Math 53 Discussion

Practice Problems: 16.8, Stokes' theorem

1) [In section.] Let S be the portion of the paraboloid $z=4-x^{2}-y^{2}$ above the plane $z=0$, with upward normal. Let $\vec{F}=\langle y-z,-(x+z), x+y\rangle$. Compute $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}$.
2) [In section.] Find $\iint_{S} \operatorname{curl} \vec{F} \cdot d \vec{S}$ where $\vec{F}=(x y z) \hat{\mathbf{i}}+(x y) \hat{\mathbf{j}}+\left(x^{2} y z\right) \hat{\mathbf{k}}$ and S consists of the top and 4 sides (no bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward.
3) [In section.] Let C be the triangle in \mathbb{R}^{3} with vertices $(1,0,0),(0,2,0)$ and $(0,0,1)$. Compute

$$
\int_{C}\left(x^{2}+y\right) d x+y z d y+\left(x-z^{2}\right) d z
$$

4) Use Stokes' Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ where $\vec{F}(x, y, z)=x^{2} z \hat{\mathbf{i}}+x y^{2} \hat{\mathbf{j}}+z^{2} \hat{\mathbf{k}}$ and C is the curve of intersection of the plane $x+y+z=1$ and the cylinder $x^{2}+y^{2}=9$ oriented counterclockwise as viewed from above.

Answers: 1) -8π. 2) 0.3$)-13 / 6$. 4) $81 \pi / 2$.

