the two vectors are parallel. Also |−→a ×
−→
b | equals the area of the parallelogram spanned by

−→a and
−→
b .
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Lines, planes, vector functions: Sections 12.5–12.6, 13.1–13.2

• Symmetric and parametric equations for a line. Equation for a plane is
−→n · 〈x− x0, y − y0, z − z0〉 = 0 where −→n is a normal and (x0, y0, z0) is a point on plane.
One way to get equation for a plane is to find two vectors lying on it (e.g. can do this if given three
points on the plane), then take their cross product to get normal. Then choose constant so (x0, y0, z0)
satisfies the equation.

• Quadric surfaces: cylinder, ellipsoid, hyperboloid of one sheet, hyperboloid of two sheets, cone, elliptic
paraboloid, the hyperbolic paraboloid. See the textbook pg. 830 for pictures of these.

• Vector functions: a vector −→r (t) which varies in time and its endpoint traces out a curve. Velocity is
−→r ′(t), obtained from differentiating coordinate-wise. Acceleration is −→r ′′(t).

• Dot and cross product satisfy product rules when differentiating (keep track of the order in cross
product.)

• Can also integrate vector functions coordinate-wise.

Multivariable functions and calculus: Sections 14.1–14.7

• Level curves, contour plots, estimating partial derivatives given contour plots.

• Limits of functions: squeeze theorem, i.e. squeeze the function between two quantities tending to the
same limit. Or try converting to polar coordinates.

• Partial derivatives: see how z = f(x, y) or f(x, y, z) changes when we vary only one variable and keep
the others fixed.

• Implicit differentiation: when we want to find ∂z/∂x but are given F (x, y, z) = 0 instead of z = f(x, y).
So we differentiate F (x, y, z) = 0 with respect to x keeping y constant (but z depends on x).

• Tangent plane: for surface z = f(x, y), tangent plane at point (x0, y0, f(x0, y0)) is
z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

• In general, the tangent plane to level surface F (x, y, z) = c (for constant c) at point (x0, y0, z0), has
normal 〈Fx, Fy, Fz〉. So tangent plane is 〈Fx, Fy, Fz〉 · 〈x− x0, y − y0, z − z0〉 = 0 i.e.
Fx(x− x0) + Fy(y − y0) + Fz(z − z0) = 0. When F (x, y, z) = f(x, y)− z, this reduces to above case.

• Linear approximation: a small change in f can be approximated by small changes in each variable,
times partial derivatives in each variable. For f(x, y, z) it is ∆f ≈ fx∆x+fy∆y+fz∆z, and for f(x, y)
there’s no z term.

• Multivariable chain rule: differentiating z = f(x, y) when x and y are also functions of variables.

• ∇f is a vector field with components given by the first order partial derivatives of f . It is perpendicular
to level curves (for f(x, y)) or level surfaces (for f(x, y, z)).
Directional derivative D−→u f = ∇f ·

−→u
|−→u | is the rate of change of f in direction of −→u .

• Critical points: we can find critical points by setting ∇f = 0. Then use the second order derivative
test to determine their local nature. If D(x, y) := fxxfyy − fxyfyx then D < 0 gives a saddle point and
D > 0 gives a max or min. Max when fxx < 0 and min when fxx > 0, analogous to one variable case.
To determine the global behavior of f , i.e. absolute maxima and minima, we need to also check on the
boundary of the domain.
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