Math 53 Discussion: Review for final

1) Find the points on the hyperboloid $x^{2}+4 y^{2}-z^{2}=4$ where the tangent plane is parallel to the plane $2 x+2 y+z=5$.
2) Maximize $f(x, y, z)=x y z$ subject to $x^{2}+y^{2}+z^{2}=3$.
3) Evaluate $\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{y^{3}+1} d y d x$ by reversing the order of integration.
4) Find the work done by the force field $\vec{F}(x, y)=x \hat{\mathbf{i}}+(y+2) \hat{\mathbf{j}}$ in moving an object along an arch of the cycloid $\vec{r}(t)=(t-\sin t) \hat{\mathbf{i}}+(1-\cos t) \hat{\mathbf{j}}, 0 \leq t \leq 2 \pi$.
5) Use Stokes' Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y, z)=x y \hat{\mathbf{i}}+y z \hat{\mathbf{j}}+z x \hat{\mathbf{k}}$ and C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$ oriented counterclockwise as viewed from above.
6) Suppose we're given a function $f(x, y, z)$, vector field $\vec{F}(x, y, z)$ and curve C given by $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$. a) What is the line integral of f along C ? b) What is the work done by \vec{F} along C ?

Answers: 1) $\pm(2,1 / 2,-1)$. 2) max value is 1 , min value is -1 . 3) $\frac{1}{3} \ln 9$. 4) $2 \pi^{2}$. 5) $-1 / 2$. 6) $\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t, \int_{a}^{b} \vec{F} \cdot \vec{r}^{\prime}(t) d t$.

