
Math 53 Discussion: Review for Final

Vector fields, line integrals. §16.1–16.2

• A vector field is a function on the plane or in three-dimensional space. It’s a function which assigns a vector
at each point in its domain. For example,

−→
F (x, y, z) could describe the direction the wind is traveling at

(x, y, z).

• Line integrals allow us to integrate a scalar function or vector function over a curve C, by parametrizing the
curve and reducing to an integral in one variable.

• Integrating a scalar function (e.g. if C describes a thin wire with linear density f(x, y, z) then we integrate
f over C to get the mass of the wire): ∫

C
f ds

where s is arc length.

• Integrating a vector field (e.g. to find the work done by the force field
−→
F over the curve C):∫

C

−→
F · d−→r

• Method:

– Parametrize the curve C as −→r (t) = 〈x(t), y(t), z(t)〉, or only in x and y if it’s a planar curve.

– Determine what type of integral you’re doing: if you’re integrating a scalar then take the magnitude
|r′(t)| to get

ds = |r′(t)| dt

If you’re integrating a vector field, then take the dot product of
−→
F with

d−→r = −→r ′(t)dt

– Plug everything into the integral
∫
C f ds or

∫
C

−→
F · d−→r to get an integral in t, which can then be

evaluated.

The fundamental theorem of line integrals. §16.3

• For conservative vector fields
−→
F = ∇f only we have that line integrals are independent of path:∫

C

−→
F · d−→r =

∫
C
∇f · d−→r = f(−→r (b))− f(−→r (a))

• In particular, if we have a closed curve, meaning −→r (a) = −→r (b), the line integral is zero.

• If
−→
F = 〈P,Q〉 and ∂Q/∂x = ∂P/∂y on a simply connected region, then

−→
F is conservative on that region.

This is a special case of checking that curl(
−→
F ) =

−→
0 on a simply connected region.

Green’s theorem. §16.4

• C is a simple closed, positively oriented curve, enclosing region D, and
−→
F = 〈P,Q〉 has continuous partial

derivatives on an open region containing D then:∫ ∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫
C

−→
F · d−→r =

∫
C

Pdx + Qdy
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Curl and divergence. §16.5

• Let
−→
F = 〈P,Q,R〉. Then

curl(
−→
F ) = ∇×

−→
F = det

 î ĵ k̂
∂/∂x ∂/∂y ∂/∂z

P Q R


• Thinking again of

−→
F as fluid flow, curl(

−→
F ) points in the direction of the axis of rotation of the fluid. A larger

magnitude for curl means faster rotation. curl(
−→
F ) =

−→
0 means

−→
F is irrotational.

•
div(

−→
F ) = ∇ ·

−→
F =

∂P

∂x
+

∂Q

∂y
+

∂R

∂z

• Thinking of
−→
F as describing fluid flow, divergence of

−→
F at a point measures the amount of fluid flowing in

or out at that point. Positive divergence means the net flow is outwards (source) and negative divergence
means the net flow is inwards (sink). div(

−→
F ) = 0 means

−→
F is incompressible.

Parametrized surfaces, Surface integrals. §16.6–16.7

• We have seen two types of surface integrals. We can integrate a scalar function or we can integrate a vector
function.

• Method:

1. Parametrize S as −→r (u, v) = 〈x(u, v), y(u, v), z(u, v)〉, find the bounds for u, v. Here are some examples.

Graph of a function z = f(x, y): x and y are the parameters.

−→r (x, y) = 〈x, y, f(x, y)〉

The domain will be the “shadow” of the surface in the xy-plane.

A sphere of radius a: φ and θ are the parameters.

−→r (φ, θ) = 〈a sinφ cos θ, a sinφ sin θ, a cos φ〉

You determine the bounds on φ and θ depending on what portion of the surface of the sphere you want.

A cylinder of radius a along z-axis: the height z and the polar angle θ are the parameters.

−→r (θ, z) = 〈a cos θ, a sin θ, z〉

2. Compute −→r u ×−→r v. Then −→n dS = ±−→r u ×−→r v du dv. Whatever your parameters u and v are, you only
multiply the cross product by du dv. If your parameters are r and θ, you will only multiply by dr dθ.
However, if your parameters are x and y and you get a double integral involving dx dy and then want
to convert into polars, you will need to use r dr dθ.

Graph of a function:
−→r x ×−→r y = 〈−fx,−fy, 1〉

A sphere of radius a:

−→r φ ×−→r θ =
〈
a2 sin2 φ cos θ, a2 sin2 φ sin θ, a2 sinφ cos φ

〉
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Or a geometric argument: the normal is 1
a 〈x, y, z〉 and the area element on the sphere is dS =

a2 sin φ dφ dθ so multiplying these together gives

d
−→
S = a sinφ 〈x, y, z〉 dφ dθ

where x, y and z are in terms of φ and θ.

A cylinder of radius a along z-axis:

−→r θ ×−→r z = 〈a cos θ, a sin θ, 0〉

Or a geometric argument: the normal is 1
a 〈x, y, 0〉 and dS = a dz dθ so multiplying together gives

d
−→
S = 〈x, y, 0〉 dz dθ = 〈a cos θ, a sin θ, 0〉 dz dθ

3. For integrals of a scalar function f : The integrand will be f dS so we take the magnitude

dS = |−→r u ×−→r v| du dv

For integrals of a vector function
−→
F : The integrand will be

−→
F ·d

−→
S so we take the dot product with

the vector
d
−→
S = ±−→r u ×−→r v du dv

• Surface area from §15.6 is a special case of this. In that section, we were dealing only with surfaces that were
graphs of functions (not all surfaces are graphs of functions, e.g. a sphere). We were also dealing only with
integrals of scalar functions, namely integrating 1. So the dS in that case is

√
f2

x + f2
y + 1 and the surface

area is ∫ ∫
S

1 dS =
∫ ∫

D

√
f2

x + f2
y + 1 dx dy

where S is the surface and D is the domain in x and y.

• The Jacobian from §15.10 is also a special case of this. There our surface S was in the flat plane, so the
parametrization was of the form −→r (u, v) = 〈x(u, v), y(u, v), 0〉. In that section we looked at integrals of scalar
functions so the area element is dS = |−→r u ×−→r v| du dv. This is just the Jacobian ∂(x,y)

∂(u,v) .

det

 î ĵ k̂
xu yu 0
xv yv 0

 = 〈0, 0, xuyv − xvyu〉

which has magnitude |xuyv − xvyu| =
∣∣∣∂(x,y)
∂(u,v)

∣∣∣.
Stokes’ theorem. §16.8

• Taking compatible orientations on closed curve C bounding surface S (meaning if we walk around C with
our head in the direction of the normal, the surface is to the left):∫ ∫

S
curl

−→
F · d

−→
S =

∫
C

−→
F · d−→r

Divergence theorem. §16.9

• E is a solid enclosed by a closed surface S, with outward normal taken on S:∫ ∫ ∫
E

div(
−→
F ) dV =

∫ ∫
S

−→
F · d

−→
S
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