Math 53 Discussion

Practice Problems: vector functions, velocity, acceleration

1) Find a vector function that represents the curve of the intersection of the cone $z=\sqrt{x^{2}+y^{2}}$ and the plane $z=1+y$.
2) Find the tangent vector $\vec{r}^{\prime}(t)$ for the curve $\vec{r}(t)=\left\langle t^{2}, \cos 2 t,-t e^{t}\right\rangle$. Find the equation of the tangent line to the curve at $t=0$.
3) Find the velocity, acceleration, and speed of a particle with the position function $\vec{r}(t)=e^{t}(\cos t \hat{i}+\sin t \hat{j}+t \hat{k})$.
4) Find the velocity and position vectors of a particle that has acceleration $\vec{a}(t)=\hat{i}+2 \hat{j}$, $\vec{v}(0)=\hat{k}, \vec{r}(0)=\hat{i}$.
5^{*}) The position function of a spaceship is

$$
\vec{r}(t)=(3+t) \hat{i}+(2+\ln t) \hat{j}+\left(7-\frac{4}{t^{2}+1}\right) \hat{k}
$$

and the coordinates of a space station are $(6,4,9)$. The captain wants the spaceship to coast into the space station. When should the engines be turned off?

