Math 53 Discussion-Practice Problems [2 sides]: Dot product, cross product, area of a parallelogram, scalar triple product, volume of parallelepiped

1) [\#43, 12.3] Find the scalar and vector projections of $\vec{b}=\left\langle 0,1, \frac{1}{2}\right\rangle$ onto $\vec{a}=\langle 2,-1,4\rangle$.
2) Find the area of the triangle with vertices $P(1,2,3), Q(1,3,6)$ and $R(3,5,6)$.
3) From the previous question we have points P, Q, and R. Consider an additional fourth point $S(1,4,2)$. Find $\overrightarrow{P S}$. Find the volume of the parallelepiped spanned by $\overrightarrow{P Q}, \overrightarrow{P R}$, and $\overrightarrow{P S}$. (Hint: Scalar triple product or 3×3 determinant.)
4) [Worksheet 4 from online, Q4] a) Suppose that one side of a triangle forms the diameter of a circle and the vertex opposite this side lies on a circle. Use the dot product to prove that this is a right triangle. b) Now do the same in \mathbb{R}^{3}.
5) Prove the addition trig formulas for $\cos \left(\theta_{2}-\theta_{1}\right)$ and $\sin \left(\theta_{2}-\theta_{1}\right)$ using the dot product and cross product.

Answers: 1) $1 / \sqrt{21}, \frac{1}{21}<2,-1,4>$. 2) $\sqrt{19}$. 3) 14 . 4) Given the triangle inscribed in the circle, draw the three radii from the center of the circle out to the three vertices of the triangle. Label these vectors \vec{a} and \vec{b}. Then use vector addition. The same proof applies in \mathbb{R}^{3}. 5) Draw unit vectors \vec{u} and \vec{v} at angles θ_{1} and θ_{2} respectively above the positive x-axis. Use the two different expressions for dot product to get the first identity, and likewise with cross product to get the second identity.

