Math 53 Discussion

Quiz on Monday: Sections 14.4-14.6: linear approximation, Chain rule, directional derivative, gradient

Practice Problems: Sections 14.5-14.6: Second order partial derivatives, the gradient and its physical meaning

1) Find ∇f for $f(x, y, z)=x^{2} y z-x y z^{3}$. Evaluate the gradient at the point $P(2,-1,1)$. Find the rate of change of f at P in the direction of the vector $\vec{u}=\langle 0,4 / 5,-3 / 5\rangle$.
2) Suppose that over a certain region of space the electric potential is given by $V(x, y, z)=$ $5 x^{2}-3 x y+x y z$. (a) Find the rate of change of the potential at $P(3,4,5)$ in the direction of the vector $\vec{v}=\hat{i}+\hat{j}-\hat{k}$. (b) In which direction does V change most rapidly at P ? (c) What is the maximum rate of change at P ? (You don't need to simplify your expression in (c).)
3) Find the equation of the tangent plane to the surface $x+y+z=e^{x y z}$ at the point $(0,0,1)$.
4) Are there any points on the hyperboloid $x^{2}-y^{2}-z^{2}=1$ where the tangent plane is parallel to the plane $z=x+y$?
5) Show that $\nabla(u v)=u \nabla v+v \nabla u$ for u, v differentiable functions of x and y.
$\left.6^{*}\right)$ Suppose that the directional derivatives of $f(x, y)$ are known at a given point in two nonparallel directions given by unit vectors \hat{u} and \hat{v}. Is it possible to find ∇f at this point? If so, how would you do it?

Extra chain rule practice:

[These 3 won't be discussed in section but answers are posted at the bottom.]

1) Use a tree diagram to write out the Chain Rule for $u=f(x, y)$ and $x=x(r, s, t)$, $y=y(r, s, t)$.
2) Let $w=x y+y z+z x, x=r \cos \theta, y=r \sin \theta, z=r \theta$. Use the Chain Rule to find $\partial w / \partial r$ and $\partial w / \partial \theta$ when $r=2$ and $\theta=\pi / 2$.
3) The temperature at a point (x, y) is $T(x, y)$, measured in degrees Celsius. A bug crawls so that its position after t seconds is given by $x=\sqrt{1+t}, y=2+\frac{1}{3} t$, where x and y are measured in centimeters. The temperature function satisfies $T_{x}(2,3)=4$ and $T_{y}(2,3)=3$. How fast is the temperature rising on the bug's path after 3 seconds?
4) u on top, connected to x and y in the 2 nd row, each connected to r, s, and t in the 3rd row. 2) $2 \pi,-2 \pi$. 3) 2
