Math 53 Discussion: Practice with line integrals

1) Determine if $\overrightarrow{F}(x,y) = (\ln y + 2xy^3)\hat{i} + (3x^2y^2 + x/y)\hat{j}$ is conservative. If so, find a scalar potential function f, i.e. such that $\overrightarrow{F} = \nabla f$.

2) Explain why the following holds: Suppose a vector field $\overrightarrow{F}(x,y)$ is perpendicular to the tangent vector $\overrightarrow{r}'(t)$ to a curve C, at each point (x(t), y(t)) on the curve. Then $\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = 0$.

Extra line integral practice

3) Evaluate $\int_C (xy + \ln x) dy$ where C is the arc of the parabola $y = x^2$ from (1, 1) to (3, 9).

4) The position of an object with mass m at time t is $\vec{r}(t) = at^2\hat{i} + bt^3\hat{j}$, for $0 \le t \le 1$. (a) Find the force acting on the object at time t. (b) What is the work done by the force during $0 \le t \le 1$?

Answers: 1) Yes, $x \ln y + x^2 y^3 + C$. 2) dot product in integral is zero along C. 3) $\frac{464}{5} + 9 \ln 3$. 4) a) Use $\overrightarrow{F} = m \overrightarrow{a}$ to get $2ma\hat{i} + 6bmt\hat{j}$, b) $m(2a^2 + \frac{9}{2}b^2)$.