Math 53 Discussion

Quiz on Monday: Review 16.1–16.5

Practice Problems: 16.5, curl and divergence

1)[From Wednesday's handout.] If $\overrightarrow{F}(x,y) = \frac{-y\hat{i} + x\hat{j}}{x^2 + y^2}$ (c.f. HW 10), show $\int_C \overrightarrow{F} \cdot d\overrightarrow{r} = 2\pi$ for <u>all</u> positively-oriented simple closed paths about the origin.

2i) Find the curl of $\overrightarrow{F}(x,y) = \sin(xy)\hat{i} + \cos(xy)\hat{j}$.

ii) Find the curl of $\overrightarrow{F}(x, y, z) = xy \hat{i} + x^2 z \hat{j} - (y + z^3) \hat{k}$.

3) Calculate the divergence of the vector field obtained in 2ii).

4) Compute the flux of $\overrightarrow{F}(x,y) = x \hat{i} + y \hat{j}$ through 4 sides of the unit square, one vertex at (0,0). Do it directly and then using Green's theorem.

5) Let R be the region enclosed by the x-axis, x = 2, and $y = \sqrt{x}$.

(a) Use Green's theorem to compute the flux $\oint \vec{F} \cdot \hat{n}ds$ of $\vec{F} = xy \hat{i}$ out of R.

(b) Find the flux of \overrightarrow{F} out of R through the two segments C_1 (horizontal) and C_2 (vertical).

(c) Using (a) and (b), find the flux out of the third side C_3 .

Answers: 1) Use Green's theorem applied to a region with two boundaries, one is the arbitrary curve C and the other is a small circle inside curve. 2i) $-y\sin(xy) - x\cos(xy)$, ii) $-(1+x^2)\hat{i} + (-x+2xz)\hat{k}$. 3) 0. 4) 2. 5a) 1, b) 0 and 2, c) -1