Math 53 Discussion: Max/Min, gradient practice problems (2 sides)

1) [Worksheet 14] Find and classify the critical points of the following functions:
(a) $f(x, y)=x^{5}+y^{4}-5 x-32 y+81$
(b) $f(x, y)=x^{3}+y^{3}+3 x y-27$
(c) $f(x, y)=x^{2} y+3 x y-3 x^{2}-4 x+2 y+1$
2) A cardboard box without a lid is to have a volume of $32 \mathrm{~cm}^{3}$. Find the dimensions that minimize the amount of cardboard used.
3) Are there any points on the hyperboloid $x^{2}-y^{2}-z^{2}=1$ where the tangent plane is parallel to the plane $z=x+y$?
4) Show that $\nabla(u v)=u \nabla v+v \nabla u$ for u, v differentiable functions of x and y.
5) Suppose that the directional derivatives of $f(x, y)$ are known at a given point in two nonparallel directions given by unit vectors \hat{u} and \hat{v}. Is it possible to find ∇f at this point? If so, how would you do it?

Answers. 1a) local min at $(1,2)$ and saddle at $(-1,2)$, b) local max at $(-1,-1)$ and saddle at $(0,0), \mathrm{c})$ saddle points at $(-1,-2)$ and $(-2,8) .2)(l, h, w)=(4,2,4) .3)$ No. 4) Write out in components and use the product rule. 5) Yes: if we're given $D_{\hat{u}} f=f_{x} u_{1}+f_{y} u_{2}=a_{1}$ and $D_{\hat{v}} f=f_{x} v_{1}+f_{y} v_{2}=a_{2}$ then

$$
\binom{f_{x}}{f_{y}}=\left(\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right)^{-1}\binom{a_{1}}{a_{2}}
$$

