Math 53 Discussion: Review for Final

Vector fields, line integrals. §16.1-16.2

e A vector field is a function on the plane or in three-dimensional space. It’s a function which assigns a vector
—
at each point in its domain. For example, F'(x,y,z) could describe the direction the wind is traveling at
(2,9, 2).

e Line integrals allow us to integrate a scalar function or vector function over a curve C, by parametrizing the
curve and reducing to an integral in one variable.

e Integrating a scalar function (e.g. if C' describes a thin wire with linear density f(x,y,z) then we integrate
f over C' to get the mass of the wire):
/ fds
C

e Integrating a vector field (e.g. to find the work done by the force field F over the curve C):

/F-d?
C

where s is arc length.

e Method:

— Parametrize the curve C as 7 (t) = (x(t),y(t), 2(t)), or only in x and y if it’s a planar curve.

— Determine what type of integral you're doing: if you’re integrating a scalar then take the magnitude
|7 (t)] to get
ds = |r'(t)| dt

If you're integrating a vector field, then take the dot product of F with

d7 = 7"(t)dt

— Plug everything into the integral fc f ds or fcfz -d7T to get an integral in ¢, which can then be
evaluated.

The fundamental theorem of line integrals. §16.3

e For conservative vector fields F = V f only we have that line integrals are independent of path:

/ Fodv - / Vi-dT = [(T 1) - f(F(a)
C C

e In particular, if we have a closed curve, meaning 7 (a) = 7 (b), the line integral is zero.

o If F = (P,Q) and 0Q/0x = OP/Jy on a simply connected region, then F is conservative on that region.
This is a special case of checking that curl( F') = 0 ona simply connected region.

Green’s theorem. §16.4

-
e (' is a simple closed, positively oriented curve, enclosing region D, and F' = (P, Q) has continuous partial
derivatives on an open region containing D then:

//D@f?;) dA:/Cﬁd?:/cdeQdy



Curl and divergence. §16.5

—
Let F = (P,Q,R). Then

curl(F) =V x F =det | 9/0x 9/0y 0/0z
P Q R

Thinking again of F as fluid flow, curl(?) points in the direction of the axis of rotation of the fluid. A larger
— — —
magnitude for curl means faster rotation. curl(F') = 0 means F is irrotational.

— - 0P 0Q OR
div(F)=V-F=—+—+ —
v(F) Oor Oy 0z
Thinking of F as describing fluid flow, divergence of F ata point measures the amount of fluid flowing in
or out at that point. Positive divergence means the net flow is outwards (source) and negative divergence

— —
means the net flow is inwards (sink). div(F') = 0 means F' is incompressible.

Parametrized surfaces, Surface integrals. §16.6—-16.7

We have seen two types of surface integrals. We can integrate a scalar function or we can integrate a vector
function.

Method:

1. Parametrize S as 7 (u,v) = (z(u,v), y(u,v), z(u,v)), find the bounds for u, v. Here are some examples.

Graph of a function z = f(z,y):  and y are the parameters.

7 (x,y) = (z,y, f(z,y))

The domain will be the “shadow” of the surface in the xy-plane.

A sphere of radius a: ¢ and @ are the parameters.

7 (¢,0) = (asin ¢ cos f, asin ¢sin 6, a cos ¢)

You determine the bounds on ¢ and 6 depending on what portion of the surface of the sphere you want.

A cylinder of radius a along z-axis: the height z and the polar angle 8 are the parameters.

7 (0, 2) = (acosf,asinb, z)

2. Compute 74 X T 4. Then WdS = +7, X T, du dv. Whatever your parameters u and v are, you only
multiply the cross product by du dv. If your parameters are r and 6, you will only multiply by dr df.
However, if your parameters are x and y and you get a double integral involving dx dy and then want
to convert into polars, you will need to use r dr df.

Graph of a function:

?x X ?y = <_fa:7 _fya 1>

A sphere of radius a:

7¢ X T o= <a2 sin? ¢ cos 0, a® sin® ¢ sin 0, a® sin ¢ cos ¢>



Or a geometric argument: the normal is %(w,y,z} and the area element on the sphere is dS =
a®sin ¢ d¢ df so multiplying these together gives

ds = asing (z,y,z) do df

where x, y and z are in terms of ¢ and 6.

A cylinder of radius a along z-axis:

T9x 7T, = (acosf,asinb,0)
Or a geometric argument: the normal is é (x,9,0) and dS = a dz df so multiplying together gives
ds = (x,9,0)dz df = (acosf,asinb,0)dz df

3. For integrals of a scalar function f: The integrand will be f dS so we take the magnitude

dS = |7y X Ty| du dv

For integrals of a vector function F: The integrand will be F-dS so we take the dot product with
the vector

dS =+7, x Ty du dv

e Surface area from §15.6 is a special case of this. In that section, we were dealing only with surfaces that were
graphs of functions (not all surfaces are graphs of functions, e.g. a sphere). We were also dealing only with

integrals of scalar functions, namely integrating 1. So the dS in that case is |/f2 + f2 + 1 and the surface

area is
1dS:// 2+ f2+1dxdy
/. R

where S is the surface and D is the domain in x and y.

e The Jacobian from §15.10 is also a special case of this. There our surface S was in the flat plane, so the

parametrization was of the form 7 (u,v) = (x(u, v),y(u,v),0). In that section we looked at integrals of scalar

functions so the area element is dS = |77, x 7| du dv. This is just the Jacobian ggig;

i j k
det [z, vy 0] =(0,0,Tuy0 — ToYu)
Ty Yo O
a(x,y

which has magnitude |z,y, — TyYu| = ’

Stokes’ theorem. §16.8

e Taking compatible orientations on closed curve C' bounding surface S (meaning if we walk around C with
our head in the direction of the normal, the surface is to the left):

-
//CurlF dS /Fd

e F is a solid enclosed by a closed surface S, with outward normal taken on S:

///Ediv(?)dvz//sﬁdﬁ

Divergence theorem. §16.9



