Math 53 Discussion: Review problems for Midterm 1

1) Find the area of the the region lying inside both $r=2 \sin \theta$ and $r=\sin \theta+\cos \theta$.
2) Find the length of $x=3 t^{2}, y=2 t^{3}$ for $0 \leq t \leq 2$.
3) a) Find a vector perpendicular to the plane through the points $A(1,0,0), B(2,0,-1)$ and $C(1,4,3)$. b) Find the area of the triangle $A B C$.
4) Find an equation of the plane through $(3,-1,1),(4,0,2)$ and $(6,3,1)$.
5) Find the point in which the line $2-t, 1+3 t, 4 t$ intersects the plane $2 x-y+z=2$.
6) A particle moves with position function $\vec{r}(t)=t \ln t \hat{i}+t \hat{j}+e^{-t} \hat{k}$. Find the velocity, speed and acceleration of the particle.
7) An athlete throws a shot at an angle of 45° to the horizontal at an initial speed of $43 \mathrm{ft} / \mathrm{s}$. The ball leaves his hand 7 ft above the ground. Assuming acceleration comes from gravity only, find the position vector describing the ball's trajectory.
8) Question 49 from Chapter 14 review of the textbook (reading a contour plot of hurricane wind speed.)
9) Find the equation of the tangent plane and normal line to the surface $z=3 x^{2}-y^{2}+2 x$ at $(1,-2,1)$.
10) Find the linear approximation of $x^{3} \sqrt{y^{2}+z^{2}}$ at $(2,3,4)$.
11) Use the Chain Rule to find $d u / d p$ where $u=x^{2} y^{3}, x=p+3 p^{2}, y=p e^{p}$.
12) Find the directional derivative of $f=x^{2} e^{-y}$ in the direction towards $(2,-3)$ from the point $(-2,0)$.
13) Find the absolute maximum and minima of $f(x, y)=4 x y^{2}-x^{2} y^{2}-x y^{3}$ on D, the closed triangular region with vertices at $(0,0),(0,6)$ and $(6,0)$.
14) Use Lagrange multipliers to find the maximum and minimum values of $f(x, y)=x^{2} y$ subject to $x^{2}+y^{2}=1$.

Answers: 1) $1 / 2(\pi-1), 2) 2(5 \sqrt{5}-1), 3)\langle 4,-3,4\rangle, \sqrt{41} / 2,4)-4 x+3 y+z=-14,5)(1,4,4)$, 6) $\left.\vec{r}^{\prime}(t)=(1+\ln t) \hat{i}+\hat{j}-e^{-t} \hat{k},|\vec{v}(t)|=\sqrt{(1+\ln t)^{2}+1+e^{-2 t}}, \vec{a}(t)=\frac{1}{t} \hat{i}+e^{-t} \hat{k}, 7\right) \vec{r}(t)=$ $\left.\left.\left.\frac{43 t}{\sqrt{2}} \hat{i}+\left(\frac{43}{\sqrt{2}} t-\frac{1}{2} g t^{2}+7\right) \hat{j}, 8\right) \approx 5 / 8,9\right) z=8 x+4 y+1, x=1+8 t, y=-2+4 t, z=1-t, 10\right)$ $\left.\left.f(x, y, z) \approx 60 x+(24 / 5) y+(32 / 5) z-120,11) 2 x y^{3}(1+6 p)+3 x^{2} y^{2}\left(e^{p}+p e^{p}\right), 12\right)-4 / 5,13\right) \max$ at $(1,2)$ and \min at $(2,4), 14) \max$ value $\frac{2}{3 \sqrt{3}}$ and min value $\frac{-2}{3 \sqrt{3}}$

