Math 53 Discussion

Quiz on Monday: Review 16.1-16.5
Practice Problems: 16.5, curl and divergence
1)[From Wednesday's handout.] If $\vec{F}(x, y)=\frac{-y \hat{i}+x \hat{j}}{x^{2}+y^{2}}$ (c.f. HW 10), show $\int_{C} \vec{F} \cdot d \vec{r}=2 \pi$ for all positively-oriented simple closed paths about the origin.

2i) Find the curl of $\vec{F}(x, y)=\sin (x y) \hat{i}+\cos (x y) \hat{j}$.
ii) Find the curl of $\vec{F}(x, y, z)=x y \hat{i}+x^{2} z \hat{j}-\left(y+z^{3}\right) \hat{k}$.
3) Calculate the divergence of the vector field obtained in 2ii).
4) Compute the flux of $\vec{F}(x, y)=x \hat{i}+y \hat{j}$ through 4 sides of the unit square, one vertex at $(0,0)$. Do it directly and then using Green's theorem.
5) Let R be the region enclosed by the x-axis, $x=2$, and $y=\sqrt{x}$.
(a) Use Green's theorem to compute the flux $\oint \vec{F} \cdot \hat{n} d s$ of $\vec{F}=x y \hat{i}$ out of R.
(b) Find the flux of \vec{F} out of R through the two segments C_{1} (horizontal) and C_{2} (vertical).
(c) Using (a) and (b), find the flux out of the third side C_{3}.

Answers: 1) Use Green's theorem applied to a region with two boundaries, one is the arbitrary curve C and the other is a small circle inside curve. 2 i$)-y \sin (x y)-x \cos (x y)$, ii) $-\left(1+x^{2}\right) \hat{i}+(-x+2 x z) \hat{k}$. 3) 0. 4) 2 . 5a) 1, b) 0 and 2 , c) -1

