Math 53 Discussion

Practice Problems: 16.7, 16.9, surface integrals, flux, divergence theorem

1) [Will do in section.] Evaluate the surface integral $\iint_{S} y d S$ where S is the part of the paraboloid $y=x^{2}+z^{2}$ that lies inside the cylinder $x^{2}+z^{2}=4$.
2) [Will do in section.] Evaluate the flux of $\vec{F}(x, y, z)=x z e^{y} \hat{\mathbf{i}}-x z e^{y} \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ across the surface S consisting of the part of the plane $x+y+z=1$ in the first octant and with downward orientation.
3) [Will do in section.] Use the Divergence theorem to find the flux of $\vec{F}=\left(e^{z}+y^{2} x\right) \hat{\mathbf{i}}+\left(\cos x+x^{2} z\right) \hat{\mathbf{k}}$ through the surface S bounded by the cone $z^{2}=x^{2}+y^{2}$ and the plane $z=1$.
4) Use the Divergence theorem to calculate the flux of $\vec{F}=|\vec{r}| \vec{r}$ through the surface S given by the hemisphere $z=\sqrt{1-x^{2}-y^{2}}$ and the disk $x^{2}+y^{2} \leq 1$ in the $x y$-plane. (Here \vec{r} denotes the vector $\langle x, y, z\rangle$).

Answers: 1) $\frac{\pi}{16}\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]_{1}^{17}=\frac{\pi}{60}(391 \sqrt{17}+1)$. 2) $-1 / 6$. 3) $\frac{\pi}{10}$. 4) 2π.

