Math 53 Discussion

Quiz on Monday: Topics to review:

1. Section 12.4: cross product, finding the area of a parallelogram, finding the volume of a parallelepiped
2. Section 12.5: equations for lines and planes, finding the equation for a plane given 3 points or given a point and a line, finding the vertical distance between a point and a plane
3. Section 13.1: Sketching space curves

Practice Problems: equations for lines, intersections of lines, space curves, derivatives

1) Find parametric equations for the line through the point $(0,1,2)$ that is parallel to the plane $x+y+z=2$ and perpendicular to the line $x=1+t, y=1-t, z=2 t$.
2) Consider two lines L_{1} and L_{2} in the plane given parametrically by

$$
\begin{aligned}
& x=2-t, y=1+t \\
& x=2+t, y=4+2 t
\end{aligned}
$$

Do these lines intersect? If so, where?
3) If you have the textbook - Questions 21 and 25 from Section 13.1. The questions ask to match $x=t \cos t, y=t, z=t \sin t$ and $x=\cos 8 t, y=\sin 8 t, z=e^{0.8 t}, t \geq 0$, to the pictures of their curves.

3') If you don't have the textbook - Show that the curve with parametric equations $x=$ $t \cos t, y=t \sin t, z=t$ lies on the cone $z^{2}=x^{2}+y^{2}$ and use this fact to help sketch the curve.
4) If $\vec{u}(t)=\langle\sin t, \cos t, t\rangle$ and $\vec{v}(t)=\langle t, \cos , t, \sin t\rangle$, find $\frac{d(\vec{u} \cdot \vec{v})}{d t}$.

