Math 53 Discussion

Practice Problems: 16.6-16.7, parametric surfaces and flux
1)[from Mon.] What surface has vector equation $\vec{r}(s, t)=\left\langle s \sin (2 t), s^{2}, s \cos (2 t)\right\rangle$?
2)[from Mon.] Find a parametric representation for the part of the ellipsoid $x^{2}+2 y^{2}+3 z^{2}=1$ that lies to the left of the $x z$-plane.
3)[from Mon.] Find the area of the surface with parametric equations $x=u^{2}, y=u v, z=\frac{1}{2} v^{2}$ for $0 \leq u \leq 1$ and $0 \leq v \leq 2$.
4) [from Mon.] Set up the integral for finding the area of the part of the surface $y=4 x+z^{2}$ that lies between the planes $x=0, x=1, z=0, z=1$.
5) Evaluate the surface integral $\iint_{S} y d S$ where S is the part of the paraboloid $y=x^{2}+z^{2}$ that lies inside the cylinder $x^{2}+z^{2}=4$.
6) Evaluate the flux of $\vec{F}(x, y, z)=x z e^{y} \hat{\mathbf{i}}-x z e^{y} \hat{\mathbf{j}}+z \hat{\mathbf{k}}$ across the surface S consisting of the part of the plane $x+y+z=1$ in the first octant and with downward orientation.

Answers: 1) paraboloid along y-axis. 2) ($\left.\sin \phi \cos \theta, \frac{1}{\sqrt{2}} \sin \phi \sin \theta, \frac{1}{\sqrt{3}} \cos \phi\right), 0 \leq \phi \leq \pi$, $\pi \leq \theta \leq 2 \pi$. 3) 4. 4) $\int_{0}^{1} \int_{0}^{1} \sqrt{17+4 z^{2}} d x d z=\int_{0}^{1} \sqrt{17+4 z^{2}} d z$. 5) $\frac{\pi}{16}\left[\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right]_{1}^{17}=\frac{\pi}{60}(391 \sqrt{17}+1)$. 6) $-1 / 6$.

