Math 53 Discussion: Practice with line integrals

1) Determine if $\vec{F}(x, y)=\left(\ln y+2 x y^{3}\right) \hat{i}+\left(3 x^{2} y^{2}+x / y\right) \hat{j}$ is conservative. If so, find a scalar potential function f, i.e. such that $\vec{F}=\nabla f$.
2) Explain why the following holds: Suppose a vector field $\vec{F}(x, y)$ is perpendicular to the tangent vector $\vec{r}^{\prime}(t)$ to a curve C, at each point $(x(t), y(t))$ on the curve. Then $\int_{C} \vec{F} \cdot d \vec{r}=0$.

Extra line integral practice

3) Evaluate $\int_{C}(x y+\ln x) d y$ where C is the arc of the parabola $y=x^{2}$ from $(1,1)$ to $(3,9)$.
4) The position of an object with mass m at time t is $\vec{r}(t)=a t^{2} \hat{i}+b t^{3} \hat{j}$, for $0 \leq t \leq 1$.
(a) Find the force acting on the object at time t. (b) What is the work done by the force during $0 \leq t \leq 1$?

Answers: 1) Yes, $x \ln y+x^{2} y^{3}+C .2$) dot product in integral is zero along C. 3) $\frac{464}{5}+9 \ln 3$. 4) a) Use $\vec{F}=m \vec{a}$ to get $2 m a \hat{i}+6 b m t \hat{j}$, b) $m\left(2 a^{2}+\frac{9}{2} b^{2}\right)$.

