Math 53 Discussion

Practice Problems: 16.7, 16.9, surface integrals, flux, divergence theorem

1) [Will do in section.] Evaluate the surface integral $\int \int_S y \, dS$ where S is the part of the paraboloid $y = x^2 + z^2$ that lies inside the cylinder $x^2 + z^2 = 4$.

2) [Will do in section.] Evaluate the flux of $\overrightarrow{F}(x, y, z) = xze^y \hat{\mathbf{i}} - xze^y \hat{\mathbf{j}} + z \hat{\mathbf{k}}$ across the surface S consisting of the part of the plane x + y + z = 1 in the first octant and with downward orientation.

3) [Will do in section.] Use the Divergence theorem to find the flux of $\vec{F} = (e^z + y^2 x) \hat{\mathbf{i}} + (\cos x + x^2 z) \hat{\mathbf{k}}$ through the surface S bounded by the cone $z^2 = x^2 + y^2$ and the plane z = 1.

4) Use the Divergence theorem to calculate the flux of $\overrightarrow{F} = |\overrightarrow{r}| \overrightarrow{r}$ through the surface S given by the hemisphere $z = \sqrt{1 - x^2 - y^2}$ and the disk $x^2 + y^2 \leq 1$ in the xy-plane. (Here \overrightarrow{r} denotes the vector $\langle x, y, z \rangle$).

Answers: 1) $\frac{\pi}{16} \left[\frac{2}{5} u^{5/2} - \frac{2}{3} u^{3/2} \right]_{1}^{17} = \frac{\pi}{60} (391\sqrt{17} + 1).$ 2) -1/6. 3) $\frac{\pi}{10}.$ 4) $2\pi.$